Spherical trigonometry

1 The spherical Pythagorean theorem

Proposition 1.1 On a sphere of radius R, any right triangle $\triangle A B C$ with $\angle C$ being the right angle satisfies

$$
\begin{equation*}
\cos (c / R)=\cos (a / R) \cos (b / R) \tag{1}
\end{equation*}
$$

Proof: After replacing $a / R, b / R$ and c / R with a, b, and c we may assume $R=1$. We rotate the triangle in such a way that $\overrightarrow{O C}=(0,0,1), A$ is in the $x z$ plane and B is in the $y z$-plane, see Figure 1 . A rotation around O in the $x z$ plane by $b=\angle A O C$ takes C into A, thus we have

Figure 1: A spherical right triangle

$$
\overrightarrow{O A}=(\sin (b), 0, \cos (b))
$$

Similarly, a rotation around O in the $y z$-plane by $a=\angle B O C$ takes C into B, thus we have

$$
\overrightarrow{O B}=(0, \sin (a), \cos (a))
$$

The difference of the two vectors is

$$
\overrightarrow{A B}=(-\sin (b), \sin (a), \cos (a)-\cos (b))
$$

Hence the length of $A B$ satisfies

$$
\begin{aligned}
|A B|^{2} & =\sin ^{2}(b)+\sin ^{2}(a)+(\cos (a)-\cos (b))^{2}=\sin ^{2}(b)+\sin ^{2}(a)+\cos ^{2}(a)+\cos ^{2}(b)-2 \cos (a) \cos (b) \\
& =2-2 \cos (a) \cos (b)
\end{aligned}
$$

Applying the law of cosines to the isosceles right triangle $O A B_{\triangle}$ we get

$$
\begin{gathered}
|A B|^{2}=|O A|^{2}+|O B|^{2}-2 \cdot|O A| \cdot|O B| \cdot \cos (c), \quad \text { that is, } \\
2-2 \cos (a) \cos (b)=2-2 \cos (c) .
\end{gathered}
$$

After subtracting 2 on both sides, and dividing both sides by (-2) we obtain the stated equation. \diamond

To prove the rest of the formulas of spherical trigonometry, we need to show the following.

Proposition 1.2 Any spherical right triangle $\triangle A B C$ with $\angle C$ being the right angle satisfies

$$
\begin{gather*}
\sin (A)=\frac{\sin \left(\frac{a}{R}\right)}{\sin \left(\frac{c}{R}\right)} \text { and } \tag{2}\\
\cos (A)=\frac{\tan \left(\frac{b}{R}\right)}{\tan \left(\frac{c}{R}\right)} \tag{3}
\end{gather*}
$$

 $\overrightarrow{O A} \times \overrightarrow{O C}$. Here
$\overrightarrow{O A} \times \overrightarrow{O B}=(-\cos (b) \sin (a),-\sin (b) \cos (a), \sin (a) \sin (b)) \quad$ and $\quad \overrightarrow{O A} \times \overrightarrow{O C}=(0,-\sin (b), 0)$.
The length of $\overrightarrow{O A} \times \overrightarrow{O B}$ is $|\overrightarrow{O A}| \cdot|\overrightarrow{O B}| \cdot \sin (c)=\sin (c)$, the length of $\overrightarrow{O A} \times \overrightarrow{O C}$ is $\sin (b)$.
To prove (2) we use the fact that

$$
\begin{equation*}
|(\overrightarrow{O A} \times \overrightarrow{O B}) \times(\overrightarrow{O A} \times \overrightarrow{O C})|=|\overrightarrow{O A} \times \overrightarrow{O B}| \cdot|\overrightarrow{O A} \times \overrightarrow{O C}| \cdot \sin (A) \tag{4}
\end{equation*}
$$

Since

$$
(-\cos (b) \sin (a),-\sin (b) \cos (a), \sin (a) \sin (b)) \times(0,-\sin (b), 0)=\left(\sin (a) \sin ^{2}(b), 0, \sin (b) \cos (b) \sin (a)\right)
$$

the left hand side of (4) is

$$
\sqrt{\sin ^{2}(a) \sin ^{4}(b)+\sin ^{2}(b) \cos ^{2}(b) \sin ^{2}(a)}=\sin (b) \sin (a) \sqrt{\sin ^{2}(b)+\cos ^{2}(b)}=\sin (b) \sin (a) .
$$

The right hand side of (4) is is $\sin (b) \sin (c) \sin (A)$. Thus we have

$$
\sin (b) \sin (a)=\sin (b) \sin (c) \sin (A)
$$

yielding (2).
To prove (3) we use the fact that

$$
\begin{equation*}
(\overrightarrow{O A} \times \overrightarrow{O B}) \cdot(\overrightarrow{O A} \times \overrightarrow{O C})=|\overrightarrow{O A} \times \overrightarrow{O B}| \cdot|\overrightarrow{O A} \times \overrightarrow{O C}| \cdot \cos (A) \tag{5}
\end{equation*}
$$

The left hand side is $\sin ^{2}(b) \cos (a)$, the right hand side is $\sin (b) \sin (c) \cos (A)$. Thus we obtain

$$
\sin ^{2}(b) \cos (a)=\sin (b) \sin (c) \cos (A)
$$

yielding

$$
\cos (A)=\frac{\sin (b) \cos (a)}{\sin (c)}=\frac{\tan (b)}{\tan (c)} \cdot \frac{\cos (a) \cos (b)}{\cos (c)} .
$$

Equation (3) now follows from Proposition 1.1.

2 General spherical triangles

To prove the spherical laws of sines and cosines, we will use the Figure 2.

Figure 2: A general spherical triangle

Theorem 2.1 (Spherical law of sines) Any spherical triangle satisfies

$$
\frac{\sin (A)}{\sin (a / R)}=\frac{\sin (B)}{\sin (b / R)}=\frac{\sin (C)}{\sin (c / R)} .
$$

Proof: Applying (2) to the right triangle $A B B_{1}$ yields

$$
\sin (A)=\frac{\sin (h / R)}{\sin (c / R)} .
$$

This equation allows us to express $\sin (h / R)$ as follows:

$$
\sin (h / R)=\sin (A) \sin (c / R)
$$

Similarly, applying (2) to the right triangle $C B B_{1}$ allows us to write

$$
\sin (h / R)=\sin (C) \sin (a / R)
$$

Therefore we have

$$
\sin (A / R) \sin (c / R)=\sin (C) \sin (a / R)
$$

since both sides equal $\sin (h / R)$. Dividing both sides by $\sin (a / R) \sin (c / R)$ yields

$$
\frac{\sin (A)}{\sin (a / R)}=\frac{\sin (C)}{\sin (c / R)} .
$$

The equality

$$
\frac{\sin (A)}{\sin (a / R)}=\frac{\sin (B)}{\sin (b / R)}
$$

may be shown in a completely similar fashion.

Theorem 2.2 (Spherical law of cosines) Any spherical triangle satisfies

$$
\cos (a / R)=\cos (b / R) \cos (c / R)+\sin (b / R) \sin (c / R) \cos (A) .
$$

Proof: Applying (1) to the right triangle $\triangle B B_{1} C$ yields

$$
\cos (a / R)=\cos \left(b_{2} / R\right) \cos (h / R)
$$

Let us replace b_{2} with $b-b_{1}$ in the above equation. After applying the formula $\cos (x-y)=$ $\cos (x) \cos (y)+\sin (x) \sin (y)$ we obtain

$$
\cos (a / R)=\cos (b / R) \cos \left(b_{1} / R\right) \cos (h / R)+\sin (b / R) \sin \left(b_{1} / R\right) \cos (h / R)
$$

Applying (1) to the right triangle $\triangle B B_{1} A$ we may replace both occurrences of $\cos (h / R)$ above with $\cos (c / R) / \cos \left(b_{1} / R\right)$ and obtain

$$
\begin{gathered}
\cos (a / R)=\cos (b / R) \cos (c / R)+\sin (b / R) \sin \left(b_{1} / R\right) \frac{\cos (c / R)}{\cos \left(b_{1} / R\right)}, \quad \text { that is, } \\
\cos (a / R)=\cos (b / R) \cos (c / R)+\sin (b / R) \sin (c / R) \frac{\tan \left(b_{1} / R\right)}{\tan (c / R)}
\end{gathered}
$$

Finally, (3) applied to the right triangle $\triangle B B_{1} A$ allows replacing $\tan \left(b_{1} / R\right) / \tan (c / R)$ with $\cos (A)$. \diamond

To obtain the spherical law of cosines for angles, we may apply the preceding theorem to the polar triangle of the triangle $\triangle A B C$. This one has sides $a^{\prime}=(\pi-A) R, b^{\prime}=(\pi-B) R$ and $c^{\prime}=(\pi-C) R$ and angles $A^{\prime}=\pi-a / R, B^{\prime}=\pi-b / R$ and $C^{\prime}=\pi-c / R$. The spherical law of cosines for the triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$ states

$$
\begin{gathered}
\cos \left(a^{\prime} / R\right)=\cos \left(b^{\prime} / R\right) \cos \left(c^{\prime} / R\right)+\sin \left(b^{\prime} / R\right) \sin \left(c^{\prime} / R\right) \cos \left(A^{\prime}\right), \quad \text { that is, } \\
\cos (\pi-A)=\cos (\pi-B) \cos (\pi-C)+\sin (\pi-B) \sin (\pi-C) \cos (\pi-a / R)
\end{gathered}
$$

Using $\cos (\pi-x)=-\cos (x)$ and $\sin (\pi-x)=\sin (x)$, after multiplying both sides by (-1) we obtain

$$
\begin{equation*}
\cos (A)=-\cos (B) \cos (C)+\sin (B) \sin (C) \cos (a / R) \tag{6}
\end{equation*}
$$

References

[1] D. Royster, "Non-Euclidean Geometry and a Little on How We Got There," Lecture notes, May 7, 2012.

