Inequalities labeling regions of graphical arrangements

Gábor Hetyei

Department of Mathematics and Statistics University of North Carolina at Charlotte http://webpages.uncc.edu/ghetyei/

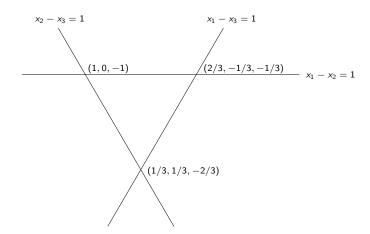
Séminaire Lotharingien de Combinatoire 91, Salobreña, Spain

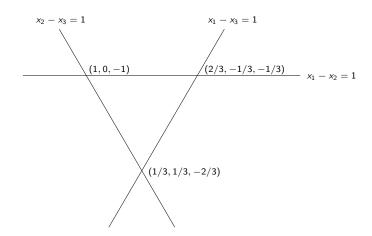
- Preliminaries
 - Hyperplane arrangements
 - Zaslavsky's formulas
 - Inequality based approaches
- Inequalities for deformed graphical arrangements
 - The general setup
 - Sparse deformations
 - Separated deformations

Hyperplane arrangements

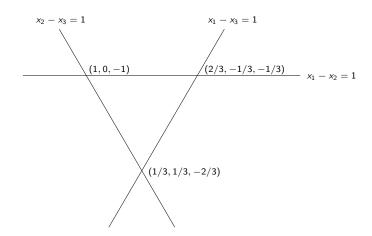
Hyperplane arrangements

A hyperplane arrangement A is a finite collection of hyperplanes in a d-dimensional real vector space, which partition the space into regions.





1 bounded and 6 unbounded regions



1 bounded and 6 unbounded regions

The braid arrangement (Coxeter arrangement of type A_{n-1}) is the collection of hyperplanes $\{x_i - x_j = 0 : 1 \le i < j \le n\}$ in V_{n-1} , the subspace of \mathbb{R}^n , given by $x_1 + x_2 + \cdots + x_n = 0$.

The braid arrangement (Coxeter arrangement of type A_{n-1}) is the collection of hyperplanes $\{x_i - x_j = 0 : 1 \le i < j \le n\}$ in V_{n-1} , the subspace of \mathbb{R}^n , given by $x_1 + x_2 + \cdots + x_n = 0$. A deformation of the braid arrangement consists of replacing each hyperplane $x_i - x_j = 0$ with a set of hyperplanes

$$x_i - x_j = a_{ij}^{(1)}, a_{ij}^{(2)}, \dots, a_{ij}^{(n_{ij})}.$$

The braid arrangement (Coxeter arrangement of type A_{n-1}) is the collection of hyperplanes $\{x_i - x_j = 0 : 1 \le i < j \le n\}$ in V_{n-1} , the subspace of \mathbb{R}^n , given by $x_1 + x_2 + \cdots + x_n = 0$. A deformation of the braid arrangement consists of replacing each hyperplane $x_i - x_j = 0$ with a set of hyperplanes

$$x_i - x_j = a_{ij}^{(1)}, a_{ij}^{(2)}, \ldots, a_{ij}^{(n_{ij})}.$$

The truncated affine arrangements $\mathcal{A}_{n-1}^{a,b}$ (where $a+b \geq 2$) contain the hyperplanes are $x_i-x_j=1-a,2-a,\ldots,b-1$ for $1 \leq i < j \leq n$.

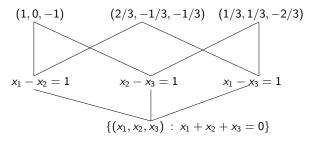
The braid arrangement (Coxeter arrangement of type A_{n-1}) is the collection of hyperplanes $\{x_i - x_j = 0 : 1 \le i < j \le n\}$ in V_{n-1} , the subspace of \mathbb{R}^n , given by $x_1 + x_2 + \cdots + x_n = 0$. A deformation of the braid arrangement consists of replacing each hyperplane $x_i - x_j = 0$ with a set of hyperplanes

$$x_i - x_j = a_{ij}^{(1)}, a_{ij}^{(2)}, \ldots, a_{ij}^{(n_{ij})}.$$

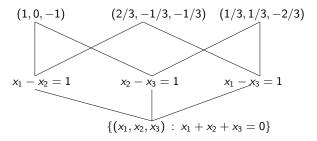
The truncated affine arrangements $\mathcal{A}_{n-1}^{a,b}$ (where $a+b\geq 2$) contain the hyperplanes are $x_i-x_j=1-a,2-a,\ldots,b-1$ for $1\leq i< j\leq n$. $\mathcal{A}_{n-1}^{0,2}$ is the Linial arrangement, $\mathcal{A}_{n-1}^{1,2}$ is the Shi arrangement $\mathcal{A}_{n-1}^{a,a+1}$ with $a\geq 1$ is the extended Shi arrangement, $\mathcal{A}_{n-1}^{2,2}$ is the Catalan arrangement, and $\mathcal{A}_{n-1}^{a,a}$ with $a\geq 2$ is the a-Catalan arrangement.

To count the regions, we may use *Zaslavsky's formulas* ("inclusion-exclusion").

To count the regions, we may use Zaslavsky's formulas ("inclusion-exclusion").



To count the regions, we may use Zaslavsky's formulas ("inclusion-exclusion").



We compute the characteristic polynomial

$$\chi(\mathcal{A},q) = \sum_{x \in L_A} \mu(\widehat{0},x) q^{\dim(x)} = 1 - 3q + 3q^2.$$

The numbers r(A) and b(A) of all, respectively bounded regions are given by

$$r(\mathcal{A}) = (-1)^d \chi(\mathcal{A}, -1)$$
 and $b(\mathcal{A}) = (-1)^{\mathsf{rk}(L_{\mathcal{A}})} \chi(\mathcal{A}, 1)$.

The numbers r(A) and b(A) of all, respectively bounded regions are given by

$$r(\mathcal{A}) = (-1)^d \chi(\mathcal{A}, -1)$$
 and $b(\mathcal{A}) = (-1)^{\mathsf{rk}(L_{\mathcal{A}})} \chi(\mathcal{A}, 1)$.

In our example

$$r(A) = (-1)^2(1 - 3 \cdot (-1) + 3 \cdot (-1)^2) = 7$$

and

$$b(A) = (-1)^2(1-3+3) = 1.$$

The numbers r(A) and b(A) of all, respectively bounded regions are given by

$$r(\mathcal{A}) = (-1)^d \chi(\mathcal{A}, -1)$$
 and $b(\mathcal{A}) = (-1)^{\mathsf{rk}(L_{\mathcal{A}})} \chi(\mathcal{A}, 1)$.

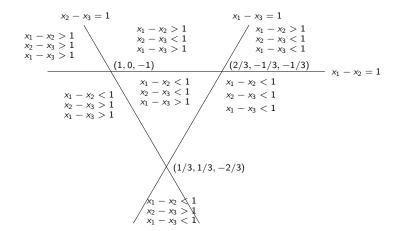
In our example

$$r(A) = (-1)^2(1 - 3 \cdot (-1) + 3 \cdot (-1)^2) = 7$$

and

$$b(A) = (-1)^2(1-3+3) = 1.$$

Related approaches: finite field method (case of integer coefficients), Whitney's formula and the gain graph method (deformations of graphical arrangements).



One possibility is missing:

 $x_1 - x_2 > 1$ and $x_2 - x_3 > 1$ imply $x_1 - x_3 > 1$.

Zaslavsky's formulas
Inequality based approaches

Examples of the inequality based approach

Examples of the inequality based approach

The hyperplanes $x_i - x_j = 1 - a, 2 - a, \dots, a$ (where $1 \le i < j \le n$) define the extended Shi arrangement in V_{n-1} , These have a Stanley-Pak labeling and an Athanasiadis-Linusson labeling.

Examples of the inequality based approach

The hyperplanes $x_i - x_j = 1 - a, 2 - a, \ldots, a$ (where $1 \le i < j \le n$) define the extended Shi arrangement in V_{n-1} , These have a Stanley-Pak labeling and an Athanasiadis-Linusson labeling. For a graph G on $\{1,2,\ldots,n\}$ and a set of parameters $\{a_{i,j}: \{i,j\} \in E(G)\}$, the set of hyperplanes $\{x_i - x_j = a_{i,j}: \{i,j\} \in E(G)\}$ define a bigraphical arrangement. They have a Hopkins-Perkinson labeling.

Two key lemmas

The following variant of the Farkas Lemma was also used by Hopkins and Perkinson:

Lemma (Carver)

The system of inequalities Ax < b has no solution if and only if there is a nonzero real $m \times 1$ row vector y satisfying $y \ge 0$, yA = 0 and $yb \le 0$.

Two key lemmas

The following variant of the Farkas Lemma was also used by Hopkins and Perkinson:

Lemma (Carver)

The system of inequalities Ax < b has no solution if and only if there is a nonzero real $m \times 1$ row vector y satisfying $y \ge 0$, yA = 0 and $yb \le 0$.

We will apply the flow decomposition theorem to circulations:

Two key lemmas

The following variant of the Farkas Lemma was also used by Hopkins and Perkinson:

Lemma (Carver)

The system of inequalities Ax < b has no solution if and only if there is a nonzero real $m \times 1$ row vector y satisfying $y \ge 0$, yA = 0 and $yb \le 0$.

We will apply the flow decomposition theorem to circulations:

Theorem (Gallai)

Every not identically zero circulation f can be written as a positive linear combination of directed cycles. Moreover, a directed edge e appears in at least one of these cycles if and only if f(e) > 0.

A weighted digraphical polytope is the solution set of a system of inequalities

$$m_{ij} < x_i - x_j < M_{ij}, \quad 1 \le i < j \le n$$

in
$$V_{n-1}$$
. (We allow $m_{ij} = -\infty$ and $M_{ij} = \infty$.)

A weighted digraphical polytope is the solution set of a system of inequalities

$$m_{ij} < x_i - x_j < M_{ij}, \quad 1 \le i < j \le n$$

in V_{n-1} . (We allow $m_{ij}=-\infty$ and $M_{ij}=\infty$.) We create an associated weighted digraph: For each i< j, if $m_{ij}>-\infty$, we create directed edge $i\to j$ with weight m_{ij} and if $M_{ij}<\infty$ we also create a directed edge $i\leftarrow j$ with weight $-M_{ij}$.

A weighted digraphical polytope is the solution set of a system of inequalities

$$m_{ij} < x_i - x_j < M_{ij}, \quad 1 \le i < j \le n$$

in V_{n-1} . (We allow $m_{ij} = -\infty$ and $M_{ij} = \infty$.) We create an associated weighted digraph: For each i < j, if $m_{ij} > -\infty$, we create directed edge $i \to j$ with weight m_{ij} and if $M_{ij} < \infty$ we also create a directed edge $i \leftarrow j$ with weight $-M_{ij}$. An *m*-ascending cycle in the associated weighted digraph is a directed cycle, along which the sum of the labels is nonnegative. We call the associated weighted digraph *m*-acyclic, if it contains no *m*-ascending cycle.

The key observation

Theorem

A weighted digraphical polytope given by a system of inequalities is not empty if and only if the associated weighted digraph associated is m-acyclic.

Theorem

A weighted digraphical polytope given by a system of inequalities is not empty if and only if the associated weighted digraph associated is m-acyclic.

Proof.

(Sketch) By Carver's variant of the Farkas Lemma the polytope is empty if and only if there is an "*m*-ascending circulation". By the Flow Decomposition Theorem every *m*-ascending circulation contains an *m*-ascending cycle.

Theorem

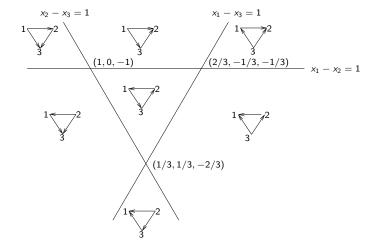
A weighted digraphical polytope given by a system of inequalities is not empty if and only if the associated weighted digraph associated is m-acyclic.

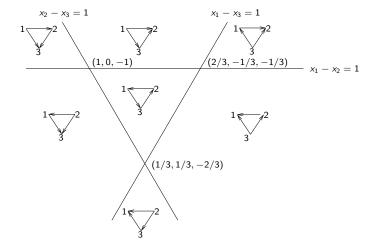
Theorem

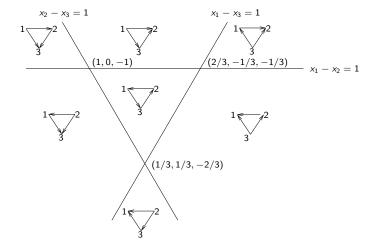
A weighted digraphical polytope given by a system of inequalities is not empty if and only if the associated weighted digraph associated is m-acyclic.

Corollary

If we think of the weight w(e) as money we gain when we walk along e then the system of inequalities has a nonempty solution set if and only if we lose money along any closed walk.







Bounded regions

Bounded regions

Theorem

A weighted digraphical polytope, is not empty and bounded if and only if the associated weighted digraph is m-acyclic and it is strongly connected.

strongly connected.

Theorem

A weighted digraphical polytope, is not empty and bounded if and only if the associated weighted digraph is m-acyclic and it is

If all arrows go from V_2 to V_1 then (x_1, \ldots, x_n) may be replaced with (x'_1, \ldots, x'_n) where

$$x_v' = \begin{cases} x_v + \frac{t}{|V_1|} & \text{if } v \in V_1 \\ x_v - \frac{t}{|V_2|} & \text{if } v \in V_2 \end{cases}$$

Bounded regions

Theorem

A weighted digraphical polytope, is not empty and bounded if and only if the associated weighted digraph is m-acyclic and it is strongly connected.

Example

Each region of the Linial arrangement is described by a set of inequalities $\{m_{ij} < x_i - x_j < M_{ij} : 1 \le i < j \le n\}$, each inequality is either $-\infty < x_i - x_j < 1$ or $1 < x_i - x_j < \infty$. The associated weighted digraph is a tournament, it contains no m-ascending cycle if and only if it is semiacyclic. Bounded regions correspond to strongly connected semiacyclic tournaments.

Exponential arrangements [SKIM]

Exponential arrangements [SKIM]

Let $A = (A_1, A_2, ...)$ be a sequence of deformations of the braid arrangement, such that each A_n is a hyperplane arrangement in \mathbb{R}^n . For each $S \subseteq \{1, 2, \ldots\}$ we define \mathcal{A}_n^S as the subcollection of hyperplanes $x_i - x_j = c$ of A_n satisfying $\{i, j\} \subseteq S$. A is exponential if $r(A_n^S)$ depends only on k = |S| and it is the number $r(A_k)$ of regions of A_k .

Exponential arrangements [SKIM]

Let $\mathcal{A}=(\mathcal{A}_1,\mathcal{A}_2,\ldots)$ be a sequence of deformations of the braid arrangement, such that each \mathcal{A}_n is a hyperplane arrangement in \mathbb{R}^n . For each $S\subseteq\{1,2,\ldots\}$ we define \mathcal{A}_n^S as the subcollection of hyperplanes $x_i-x_j=c$ of \mathcal{A}_n satisfying $\{i,j\}\subseteq S$. \mathcal{A} is exponential if $r(\mathcal{A}_n^S)$ depends only on k=|S| and it is the number $r(\mathcal{A}_k)$ of regions of \mathcal{A}_k . Stanley showed that the exponential generating functions of all resp. bounded regions are connected by

$$B_{\mathcal{A}}(t) = 1 - rac{1}{R_{\mathcal{A}}(t)}.$$

Exponential arrangements (cont'd)

Exponential arrangements (cont'd)

Since *m*-acyclicity can be independently verified on strong components, we can directly show

Exponential arrangements (cont'd)

Since *m*-acyclicity can be independently verified on strong components, we can directly show

$$r(\mathcal{A}_n) = \sum_{k=1}^n \sum_{\substack{n_1 + \dots + n_k = n \\ n_1, \dots, n_k > 0}} \binom{n}{n_1, n_2, \dots, n_k} \prod_{i=1}^k b(\mathcal{A}_{n_i}) \quad \text{for all } n \ge 1.$$

Posets of gains

Posets of gains

Definition

Given a valid *m*-acyclic weighted digraph D on $\{1, 2, ..., n\}$, we define i < D j if there is a directed path $i = i_0 \rightarrow i_1 \rightarrow \cdots \rightarrow i_k = j$ such that the weight of each directed edge $i_s \rightarrow i_{s+1}$ is nonnegative. We call the set $\{1, 2, ..., n\}$, ordered by $<_D$ the poset of gains induced by D.

Definition

Given a valid m-acyclic weighted digraph D on $\{1,2,\ldots,n\}$, we define $i<_D j$ if there is a directed path $i=i_0\to i_1\to\cdots\to i_k=j$ such that the weight of each directed edge $i_s\to i_{s+1}$ is nonnegative. We call the set $\{1,2,\ldots,n\}$, ordered by $<_D$ the poset of gains induced by D.

The relation $i <_D j$ is a partial order because of the m-acyclic property.

Definition

Given a valid m-acyclic weighted digraph D on $\{1,2,\ldots,n\}$, we define $i<_D j$ if there is a directed path $i=i_0\to i_1\to\cdots\to i_k=j$ such that the weight of each directed edge $i_s\to i_{s+1}$ is nonnegative. We call the set $\{1,2,\ldots,n\}$, ordered by $<_D$ the poset of gains induced by D.

The relation $i <_D j$ is a partial order because of the m-acyclic property.

Example

The posets of gains of the Linial arrangement are the sleek posets.

Definition

a deformation of the braid arrangement, is *sparse* if $1 \le n_{i,j} \le 2$ holds for all i < j, and the signs of the numbers $a_{i,j}^{(k)}$ satisfy the following for all i < j:

- **1** $a_{i,j}^{(1)} > 0$ holds, whenever $n_{i,j} = 1$,
- 2 $a_{i,j}^{(1)} < 0 < a_{i,j}^{(2)}$ holds, whenever $n_{i,j} = 2$.

We call A an interval order arrangement if $n_{i,j} = 2$ holds for all i < j.

Proposition

Consider a sparse deformation of the braid arrangement and any valid m-acyclic weighted digraph D associated to it. In the induced poset of gains, $i <_D j$ holds exactly when there is a single directed edge $i \to j$ of positive weight. For any pair $\{i,j\}$ of incomparable vertices satisfying i < j, the edge $j \to i$ is always present, and any edge between i and j has negative weight.

Theorem

Let D be a valid m-acyclic weighted digraph associated to a sparse deformation of the braid arrangement in V_{n-1} . If D is strongly connected then the incomparability graph of the induced poset of gains is connected. The converse is also true when $n_{i,j}=2$ holds for all $1 \le i < j \le n$.

Example

Consider the Linial arrangement and the semiacyclic tournament D containing a directed edge $i \leftarrow j$ of weight -1 for each i < j. This is a valid m-acyclic weighted digraph, it is in fact acyclic. The induced poset of gains is an antichain, the incomparability graph is the complete graph, it is connected. However, D is not strongly connected.

Inequalities for deformed graphical arrangements Separated deformations

Separated deformations

Definition

We call a deformation of the braid arrangement \mathcal{A} separated if 0 belongs to the set $\{a_{ij}^{(1)}, a_{ij}^{(2)}, \dots, a_{ij}^{(n_{ij})}\}$ for each $1 \leq i < j \leq n$.

Separated deformations

Definition

We call a deformation of the braid arrangement \mathcal{A} separated if 0 belongs to the set $\{a_{ij}^{(1)}, a_{ij}^{(2)}, \dots, a_{ij}^{(n_{ij})}\}$ for each $1 \leq i < j \leq n$.

Corollary

For a separated deformation of the braid arrangement, the induced poset of gains associated to any valid m-acyclic weighted digraph is a totally ordered set.

Separated deformations

Definition

We call a deformation of the braid arrangement \mathcal{A} separated if 0 belongs to the set $\{a_{ij}^{(1)}, a_{ij}^{(2)}, \dots, a_{ij}^{(n_{ij})}\}$ for each $1 \leq i < j \leq n$.

Corollary

For a separated deformation of the braid arrangement, the induced poset of gains associated to any valid m-acyclic weighted digraph is a totally ordered set.

Equivalently, each region is included in a region $x_{\sigma(1)} > x_{\sigma(2)} > \cdots > x_{\sigma(n)}$ of the braid arrangement.

A structure theorem [SKIP]

A structure theorem [SKIP]

Theorem

Let \mathcal{R} be a region of a separated deformation of the braid arrangement and let $\sigma(1)\sigma(2)\cdots\sigma(n)$ be its total order of gains. Then there is a unique decomposition $\sigma=(\sigma(i_0)\cdots\sigma(i_1))\cdot(\sigma(i_1+1)\cdots\sigma(i_2))\cdots(\sigma(i_{k-1}+1)\cdots\sigma(i_k))$ satisfying

- For each $j=-1,0,\ldots,k-1$, $\mathcal{R}\cap \operatorname{span}(e_{\sigma(i_i+1)},e_{\sigma(i_i+2)},\ldots,e_{\sigma(i_{i+1})})$ is bounded.
- ② If $S \subseteq \{1, 2, ..., n\}$ contains indices j_1 and j_2 such that $\sigma(j_1)$ and $\sigma(j_2)$ belong to different subwords in the above decomposition then $\mathcal{R} \cap \text{span}((e_{\sigma(j)}: j \in S))$ is unbounded.

Gain functions

Gain functions

Definition

For each $i \in \{1, 2, ..., n\}$ we define the gain function $g(\sigma(i))$ as the maximum weight of a directed path beginning at $\sigma(1)$ and ending at $\sigma(i)$. In particular, we set $g(\sigma(1)) = 0$. Here σ is the total order of gains.

Gain functions

Definition

For each $i \in \{1, 2, \ldots, n\}$ we define the gain function $g(\sigma(i))$ as the maximum weight of a directed path beginning at $\sigma(1)$ and ending at $\sigma(i)$. In particular, we set $g(\sigma(1)) = 0$. Here σ is the total order of gains.

Lemma

Every gain function has the weakly increasing property

$$g(\sigma(1)) \leq g(\sigma(2)) \leq \cdots \leq g(\sigma(n)).$$

Gain functions

Definition

We call a deformation \mathcal{A} of the braid arrangement *integral* if all the numbers $a_{i,j}^k$ appearing in in its definition are integers. We say that \mathcal{A} satisfies the *weak triangle inequality* if for all triplets (i,j,k), the inequalities $w(i,j) \geq 0$ and $w(j,k) \geq 0$ imply

$$w(i,k) \leq w(i,j) + w(j,k) + 1$$

in any valid m-acyclic associated weighted digraph.

Gain functions

Theorem

Let $\mathcal A$ be a separated integral deformation of the braid arrangement satisfying the weak triangle inequality, and let $\mathcal D$ be an associated m-acyclic weighted digraph. Let σ be the total order of gains associated to $\mathcal D$ and let $\mathcal G$ be the gain function. Then, for each $\mathcal G$ there is a directed path from $\mathcal G$ to $\mathcal G$ i) such that all weights in the path are nonnegative and the total weight of the edges in the path is $\mathcal G$ ($\mathcal G$) - $\mathcal G$ ($\mathcal G$ (1)).

Contiguous integral deformations

Contiguous integral deformations

Definition

An integral deformation of the braid arrangement in V_{n-1} contiguous if, for every i < j, the set $\{a_{i,j}^{(1)}, a_{i,j}^{(2)}, \ldots, a_{i,j}^{(n_{i,j})}\}$ is a contiguous set $[\alpha(i,j), \beta(i,j)] = \{\alpha(i,j), \alpha(i,j) + 1, \ldots, \beta(i,j)\}$ of integers.

Definition

An integral deformation of the braid arrangement in V_{n-1} contiguous if, for every i < j, the set $\{a_{i,i}^{(1)}, a_{i,i}^{(2)}, \dots, a_{i,i}^{(n_{i,j})}\}$ is a contiguous set $[\alpha(i,j),\beta(i,j)] = {\alpha(i,j),\alpha(i,j)+1,\ldots,\beta(i,j)}$ of integers.

Since
$$x_i - x_j = c \Leftrightarrow x_j - x_i = -c$$
, we may set

$$\alpha(j,i) = -\beta(i,j)$$
 and $\beta(j,i) = -\alpha(i,j)$ for $1 \le i < j \le n$.

Theorem

If $\beta(i,k) \leq \beta(i,j) + \beta(j,k) + 1$ holds for all $\{i,j,k\}$. then any valid associated weighted digraph is m-acyclic if and only if it contains no m-ascending cycle of length at most four.

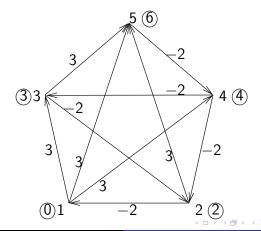
Theorem

If $\beta(i,k) \leq \beta(i,j) + \beta(j,k) + 1$ holds for all $\{i,j,k\}$. then any valid associated weighted digraph is m-acyclic if and only if it contains no m-ascending cycle of length at most four.

Theorem

If the truncated affine arrangement $A_{n-1}^{a,b}$ satisfies $a,b\geq 0$, then a valid associated weighted digraph is m-acyclic if and only if it contains no m-ascending cycle of length at most four.

There is a minimal *m*-ascending cycle of length 5 in $\mathcal{A}_{n-1}^{-1,3}$ for n > 5.



The extended Shi-arrangement is contiguous, integral, separated, and it satisfies the weak triangle inequality.

The extended Shi-arrangement is contiguous, integral, separated, and it satisfies the weak triangle inequality. For a weight function we only need to verify

The extended Shi-arrangement is contiguous, integral, separated, and it satisfies the weak triangle inequality. For a weight function we only need to verify

$$w(i,k) \ge \min(\beta(i,j), w(i,j) + w(j,k))$$
 for $i <_{\sigma^{-1}} j <_{\sigma^{-1}} k$, and

The extended Shi-arrangement is contiguous, integral, separated, and it satisfies the weak triangle inequality. For a weight function we only need to verify

$$w(i,k) \ge \min(\beta(i,j), w(i,j) + w(j,k))$$
 for $i <_{\sigma^{-1}} j <_{\sigma^{-1}} k$, and $w(i,k) \le w(i,j) + w(j,k) + 1$ for $i <_{\sigma^{-1}} j <_{\sigma^{-1}} k$.

Definition

We define the Pak-Stanley label $(f(1), \ldots, f(n))$ of a region as

$$f(i) = \sum_{i <_{\sigma^{-1}} j} w(i,j) + |\{(i,j) : i <_{\sigma^{-1}} j \text{ and } i > j\}|.$$

Definition

We define the Pak-Stanley label $(f(1), \ldots, f(n))$ of a region as

$$f(i) = \sum_{i <_{\sigma^{-1}} j} w(i,j) + |\{(i,j) : i <_{\sigma^{-1}} j \text{ and } i > j\}|.$$

The sum $\sum_{i<_{\sigma^{-1}}j}w(i,j)$ is the number of *separations*, and $|\{(i,j):i<_{\sigma^{-1}}j \text{ and }i>j\}|$ is the number of *inversions*.

Lemma (Stanley)

Given $i <_{\sigma^{-1}} j$, if i > j or w(i,j) > 0 holds then we have f(i) > f(j).

Lemma (Stanley)

Given $i <_{\sigma^{-1}} j$, if i > j or w(i,j) > 0 holds then we have f(i) > f(j).

Theorem (Stanley)

The labels of the regions of the extended Shi arrangement are the a-parking functions of length n, each occurring exactly once.

Lemma (Stanley)

Given $i <_{\sigma^{-1}} j$, if i > j or w(i,j) > 0 holds then we have f(i) > f(j).

Theorem $\overline{(Stanley)}$

The labels of the regions of the extended Shi arrangement are the a-parking functions of length n, each occurring exactly once.

Given an a-parking function $(f(1), \ldots, f(n))$, we insert the labels i into σ one by one and show the uniqueness of the place and of the function values w(i,j) one step at a time. (Still "tedious", but fits on a single page.)

Remark

Mazin has shown that the Pak-Stanley labeling of the regions of the extended Shi arrangement is surjective. Together with Stanley's above result we have a self-contained proof of the fact that the Pak-Stanley labeling is a bijection between the regions of the regions of the extended Shi arrangement and the *a*-parking functions.

Definition

The regions of a contiguous, separated and integral deformation of the braid arrangement

$$\{x_i - x_j = m : 1 \le i < j < n, m \in [-\beta(j, i), \beta(i, j)]\}$$
 have Athanasiadis-Linusson diagrams if $\{\beta(i, j) : i \ne j\}$ contains at most two consecutive nonnegative integers for each $j \in \{1, 2, ..., n\}$. We set $\beta(j) = \min_{i \ne j} \beta(i, j)$ for all j .

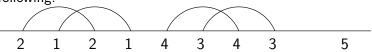
The process to build an Athanasiadis-Linusson diagram is the following:

2 :

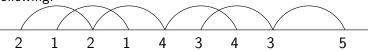
3

5

• Fix a representative \underline{x} of the region. This satisfies $x_{\sigma(1)} > x_{\sigma(2)} > \cdots > x_{\sigma(n)}$.

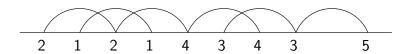


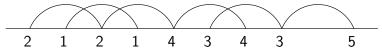
- Fix a representative \underline{x} of the region. This satisfies $x_{\sigma(1)} > x_{\sigma(2)} > \cdots > x_{\sigma(n)}$.
- ② For each j satisfying $\beta(j) > 0$ we also mark $x_j + \beta(j), x_j + \beta(j) 1, \dots, x_j + 1$ on the reversed number line and we draw an arc connecting $x_j + k + 1$ with $x_j + k$ for $k = 0, 1, \dots, \beta(j) 1$. We label all of these points with j.



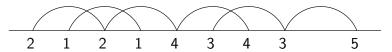
- Fix a representative \underline{x} of the region. This satisfies $x_{\sigma(1)} > x_{\sigma(2)} > \cdots > x_{\sigma(n)}$.
- ② For each j satisfying $\beta(j) > 0$ we also mark $x_j + \beta(j), x_j + \beta(j) 1, \ldots, x_j + 1$ on the reversed number line and we draw an arc connecting $x_j + k + 1$ with $x_j + k$ for $k = 0, 1, \ldots, \beta(j) 1$. We label all of these points with j.
- **③** For each $\{i,j\}$ ⊆ $\{1,2,\ldots,n\}$ we also draw an arc between x_i and $x_j + \beta(j)$ if $\beta(i,j) = \beta(j) + 1$ $x_i x_j > \beta(i,j)$ holds.

- Fix a representative \underline{x} of the region. This satisfies $x_{\sigma(1)} > x_{\sigma(2)} > \cdots > x_{\sigma(n)}$.
- ② For each j satisfying $\beta(j) > 0$ we also mark $x_j + \beta(j), x_j + \beta(j) 1, \dots, x_j + 1$ on the reversed number line and we draw an arc connecting $x_j + k + 1$ with $x_j + k$ for $k = 0, 1, \dots, \beta(j) 1$. We label all of these points with j.
- For each $\{i,j\} \subseteq \{1,2,\ldots,n\}$ we also draw an arc between x_i and $x_i + \beta(j)$ if $\beta(i,j) = \beta(j) + 1$ $x_i x_i > \beta(i,j)$ holds.
- We remove all nested arcs, that is, all arcs that contain another arc.

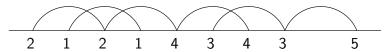




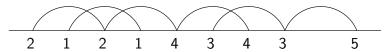
Without 5 this is an example of Athanasiadis and Linusson in $\mathcal{A}_3^{1,2}$. For all $\{i,j\}\subset\{1,2,3,4\}$ we have $\beta(i,j)=2$ if i< j and $\beta(i,j)=1$ if i>j. We add $\beta(i,5)=\beta(5,i)=0$ for i=1,2,4, and we add $\beta(3,5)=1$ and $\beta(3,5)=0$.



For each $i \in \{1, 2, ..., n\}$ we define f(i) as the position of the leftmost element of the continuous component of i. We call the resulting (f(1), f(2), ..., f(n)) the β -parking function of the region.



For each $i \in \{1, 2, ..., n\}$ we define f(i) as the position of the leftmost element of the continuous component of i. We call the resulting (f(1), f(2), ..., f(n)) the β -parking function of the region. Here we have f(1) = 2, f(2) = f(4) = 1 and f(3) = f(5) = 6.



For each $i \in \{1, 2, \ldots, n\}$ we define f(i) as the position of the leftmost element of the continuous component of i. We call the resulting $(f(1), f(2), \ldots, f(n))$ the β -parking function of the region. Here we have f(1) = 2, f(2) = f(4) = 1 and f(3) = f(5) = 6. As before, we may reconstruct the diagram from its β -parking function.

Athanasiadis-Linusson trees [SKIM]

Athanasiadis-Linusson trees [SKIM]

1 Replace the labels j with $j_1, j_2, \ldots, j_{\beta(j)+1}$, numbered left to right, so that we can distinguish the copies.

Athanasiadis-Linusson trees [SKIM]

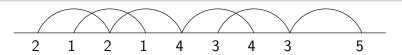
- **1** Replace the labels j with $j_1, j_2, \ldots, j_{\beta(j)+1}$, numbered left to right, so that we can distinguish the copies.
- ② The copies of the labels satisfying f(j) = 1 become the children of the root 0.

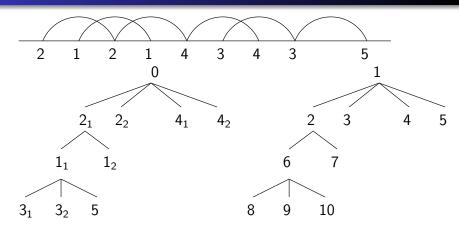
Athanasiadis-Linusson trees [SKIM]

- **1** Replace the labels j with $j_1, j_2, \ldots, j_{\beta(j)+1}$, numbered left to right, so that we can distinguish the copies.
- ② The copies of the labels satisfying f(j) = 1 become the children of the root 0.
- We number the nodes in the tree level-by-level and in increasing order of the labels (breadth-first-search order).

Athanasiadis-Linusson trees [SKIM]

- **1** Replace the labels j with $j_1, j_2, \ldots, j_{\beta(j)+1}$, numbered left to right, so that we can distinguish the copies.
- ② The copies of the labels satisfying f(j) = 1 become the children of the root 0.
- We number the nodes in the tree level-by-level and in increasing order of the labels (breadth-first-search order).
- Once we inserted the copies of all labels j satisfying f(j) < i, all copies of the labels j satisfying f(j) = i will be the children of the node whose number is i.





Definition

For a sequence $\underline{\beta} \in \mathbb{N}^n$ we define the $\underline{\beta}$ -extended Shi arrangement as the hyperplane arrangement

$$x_i - x_j = -\beta(j), -\beta(j) + 1, \dots, \beta(j) + 1 \quad 1 \le i < j \le n \quad \text{in } V_{n-1}.$$

Definition

For a sequence $\underline{\beta} \in \mathbb{N}^n$ we define the $\underline{\beta}$ -extended Shi arrangement as the hyperplane arrangement

$$x_i - x_j = -\beta(j), -\beta(j) + 1, \dots, \beta(j) + 1 \quad 1 \le i < j \le n \quad \text{in } V_{n-1}.$$

Theorem

The number of regions in a β -extended Shi arrangement $\mathcal A$ is

$$r(\mathcal{A}) = \left(\sum_{j=1}^{n} (\beta(j)+1)+1\right)^{n-1}.$$

Definition

For a sequence $\underline{\beta} \in \mathbb{N}^n$ we define the $\underline{\beta}$ -extended Shi arrangement as the hyperplane arrangement

$$x_i - x_j = -\beta(j), -\beta(j) + 1, \dots, \beta(j) + 1$$
 $1 \le i < j \le n$ in V_{n-1} .

Theorem

The number of regions in a $\underline{\beta}$ -extended Shi arrangement $\mathcal A$ is

$$r(\mathcal{A}) = \left(\sum_{j=1}^{n} (\beta(j)+1)+1\right)^{n-1}.$$

The proof uses a colored variant of the Prüfer code algorithm.

The Athanasiadis-Linusson diagrams are very simple: they connect points with the same label only.

The Athanasiadis-Linusson diagrams are very simple: they connect points with the same label only. For a fixed

 $x_{\sigma(1)} > x_{\sigma(2)} > \cdots > x_{\sigma(n)}$, the parking trees are in bijection with the rooted incomplete *a*-ary trees on (a-1)n+1 vertices.

The Athanasiadis-Linusson diagrams are very simple: they connect points with the same label only. For a fixed

 $x_{\sigma(1)}>x_{\sigma(2)}>\cdots>x_{\sigma(n)}$, the parking trees are in bijection with the rooted incomplete a-ary trees on (a-1)n+1 vertices. Their number is the a-Catalan number $\frac{1}{(a-1)n+1}\binom{an}{n}$.

The Athanasiadis-Linusson diagrams are very simple: they connect points with the same label only. For a fixed

 $x_{\sigma(1)}>x_{\sigma(2)}>\cdots>x_{\sigma(n)}$, the parking trees are in bijection with the rooted incomplete a-ary trees on (a-1)n+1 vertices. Their number is the a-Catalan number $\frac{1}{(a-1)n+1}\binom{an}{n}$. Multiplying it with n! we get

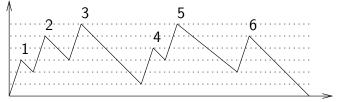
$$r(\mathcal{A}_{n-1}^{a,a}) = an(an-1)\cdots((a-1)n+2)$$

first found by Postnikov and Stanley.

Fix a permutation π and an a-Catalan path Λ .

Fix a permutation π and an a-Catalan path Λ .

Fix a permutation π and an a-Catalan path Λ .



$$w(\pi(i),\pi(j)) = egin{cases} \ell(\pi(j)) - \ell(\pi(i)) & ext{if } \ell(\pi(j)) - \ell(\pi(i)) \in [1-a,a-1] \ -\infty & ext{if } \ell(\pi(j)) - \ell(\pi(i)) < 1-a \ a-1 & ext{if } \ell(\pi(j)) - \ell(\pi(i)) > a-1 \end{cases}$$

Fix a permutation π and an a-Catalan path Λ .

Lemma

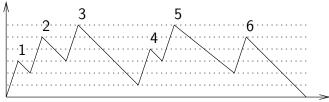
The total order of gains $\sigma = \gamma \circ \pi$ is the order of the labels $\pi(1), \ldots, \pi(n)$ in increasing order of their levels, where $\pi(i)$ is listed before $\pi(j)$ if $\ell(\pi(i)) = \ell(\pi(j))$ and i < j hold.

Fix a permutation π and an a-Catalan path Λ .



Here we get $\sigma = 142635$.

Fix a permutation π and an a-Catalan path Λ .

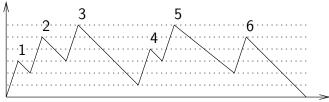


Here we get $\sigma = 142635$.

Proposition

For the weighted digraph encoded by (π, Λ) the gain function is the level function: we have $g(\sigma(i)) = \ell(\sigma(i))$.

Fix a permutation π and an a-Catalan path Λ .

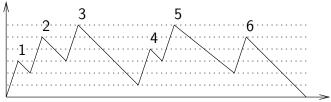


Here we get $\sigma = 142635$.

Theorem

The correspondence between the pairs (π, Λ) and the valid weighted m-acyclic digraphs encoded by them is a bijection.

Fix a permutation π and an a-Catalan path Λ .



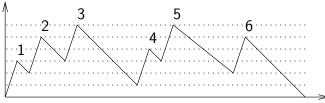
Here we get $\sigma = 142635$.

Theorem

The correspondence between the pairs (π, Λ) and the valid weighted m-acyclic digraphs encoded by them is a bijection.

We only prove injectivity and then we use the Postnikov-Stanley formula.

Fix a permutation π and an a-Catalan path Λ .



Here we get $\sigma = 142635$.

Proposition

A region of $\mathcal{A}_{n-1}^{a,a}$ is bounded if and only if the total order of gains σ satisfies $w(\sigma(i), \sigma(i+1)) < a-1$ for $1 \le i \le n-1$.

The number of possible types of the trees of the gain function is a Catalan number.

The number of possible types of the trees of the gain function is a Catalan number.

Conjecture

For a fixed n and a fixed tree of gain functions, the number of regions of $A_{n-1}^{a,a}$ associated to it is a polynomial of a.

The number of possible types of the trees of the gain function is a Catalan number.

Conjecture

For a fixed n and a fixed tree of gain functions, the number of regions of $A_{n-1}^{a,a}$ associated to it is a polynomial of a.

This conjecture implies that the n-th a-Catalan number, considered as a polynomial of a, could be written as a sum of C_n polynomials, where C_n is the n-th Catalan number.

Labeling regions in deformations of graphical arrangements

Labeling regions in deformations of graphical arrangements arXiv:2312.06513 [math.CO]

Labeling regions in deformations of graphical arrangements arXiv:2312.06513 [math.CO]