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What is a hypermap?
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Vertices: σ = (1, 2, 3)(4, 5, 6)(7, 8, 9, 10)(11, 12).
Hyperedges: α = (1, 6)(2, 11, 9, 5)(3, 7)(4, 10)(8, 12).
Faces: α−1σ = (1, 5)(2, 7, 12)(3, 6, 10)(4, 9)(8, 11).

Cori and Hetyei Hypertrees and meanders



Outline
Hypermaps

Tours of spanning unicellular hypermaps
Meanders and semimeanders

What is a hypermap?

Informally: a hypergraph, topologically embedded in an orientable
surface.
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What is a hypermap?

Informally: a hypergraph, topologically embedded in an orientable
surface. Formally: a pair of permutations (σ, α), generating a
transitive permutation group.
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A map (Bernardi’s example)

A hypermap (σ, α) is a map if α is an involution.
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Vertices: σ = (1, 4, 2, 12)(8, 11, 9)(5, 7, 3, 6)(10).
Edges: α = (1, 7)(2, 8)(3, 9)(4, 10), (5, 11)(6, 12).
Faces: α−1σ = ασ = (1, 10, 4, 8, 5)(2, 6, 11, 3, 12, 7, 9).
Genus formula (Jacques):
n + 2− 2g(σ, α) = z(σ) + z(α) + z(α−1σ).
12 + 2− 2 · 1 = 4 + 6 + 2.
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A hypermap (σ, α) is a map if α is an involution.
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A map (Bernardi’s example)

A hypermap (σ, α) is a map if α is an involution.
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A map (Bernardi’s example)

A hypermap (σ, α) is a map if α is an involution.
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Spanning unicellular hypermaps

A hypermap (σ, α) is unicellular if it has a single face.
It is also a hypertree if it has genus zero.
Write α = α1 · · ·αt as a product of disjoint cycles. The
permutation θ = θ1 · · · θt is a refinement of α if for each i the
permutation θi permutes the points moved by αi and
g(θi , αi ) = 0. (Equivalently, each θi is a noncrossing partition with
respect to the cyclic order of αi .)
(σ, θ) is a spanning hypermap of (σ, α) if θ is a refinement of α.
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θ = (1)(2, 9)(3)(4, 10)(5)(6)(7)(8, 12)(11) is a refinement of
α = (1, 6)(2, 11, 9, 5)(3, 7)(4, 10)(8, 12).
θ−1σ = (1, 9, 4, 5, 6, 10, 7, 12, 11, 8, 2, 3).

Cori and Hetyei Hypertrees and meanders



Outline
Hypermaps

Tours of spanning unicellular hypermaps
Meanders and semimeanders

Example

8

1

2

10

11

12

9
4

6

3

5
7
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θ = (1)(2, 9)(3)(4, 10)(5)(6)(7)(8, 12)(11) is a refinement of
α = (1, 6)(2, 11, 9, 5)(3, 7)(4, 10)(8, 12).

θ−1σ = (1, 9, 4, 5, 6, 10, 7, 12, 11, 8, 2, 3).
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A continuation of Bernardi’s example
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Spanning tree on the left: θ0 = (1, 7)(2, 8)(4, 10).
Spanning genus 1 unicellular map on the right:
θ = (1, 7)(2, 8)(3, 9)(4, 10)(6, 12).
(We added (3, 9) and (6, 12).)
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Spanning tree on the left: θ0 = (1, 7)(2, 8)(4, 10).

Spanning genus 1 unicellular map on the right:
θ = (1, 7)(2, 8)(3, 9)(4, 10)(6, 12).
(We added (3, 9) and (6, 12).)
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Spanning tree on the left: θ0 = (1, 7)(2, 8)(4, 10).
Spanning genus 1 unicellular map on the right:
θ = (1, 7)(2, 8)(3, 9)(4, 10)(6, 12).
(We added (3, 9) and (6, 12).)
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Mach̀ı’s theorem and its variants

Bernardi’s vertex tour of a spanning tree is also a variant, because
of the following.

Theorem

Let (σ, α) be a hypermap and let θ be a permutation of the same
set of points. Then (σ, θ) is a spanning unicellular hypermap of
(σ, α) if and only if (α−1σ, α−1θ) is a spanning unicellular
hypermap of the dual hypermap (α−1σ, α−1). Furthermore, if the
above are satisfied we have

g(σ, θ) + g(α−1σ, α−1θ) = g(σ, α).

Cori and Hetyei Hypertrees and meanders
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Mach̀ı’s theorem and its variants

Theorem (Cori (g = 0)→ Mach̀ı)

Given (σ, α), there is a bijection between the genus g unicellular
hypermaps θ spanning its hyperdual (σ−1, σ−1α), and the set
Cσ(σ, α), defined as the set of circular permutations ζ satisfying
g(σ, ζ) = g(σ, α) and g(α, ζ) = 0. The bijection is given by the
rule θ 7→ ζ = σθ.

Bernardi’s vertex tour of a spanning tree is also a variant, because
of the following.

Theorem

Let (σ, α) be a hypermap and let θ be a permutation of the same
set of points. Then (σ, θ) is a spanning unicellular hypermap of
(σ, α) if and only if (α−1σ, α−1θ) is a spanning unicellular
hypermap of the dual hypermap (α−1σ, α−1). Furthermore, if the
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g(σ, θ) + g(α−1σ, α−1θ) = g(σ, α).
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of the following.
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Let (σ, α) be a hypermap and let θ be a permutation of the same
set of points. Then (σ, θ) is a spanning unicellular hypermap of
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Mach̀ı’s theorem and its variants

Replace (σ, α) by its Kreweras dual (σ, α−1σ):

Bernardi’s vertex
tour of a spanning tree is also a variant, because of the following.

Theorem

Let (σ, α) be a hypermap and let θ be a permutation of the same
set of points. Then (σ, θ) is a spanning unicellular hypermap of
(σ, α) if and only if (α−1σ, α−1θ) is a spanning unicellular
hypermap of the dual hypermap (α−1σ, α−1). Furthermore, if the
above are satisfied we have

g(σ, θ) + g(α−1σ, α−1θ) = g(σ, α).
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Mach̀ı’s theorem and its variants

Replace (σ, α) by its Kreweras dual (σ, α−1σ):

Corollary

There is a bijection between the spanning genus g unicellular
hypermaps θ of a hypermap (σ, α) of genus g and the set

Cσ(σ, α−1σ) = {ζ :z(ζ) = 1, g(σ, ζ) = g(σ, α−1σ), g(α−1σ, ζ)=0},

taking each spanning unicellular hypermap θ into ζ = θ−1σ.

Bernardi’s vertex tour of a spanning tree is also a variant, because
of the following.

Theorem

Let (σ, α) be a hypermap and let θ be a permutation of the same
set of points. Then (σ, θ) is a spanning unicellular hypermap of
(σ, α) if and only if (α−1σ, α−1θ) is a spanning unicellular
hypermap of the dual hypermap (α−1σ, α−1). Furthermore, if the
above are satisfied we have

g(σ, θ) + g(α−1σ, α−1θ) = g(σ, α).
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of the following.

Theorem

Let (σ, α) be a hypermap and let θ be a permutation of the same
set of points. Then (σ, θ) is a spanning unicellular hypermap of
(σ, α) if and only if (α−1σ, α−1θ) is a spanning unicellular
hypermap of the dual hypermap (α−1σ, α−1). Furthermore, if the
above are satisfied we have

g(σ, θ) + g(α−1σ, α−1θ) = g(σ, α).
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Hyperdeletions and hypercontractions

Consider σ = (1, 4)(2, 5)(3) and α = (1, 2, 3)(4, 5).

3

1

2

4

5

The hypercontraction (i , j) takes (σ, α) into ((i , j)σ, (i , j)α).
For (i , j) = (1, 2): (1, 2)(1, 4)(2, 5)(3) = (1, 4, 2, 5)(3) and
(1, 2)(1, 2, 3) = (2, 3).
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Hyperdeletions and hypercontractions

Consider σ = (1, 4)(2, 5)(3) and α = (1, 2, 3)(4, 5).
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The hyperdeletion (i , j) takes (σ, α) into (σ, α(i , j)).
For (i , j) = (1, 2): (1, 2, 3)(1, 2) = (1, 3).
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53
1

2

4

Cori and Hetyei Hypertrees and meanders



Outline
Hypermaps

Tours of spanning unicellular hypermaps
Meanders and semimeanders

Hyperdeletions and hypercontractions

Consider σ = (1, 4)(2, 5)(3) and α = (1, 2, 3)(4, 5).

3

1

2

4

5

The hypercontraction (i , j) takes (σ, α) into ((i , j)σ, (i , j)α).
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Non-topological hyperdeletions and hypercontractions
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You may delete the “bridge” (3, 9) or (6, 12) from
θ = (1, 7)(2, 8)(3, 9)(4, 10)(6, 12). It will increase the number of
faces and z(α) by one, and it will decrease the genus by one. It is
a non-topological hyperdeletion. Similarly, a non-topological
hypercontraction of a map “contracts a loop” and “splits a vertex”.
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You may delete the “bridge” (3, 9) or (6, 12) from
θ = (1, 7)(2, 8)(3, 9)(4, 10)(6, 12). It will increase the number of
faces and z(α) by one, and it will decrease the genus by one. It is
a non-topological hyperdeletion. Similarly, a non-topological
hypercontraction of a map “contracts a loop” and “splits a vertex”.
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You may delete the “bridge” (3, 9) or (6, 12) from
θ = (1, 7)(2, 8)(3, 9)(4, 10)(6, 12).

It will increase the number of
faces and z(α) by one, and it will decrease the genus by one. It is
a non-topological hyperdeletion. Similarly, a non-topological
hypercontraction of a map “contracts a loop” and “splits a vertex”.

Cori and Hetyei Hypertrees and meanders



Outline
Hypermaps

Tours of spanning unicellular hypermaps
Meanders and semimeanders

Non-topological hyperdeletions and hypercontractions

10

1

4

12

11

8

7

5

3

6
9 2

2

6

11

15

3

4

9

7

12
10

8

You may delete the “bridge” (3, 9) or (6, 12) from
θ = (1, 7)(2, 8)(3, 9)(4, 10)(6, 12). It will increase the number of
faces and z(α) by one, and it will decrease the genus by one.

It is
a non-topological hyperdeletion. Similarly, a non-topological
hypercontraction of a map “contracts a loop” and “splits a vertex”.
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You may delete the “bridge” (3, 9) or (6, 12) from
θ = (1, 7)(2, 8)(3, 9)(4, 10)(6, 12). It will increase the number of
faces and z(α) by one, and it will decrease the genus by one. It is
a non-topological hyperdeletion.

Similarly, a non-topological
hypercontraction of a map “contracts a loop” and “splits a vertex”.
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You may delete the “bridge” (3, 9) or (6, 12) from
θ = (1, 7)(2, 8)(3, 9)(4, 10)(6, 12). It will increase the number of
faces and z(α) by one, and it will decrease the genus by one. It is
a non-topological hyperdeletion. Similarly, a non-topological
hypercontraction of a map “contracts a loop” and “splits a vertex”.
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Two-disk diagrams

Any (σ, α) may be transformed into a unicellular hypermonopole
(γσ, γαδ) = (η, ηζ−1) of the same genus. Here η = γα is the
vertex tour and ζ = θ−1σ (where θ = αδ) is the face tour.
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(7, 8, 9)
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(7, 8, 9)
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(1, 2, 3)

(7, 8, 9)
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σ = (1, 4, 7)(2, 5, 8)(3, 6, 9)
α = (1, 2, 3)(4, 5, 6)(7, 8, 9)
γ = (1, 2)(5, 6)
θ = (1, 2)(5, 6)(7, 8, 9)
η = (1, 4, 7, 2, 6, 9, 3, 5, 8)
ζ = (1, 4, 7, 9, 3, 5, 7, 2, 6, 8)
ηζ−1 = (7, 8, 9)
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Two-disk diagrams

Any (σ, α) may be transformed into a unicellular hypermonopole
(γσ, γαδ) = (η, ηζ−1) of the same genus. Here η = γα is the
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Two-disk diagrams

Any (σ, α) may be transformed into a unicellular hypermonopole
(γσ, γαδ) = (η, ηζ−1) of the same genus. Here η = γα is the
vertex tour and ζ = θ−1σ (where θ = αδ) is the face tour.
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γ = (1, 7)(2, 8)(4, 10)
θ = (1, 7)(2, 8)(3, 9)(4, 10)(6, 12)
η = (1, 10, 4, 8, 11, 9, 2, 12, 7, 3, 6, 5)
ζ = (1, 10, 4, 8, 11, 3, 12, 7, 9, 2, 6, 5)
ηζ−1 = (3, 9)(6, 12)

(1, 2, 3)

(7, 8, 9)

(4, 5, 6)

(7, 8, 9)

(4, 5, 6)

(1, 2, 3)

(7, 8, 9)

(4, 5, 6)

8

1

4

5

3
9

6

2

7

η

ζ

σ = (1, 4, 7)(2, 5, 8)(3, 6, 9)
α = (1, 2, 3)(4, 5, 6)(7, 8, 9)
γ = (1, 2)(5, 6)
θ = (1, 2)(5, 6)(7, 8, 9)
η = (1, 4, 7, 2, 6, 9, 3, 5, 8)
ζ = (1, 4, 7, 9, 3, 5, 7, 2, 6, 8)
ηζ−1 = (7, 8, 9)

Cori and Hetyei Hypertrees and meanders



Outline
Hypermaps

Tours of spanning unicellular hypermaps
Meanders and semimeanders

Two-disk diagrams

Any (σ, α) may be transformed into a unicellular hypermonopole
(γσ, γαδ) = (η, ηζ−1) of the same genus. Here η = γα is the
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Counting spanning hypertrees

Theorem

Let H = (σ, α) a hypermap and (1, 2, . . . ,m) a cycle of α. If
m ≥ 2 then the set of all spanning genus g unicellular hypermaps
(σ, θ) of H is the disjoint union of the following sets
S1, S2, . . . ,Sm:

For k = 3, . . . ,m we set Hk = ((1, k)σ, (1, k)α(1, k − 1)). Sk
consists of all genus g unicellular hypermaps (σ, (1, k)θ′),
where ((1, k)σ, θ′) is any spanning genus g (genus g − 1)
unicellular hypermap of the hypermap Hk if the
hypercontraction of (1, k) is topological (non-topological).

Hint: focus on the second smallest element of the cycle of θ
containing 1.
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Counting spanning hypertrees

Theorem

Let H = (σ, α) a hypermap and (1, 2, . . . ,m) a cycle of α. If
m ≥ 2 then the set of all spanning genus g unicellular hypermaps
(σ, θ) of H is the disjoint union of the following sets
S1, S2, . . . ,Sm:

S1 consists of all spanning genus g unicellular hypermaps of
H1 = (σ, α(1,m)).

For k = 3, . . . ,m we set Hk = ((1, k)σ, (1, k)α(1, k − 1)). Sk
consists of all genus g unicellular hypermaps (σ, (1, k)θ′),
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unicellular hypermap of the hypermap Hk if the
hypercontraction of (1, k) is topological (non-topological).

Hint: focus on the second smallest element of the cycle of θ
containing 1.
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Counting spanning hypertrees

Theorem

Let H = (σ, α) a hypermap and (1, 2, . . . ,m) a cycle of α. If
m ≥ 2 then the set of all spanning genus g unicellular hypermaps
(σ, θ) of H is the disjoint union of the following sets
S1, S2, . . . ,Sm:

Let H2 = ((1, 2)σ, (1, 2)α). S2 consists of all spanning genus
g unicellular hypermaps of the form (σ, (1, 2)θ′), where
((1, 2)σ, θ′) is any spanning genus g (genus g − 1) unicellular
hypermap of H2 if the hypercontraction of (1, 2) is topological
(non-topological).

For k = 3, . . . ,m we set Hk = ((1, k)σ, (1, k)α(1, k − 1)). Sk
consists of all genus g unicellular hypermaps (σ, (1, k)θ′),
where ((1, k)σ, θ′) is any spanning genus g (genus g − 1)
unicellular hypermap of the hypermap Hk if the
hypercontraction of (1, k) is topological (non-topological).

Hint: focus on the second smallest element of the cycle of θ
containing 1.
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Let H = (σ, α) a hypermap and (1, 2, . . . ,m) a cycle of α. If
m ≥ 2 then the set of all spanning genus g unicellular hypermaps
(σ, θ) of H is the disjoint union of the following sets
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For k = 3, . . . ,m we set Hk = ((1, k)σ, (1, k)α(1, k − 1)). Sk
consists of all genus g unicellular hypermaps (σ, (1, k)θ′),
where ((1, k)σ, θ′) is any spanning genus g (genus g − 1)
unicellular hypermap of the hypermap Hk if the
hypercontraction of (1, k) is topological (non-topological).

Hint: focus on the second smallest element of the cycle of θ
containing 1.
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Counting spanning hypertrees

Theorem

Let H = (σ, α) a hypermap and (1, 2, . . . ,m) a cycle of α. If
m ≥ 2 then the set of all spanning genus g unicellular hypermaps
(σ, θ) of H is the disjoint union of the following sets
S1, S2, . . . ,Sm:

For k = 3, . . . ,m we set Hk = ((1, k)σ, (1, k)α(1, k − 1)). Sk
consists of all genus g unicellular hypermaps (σ, (1, k)θ′),
where ((1, k)σ, θ′) is any spanning genus g (genus g − 1)
unicellular hypermap of the hypermap Hk if the
hypercontraction of (1, k) is topological (non-topological).

Hint: focus on the second smallest element of the cycle of θ
containing 1.
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The planar case
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(σ, θ) ∈ Sk ⇔ the noncrossing partition corresponding to θ belongs
to Rk defined by Simion and Ullman as an aid to recursively
construct a symmetric chain decomposition of the noncrossing
partition lattice.
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construct a symmetric chain decomposition of the noncrossing
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Semimeanders and reciprocal monopoles

Theorem

The number of semimeanders of order n equals the number of
spanning hypertrees of the reciprocal of a monopole with n/2
nested edges.

33 12 4 15 52 4
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Theorem

The number of semimeanders of order n equals the number of
spanning hypertrees of the reciprocal of a monopole with n/2
nested edges.
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Meanders and reciprocal bipoles

Theorem

The number of meanders of order n equals the number of spanning
hypertrees of the reciprocal of a dipole with n parallel edges.

3581 4 2
1 3 5 7

8 2 4 6

6 7
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Theorem

The number of meanders of order n equals the number of spanning
hypertrees of the reciprocal of a dipole with n parallel edges.
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Spanning hypertrees in reciprocals of maps
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Generalizing an idea of Franz and Earnshaw (reciprocal analogue of
the “tree flipping” T 7→ T − {e} ∪ {f }), it is possible to write and
algorithm listing all spanning hypertrees of the reciprocal of a map.
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the “tree flipping” T 7→ T − {e} ∪ {f }), it is possible to write and
algorithm listing all spanning hypertrees of the reciprocal of a map.
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the “tree flipping” T 7→ T − {e} ∪ {f }), it is possible to write and
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Generalizing an idea of Franz and Earnshaw (reciprocal analogue of
the “tree flipping” T 7→ T − {e} ∪ {f }), it is possible to write and
algorithm listing all spanning hypertrees of the reciprocal of a map.
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A strange consequence

For loopless maps with vertices of degree at most three, the
number of spanning hypertrees of the reciprocal only depends on
the underlying graph and not on the cyclic order of the edges
around the vertices.
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Thank you!

arXiv:2110.00176 [math.CO]

Cori and Hetyei Hypertrees and meanders



Outline
Hypermaps

Tours of spanning unicellular hypermaps
Meanders and semimeanders

Thank you!

arXiv:2110.00176 [math.CO]

Cori and Hetyei Hypertrees and meanders



Outline
Hypermaps

Tours of spanning unicellular hypermaps
Meanders and semimeanders

Thank you!

arXiv:2110.00176 [math.CO]

Cori and Hetyei Hypertrees and meanders


	Outline
	Hypermaps
	Tours of spanning unicellular hypermaps
	Meanders and semimeanders

