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Efron’s dice paradox
Coin paradoxes
Winner coins

Before Efron there were voting paradoxes

Candidate 1 Candidate 2 Candidate 3 Candidate 4

Voter 1 2 4 3 1
Voter 2 1 2 3 4
Voter 3 4 1 2 3

preferences assigned by voters. Every voting paradox may be
represented by a dice paradox.

Theorem (McGarvey)

Every tournament on n vertices can be represented using n(n − 1)
voters.

See Stearns (at least 0.55n/ log(n) voters), Erdős and Moser
(O(n/ log(n)) voters), and Bednay-Bozóki (dice with b6n/5c faces)
for improved results.
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The ground rules

Each coin has a type (a, b, x), where a ≤ b and x > 0 : it
displays a with probability 1/(1 + x) and b with probability
x/(1 + x).

We may assume x 6= 0 and x 6=∞: because a coin of type
(a, a, 1) always displays a.

Coin i dominates coin j if i is more likely to display a larger
number than j . (Draws allowed!)

We may assume a < b for all coin types. (This is a lemma!)
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Inequalities expressing the dominance relations

Relation between (ai , bi ) and (aj , bj) i → j exactly when

(ai , bi ) = (aj , bj) xi > xj
ai = aj < bi < bj 1/xj > 1/xi + 1

ai < aj < bj < bi xi > 1

ai < aj < bi = bj xi > xj + 1

ai < aj < bi < bj (1/xi + 1)(xj + 1) < 2

ai < bi ≤ aj < bj never

The fourth line should look familiar, if you saw the Linial
arrangement.
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The Linial arrangement

Ln−1 is given by

xi − xj = 1 where 1 ≤ i < j ≤ n

in the (n − 1)-dimensional vector space
Vn−1 = {(x1, . . . , xn) ∈ Rn : x1 + · · ·+ xn = 0}.
To each region R in Ln−1 we may associate a tournament on
{1, . . . , n} as follows: for each i < j we set i → j if xi > xj + 1 and
we set j → i if xi < xj + 1.

Proposition (Postnikov-Stanley, Shmulik Ravid)

A tournament T on {1, . . . , n} corresponds to a region R in Ln−1

if and only if T is semiacyclic.
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Semiacylic tournaments

An edge i → j is an ascent if i < j , and it is a descent if i > j .

An ascending cycle is a cycle in which the number of descents
does not exceed the number of ascents.

A (labeled) tournament is semiacyclic if it does not contain an
ascending cycle.
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Charlie Sheen to the rescue

A coin of type (a, b, x) is a winner if x > 1. (It displays its larger
side with greater probability.) It is a loser if x < 1, and it is fair if
x = 1.

Theorem

Assume a set of n winner and fair coins is listed in increasing
lexicographic order of their types. If the domination graph is a
tournament, it must be semiacyclic. Conversely every semiacyclic
tournament is the domination graph of a set of winner coins.
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General sets of coins

Analogous results hold for loser and fair coins. (Reverse arrows or
replace each xi with 1/xi .)

Corollary

If a tournament T may be represented as the dominance graph of
a system of coins, then its vertex set V may be written as a union
V = V1 ∪ V2, such that the full subgraphs induced by V1 and V2,
respectively, may be labeled to become semiacyclic tournaments.
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C3 × C3 × C3 × C3 is not a dominance graph

Theorem

Suppose the tournaments T1 and T2 have the property that they
are not semiacyclic for any ordering of their vertex sets. Then the
tournament T1 × T2 can not be the dominance graph of any
system of coins.
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Regarding semiacyclic tournaments

Postnikov also used partial differential equations and implicit
function equations to show that the number of alternating trees is

2−n
n∑

k=0

(
n

k

)
(k + 1)n−1.

Counting semiacyclic tournaments directly would be desirable.
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Alternation acyclic tournaments

A directed cycle C = (c0, c1, . . . , c2k−1) is alternating if ascents

and descents alternate along the cycle, that is, c2j
d−→ c2j+1 and

c2j+1
a−→ c2j+2 hold for all j (here we identify all indices modulo

2k). A tournament is alternation acyclic (or alt-acyclic) if it
contains no alternating cycle. An alternating cycle is also an
ascending cycle, hence every semiacyclic tournament is also
alternation acyclic.
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In a tournament T on {1, . . . , n}, there is a right-alternating walk
from u to v if u = v or there is a directed walk
u = w0

d−→ w1
a−→ w2

d−→ · · · d−→ w2i−1
a−→ w2i = v from u to v in

which descents and ascents alternate, the first edge being a
descent and the last edge being an ascent. We will use the
notation u ≤ra v when there is a right-alternating walk from u to
v , and we will refer to ≤ra as the right-alternating walk order
induced by T . We will also use the shorthand notation u <ra w
when u ≤ra v and u 6= v hold.

Proposition

A tournament T on {1, . . . , n} is alternation acyclic, if and only
the induced right-alternating walk order is a partial order.
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Biordered forests

Definition

Given a permutation π : {1, 2, . . . , n} → {1, 2, . . . , n}, we will say
that the labeling induced by the positions in π is the labeling that
associates to each i ∈ {1, 2, . . . , n} the position π−1(i) of i in π.

3 1 2 4 65

The arrows represent i → p(i), π = 531246.
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Biordered forests
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The arrows represent i → p(i), π = 531246.
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The biordered forest representation

3 1 2 4 65

For all u < v we set u
a−→ v if p(u) 6=∞ and π−1(v) ≥ π−1(p(u))

hold, otherwise we set v
d−→ u.
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The biordered forest representation

3 1 2 4 65

For all u < v we set u
a−→ v if p(u) 6=∞ and π−1(v) ≥ π−1(p(u))

hold, otherwise we set v
d−→ u.

π(2) = 3. The number 3 the leftmost number larger than 2 for
which 2

a−→ 3. All numbers larger than 2 that are to the left of 3
defeat 2, and 2 defeats all numbers larger than 2 to the right of 3.

Hence we have 5
d−→ 2, 2

a−→ 3, 2
a−→ 4 and 2

a−→ 6.
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The biordered forest representation

3 1 2 4 65

For all u < v we set u
a−→ v if p(u) 6=∞ and π−1(v) ≥ π−1(p(u))

hold, otherwise we set v
d−→ u.

Similarly we have p(3) = 6 and so the only ascent starting at 3
is 3

a−→ 6. The parent of the numbers π(3) = 1, π(5) = 4 and
π(6) = 6 is ∞, no arc begins at these vertices, no ascent starts at
these vertices.
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Existence and non-uniqueness

Theorem

Every biordered forest (π, p) induces an alternation acyclic
tournament T . Furthermore, the permutation π is a linear
extension of the right alternating walk order induced by T .

For any alt-acyclic tournament T , the element 1 is always
incomparable to the other elements of {1, . . . , n} in the right
alternating walk order, hence the partial order ≤ra has always at
least two linear extensions. This makes the use of biordered forests
to directly count alt-acyclic tournaments difficult.

G. Hetyei Efron→ alt-acyclic tournaments



Outline
Efron’s coins and the Linial arrangement

Alternation acyclic tournaments

Definition and codes
The homogenized Linial arrangement
Combinatorial models

Existence and non-uniqueness

Theorem

Every biordered forest (π, p) induces an alternation acyclic
tournament T . Furthermore, the permutation π is a linear
extension of the right alternating walk order induced by T .

For any alt-acyclic tournament T , the element 1 is always
incomparable to the other elements of {1, . . . , n} in the right
alternating walk order, hence the partial order ≤ra has always at
least two linear extensions. This makes the use of biordered forests
to directly count alt-acyclic tournaments difficult.

G. Hetyei Efron→ alt-acyclic tournaments



Outline
Efron’s coins and the Linial arrangement

Alternation acyclic tournaments

Definition and codes
The homogenized Linial arrangement
Combinatorial models

Existence and non-uniqueness

Theorem

Every biordered forest (π, p) induces an alternation acyclic
tournament T . Furthermore, the permutation π is a linear
extension of the right alternating walk order induced by T .

For any alt-acyclic tournament T , the element 1 is always
incomparable to the other elements of {1, . . . , n} in the right
alternating walk order, hence the partial order ≤ra has always at
least two linear extensions. This makes the use of biordered forests
to directly count alt-acyclic tournaments difficult.

G. Hetyei Efron→ alt-acyclic tournaments



Outline
Efron’s coins and the Linial arrangement

Alternation acyclic tournaments

Definition and codes
The homogenized Linial arrangement
Combinatorial models

Existence and non-uniqueness

Theorem

Every biordered forest (π, p) induces an alternation acyclic
tournament T . Furthermore, the permutation π is a linear
extension of the right alternating walk order induced by T .

For any alt-acyclic tournament T , the element 1 is always
incomparable to the other elements of {1, . . . , n} in the right
alternating walk order, hence the partial order ≤ra has always at
least two linear extensions. This makes the use of biordered forests
to directly count alt-acyclic tournaments difficult.

G. Hetyei Efron→ alt-acyclic tournaments



Outline
Efron’s coins and the Linial arrangement

Alternation acyclic tournaments

Definition and codes
The homogenized Linial arrangement
Combinatorial models

The homogenized Linial arrangement

We define the homogenized Linial arrangement H2n−2 as the set of
hyperplanes

xi − xj = yi 1 ≤ i < j ≤ n.

Well, in

U2n−2 = {(x1, . . . , xn, y1, . . . , yn−1) ∈ R2n−1 : x1 + · · ·+ xn = 0}.

Just avoiding inessential dimensions.
We associate to each region R of H2n−2 a tournament T (R) on
{1, . . . , n} as follows. For each i < j , set i → j iff the points of the
region satisfy xi − yi > xj .
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The key to the proof is to set

xi =
n + 1

2
− π−1(i) for i = 1, 2, . . . , n

and yi := π−1(p(i))− π−1(i)− 1/2 for i = 1, . . . , n − 1.
The difference xi − xj = π−1(j)− π−1(i) is the difference between

the positions of j and i . This integer is strictly more than
yi = π−1(p(i))− π−1(i)− 1/2 exactly when j = p(i) or j is to the
right of p(i) in π. Therefore T (R) is exactly the tournament
induced by the biordered forest whose code is (π, p).
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Theorem

The correspondence R 7→ T (R) establishes a bijection between all
regions of the homogenized Linial arrangement H2n−2 and all
alternation acyclic tournaments on the set {1, . . . , n}
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The difference xi − xj = π−1(j)− π−1(i) is the difference between

the positions of j and i . This integer is strictly more than
yi = π−1(p(i))− π−1(i)− 1/2 exactly when j = p(i) or j is to the
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Interlude: counting regions in a hyperplane arrangement

Zaslavsky’s formula says

r(A) = (−1)dχ(A,−1),

where χ(A, q) is the characteristic polynomial of the arrangement.
We may compute this, using Athanasiadis’ formula. We consider

the hyperplanes defined by the same equations in a vector space of
the same dimension over a finite field Fq with q elements, where q
is a large prime number. χ(A, q) is then the number of points in
the vector space that do not belong to any hyperplane:

χ(A, q) =
∣∣∣Fd

q −
⋃
A
∣∣∣ .
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Using the Athanasiadis formula

We consider the generalized Linial arrangement in R2n. (We don’t
fret about inessential dimensions.) We introduce χ(n, k , q) to
denote the number of those points in its complement, for which
the set {x1 − y1, . . . , xn − yn} has k elements. These numbers
satisfy the recurrence

χ(n, k , q) = (q−k) ·k ·χ(n−1, k , q)+(q−k +1)2 ·χ(n−1, k−1, q)

for n ≥ 2, and the initial condition χ(1, k , q) = δ1,kq2.
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Two helpful miracles

Substituting q = −1, we realize that the numbers (−1)n−k ·χ(n,k,−1)
(k!)2

satisfy the same recurrence and initial conditions as the one found
by Andrews, Gawronski and Littlejohn for the Legendre-Stirling
numbers. Hence the number of regions is

rn =
n∑

k=1

(−1)n−k · (k!)2 · PS
(k)
n .

This is the median Genocchi number H2n−1 according to a
formula found by Claesson, Kitaev, Ragnarsson and Tenner. They
were working with Ferrers graphs.

G. Hetyei Efron→ alt-acyclic tournaments



Outline
Efron’s coins and the Linial arrangement

Alternation acyclic tournaments

Definition and codes
The homogenized Linial arrangement
Combinatorial models

Two helpful miracles

Substituting q = −1, we realize that the numbers (−1)n−k ·χ(n,k,−1)
(k!)2

satisfy the same recurrence and initial conditions as the one found
by Andrews, Gawronski and Littlejohn for the Legendre-Stirling
numbers.

Hence the number of regions is

rn =
n∑

k=1

(−1)n−k · (k!)2 · PS
(k)
n .

This is the median Genocchi number H2n−1 according to a
formula found by Claesson, Kitaev, Ragnarsson and Tenner. They
were working with Ferrers graphs.

G. Hetyei Efron→ alt-acyclic tournaments



Outline
Efron’s coins and the Linial arrangement

Alternation acyclic tournaments

Definition and codes
The homogenized Linial arrangement
Combinatorial models

Two helpful miracles

Substituting q = −1, we realize that the numbers (−1)n−k ·χ(n,k,−1)
(k!)2

satisfy the same recurrence and initial conditions as the one found
by Andrews, Gawronski and Littlejohn for the Legendre-Stirling
numbers. Hence the number of regions is

rn =
n∑

k=1

(−1)n−k · (k!)2 · PS
(k)
n .

This is the median Genocchi number H2n−1 according to a
formula found by Claesson, Kitaev, Ragnarsson and Tenner. They
were working with Ferrers graphs.

G. Hetyei Efron→ alt-acyclic tournaments



Outline
Efron’s coins and the Linial arrangement

Alternation acyclic tournaments

Definition and codes
The homogenized Linial arrangement
Combinatorial models

Two helpful miracles

Substituting q = −1, we realize that the numbers (−1)n−k ·χ(n,k,−1)
(k!)2

satisfy the same recurrence and initial conditions as the one found
by Andrews, Gawronski and Littlejohn for the Legendre-Stirling
numbers. Hence the number of regions is

rn =
n∑

k=1

(−1)n−k · (k!)2 · PS
(k)
n .

This is the median Genocchi number H2n−1 according to a
formula found by Claesson, Kitaev, Ragnarsson and Tenner.

They
were working with Ferrers graphs.

G. Hetyei Efron→ alt-acyclic tournaments



Outline
Efron’s coins and the Linial arrangement

Alternation acyclic tournaments

Definition and codes
The homogenized Linial arrangement
Combinatorial models

Two helpful miracles

Substituting q = −1, we realize that the numbers (−1)n−k ·χ(n,k,−1)
(k!)2

satisfy the same recurrence and initial conditions as the one found
by Andrews, Gawronski and Littlejohn for the Legendre-Stirling
numbers. Hence the number of regions is

rn =
n∑

k=1

(−1)n−k · (k!)2 · PS
(k)
n .

This is the median Genocchi number H2n−1 according to a
formula found by Claesson, Kitaev, Ragnarsson and Tenner. They
were working with Ferrers graphs.

G. Hetyei Efron→ alt-acyclic tournaments



Outline
Efron’s coins and the Linial arrangement

Alternation acyclic tournaments

Definition and codes
The homogenized Linial arrangement
Combinatorial models

The Genocchi numbers

Equivalently

Corollary

The unsigned Genocchi number |G2n+2| is the number of ordered
pairs

((a1, . . . , an), (b1, . . . , bn)) ∈ Zn × Zn

such that 1 ≤ ai , bi ≤ i hold for all i and the set
{a1, b1, . . . , an, bn} equals {1, . . . , n}.
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The Genocchi numbers

The Genocchi numbers Gn of the first kind are given by the
exponential generating function

∞∑
n=1

Gn
tn

n!
=

2t

et + 1
.

Equivalently

Corollary

The unsigned Genocchi number |G2n+2| is the number of ordered
pairs
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The Genocchi numbers

The Genocchi numbers Gn of the first kind are given by the
exponential generating function

∞∑
n=1

Gn
tn

n!
=

2t

et + 1
.

Theorem (Dumont)

The unsigned Genocchi number |G2n+2| is the number of excedant
functions f : {1, . . . , 2n} → {1, . . . , 2n} satisfying
f ({1, . . . , 2n}) = {2, 4, . . . , 2n}.

Equivalently

Corollary

The unsigned Genocchi number |G2n+2| is the number of ordered
pairs

((a1, . . . , an), (b1, . . . , bn)) ∈ Zn × Zn

such that 1 ≤ ai , bi ≤ i hold for all i and the set
{a1, b1, . . . , an, bn} equals {1, . . . , n}.
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exponential generating function

∞∑
n=1

Gn
tn

n!
=

2t

et + 1
.

Theorem (Dumont)

The unsigned Genocchi number |G2n+2| is the number of excedant
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The median Genocchi numbers

The median Genocchi numbers H2n−1, also called Genocchi
numbers of the second kind, were introduced concurrently with the
Genocchi numbers of the first kind. H2n−1 is known to be an
integer multiple of 2n−1. The numbers hn = H2n+1/2n are the
normalized median Genocchi numbers. Several combinatorial
models of these numbers exists, perhaps the most known are the
Dellac configurations. Other models may be found in the works of
Bigeni, Feigin, Han and Zeng, and Kreweras and Barraud.
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Using the largest maximum order

Theorem

Given a permutation λ of {1, . . . , n} and a parent function

p : {1, 2, . . . , n} → {2, . . . , n} ∪ {∞},

the pair (λ, p) is the largest maximal representation of the
tournament induced by (λ, p) if and only if for each descent i of λ,
the vertex λ(i + 1) belongs to the range of p.
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Using the largest maximum order

For an alternation acyclic tournament T on {1, . . . , n}, we define
the largest maximal order to be the permutation λ = λ(1) · · ·λ(n),
in which for each k , the vertex λ(k) is the largest maximal element
in the poset obtained by restricting the partial order ≤ra to the set
{λ(1), . . . , λ(k)}. We call the unique pair (λ, p) inducing T the
largest maximal representation of T .
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Recursive counting

We say that an alternation acyclic tournament has type (n, i , j) if
it is a tournament on {1, . . . , n}, and the parent function p in its
largest maximal representation (λ, p) satisfies |p−1(∞)| = i and
|p({1, . . . , n})| = j + 1. We will denote the number of alternation
acyclic tournaments of type (n, i , j) with A(n, i , j).

Theorem

The numbers A(n, i , j)/j! are integers, given by
A(1, i , j)/j! = δi ,1 · δ0,j and the recurrence

A(n, i , j)

j!
=

n−1∑
k=i

(
k

i − 1

)
·A(n − 1, k , j − 1)

(j − 1)!
+(j+1)·A(n − 1, i − 1, j)

j!

for n ≥ 2.
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Sample tables

For n = 5 the table for A(5, i , j)/j! is
4 1
3 16 26
2 17 58 66
1 1 6 16 26
0 0 0 0 0 1

��
����j

i
1 2 3 4 5
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Sample tables

For n = 2 the table for A(2, i , j)/j! is
1 1
0 0 1

�
���

��j
i

1 2

For n = 5 the table for A(5, i , j)/j! is
4 1
3 16 26
2 17 58 66
1 1 6 16 26
0 0 0 0 0 1

��
����j

i
1 2 3 4 5
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Sample tables

For n = 2 the table for A(2, i , j)/j! is
1 1
0 0 1

�
���

��j
i

1 2

For n = 3 the table for A(3, i , j)/j! is
2 1
1 1 4
0 0 0 1

�
���

��j
i

1 2 3

For n = 5 the table for A(5, i , j)/j! is

4 1
3 16 26
2 17 58 66
1 1 6 16 26
0 0 0 0 0 1

��
����j

i
1 2 3 4 5
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Sample tables

For n = 4 the table for A(4, i , j)/j! is
3 1
2 5 11
1 1 5 11
0 0 0 0 1

��
����j

i
1 2 3 4

For n = 5 the table for A(5, i , j)/j! is

4 1
3 16 26
2 17 58 66
1 1 6 16 26
0 0 0 0 0 1

���
���j

i
1 2 3 4 5
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Sample tables

For n = 5 the table for A(5, i , j)/j! is
4 1
3 16 26
2 17 58 66
1 1 6 16 26
0 0 0 0 0 1
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����j

i
1 2 3 4 5
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Sample tables

For n = 5 the table for A(5, i , j)/j! is
4 1
3 16 26
2 17 58 66
1 1 6 16 26
0 0 0 0 0 1

��
����j

i
1 2 3 4 5

In the main diagonal of each table we have the Eulerian numbers:
A(n, n − j , j)/j! is the number of permutations of {1, . . . , n}
having exactly j descents. (Easy.)
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Sample tables

For n = 5 the table for A(5, i , j)/j! is
4 1
3 16 26
2 17 58 66
1 1 6 16 26
0 0 0 0 0 1

��
����j

i
1 2 3 4 5

The first column gives rise to the Genocchi numbers of the first
kind.
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Refined counting

The key ingredient to proving the theorem is the following
bijection.

Theorem

There is a bijection between the set of all permutations π of
{1, . . . , n} and the set of excedant functions
f : {1, . . . , n} → {1, . . . , n} such that, for each π, a number
k ∈ {1, . . . , n} does not belong to the set {f (1), . . . , f (n)} if and
only if π(i + 1) = k for some descent i of π.
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Refined counting

Theorem

For each i ∈ {1, . . . , n}, the sum
∑n

j=0 A(n, i , j) is the number of
ordered pairs

((a1, . . . , an−1), (b1, . . . , bn−1)) ∈ Zn−1 × Zn−1

satisfying the following conditions:

1 0 ≤ ak ≤ k and 1 ≤ bk ≤ k hold for all k ∈ {1, . . . , n − 1};
2 the set {a1, b1, . . . , an−1, bn−1} contains {1, . . . , n − 1};
3 |{k ∈ {1, . . . , n − 1} : ak = 0}| = i − 1.

The key ingredient to proving the theorem is the following
bijection.

Theorem

There is a bijection between the set of all permutations π of
{1, . . . , n} and the set of excedant functions
f : {1, . . . , n} → {1, . . . , n} such that, for each π, a number
k ∈ {1, . . . , n} does not belong to the set {f (1), . . . , f (n)} if and
only if π(i + 1) = k for some descent i of π.
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Theorem

There is a bijection between the set of all permutations π of
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f : {1, . . . , n} → {1, . . . , n} such that, for each π, a number
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Ascending alt-acyclic tournaments

We call an alternation acyclic tournament T on {1, . . . , n}
ascending if every i < n is the tail of an ascent, that is, for each
i < n there is a j > i such that i → j .

Lemma

An alternating acyclic tournament T on {1, . . . , n} is ascending if
and only if it has type (n, 1, j) for some j.

Corollary

The number of ascending alternation acyclic tournaments on
{1, . . . , n} is the unsigned Genocchi number of the first kind |G2n|.
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A new model for the median Genocchi numbers

The key idea is the Zn
2-action:

(a′k , b
′
k) =


(bk , ak) if ak 6= bk and ak 6= 0;

(0, bk) if ak = bk ;

(bk , bk) if ak = 0.
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A new model for the median Genocchi numbers

Corollary

The median Genocchi number H2n−1 is the total number of all
ordered pairs

((a1, . . . , an−1), (b1, . . . , bn−1)) ∈ Zn−1 × Zn−1

such that 0 ≤ ak ≤ k and 1 ≤ bk ≤ k hold for all k and the set
{a1, b1, . . . , an−1, bn−1} contains {1, . . . , n − 1}.

The key idea is the Zn
2-action:

(a′k , b
′
k) =


(bk , ak) if ak 6= bk and ak 6= 0;

(0, bk) if ak = bk ;
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A new model for the median Genocchi numbers

Theorem

The normalized median Genocchi number hn is the number of
sequences {u1, v1}, {u2, v2}, . . . , {un, vn} subject to the following
conditions:

1 the set {uk , vk} is a (one- or two-element) subset of
{1, . . . , k};

2 the set {u1, v1, u2, v2, . . . , un, vn} equals {1, . . . , n}.

The key idea is the Zn
2-action:

(a′k , b
′
k) =


(bk , ak) if ak 6= bk and ak 6= 0;

(0, bk) if ak = bk ;

(bk , bk) if ak = 0.
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Epilogue

It was recently shown by Bigeni that the above model is bijectively
equivalent to the model introduced by Feigin. Alexander Lazar and
Michelle Wachs, the results on the homogenized Linial
arrangements to type B arrangements, and make the proper
connection with Ferrers graphs. Beáta Bényi and Gábor V. Nagy
recovered some of my results by counting special fillings of Ferrer’s
shapes.
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THE END

Thank you very much!
arXiv:1511.04482 [math.CO] and arXiv:1704.07245 [math.CO]

“Efron’s coins and the Linial arrangement,”
Discrete Mathematics 339 (2016), 2998-3004.

“Alternation acyclic tournaments”
European Journal of Combinatorics 81 (2019) 1–21.
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