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Attendees at the 2009 NCTM Annual Meeting in Washington, DC, were presented
with the Daily Puzzle Challenge, a collection of problems that could be solved for
prizes. The following problem, which was written by one of the authors of this article,
appeared in the Daily Puzzle Challenge for Thursday, April 23:

Create a polygon with eight sides such that all adjacent sides are
perpendicular and the side lengths are 1, 2, 3, 4, 5, 6, 7, and 8 units.
(NCTM 20009, p. 3)

The scoring for the problem indicated that points would be awarded based on the
area of the polygon that was created. In other words, puzzle solvers were asked to
find the largest rectangular lattice octagon using side lengths ranging from 1
to 8 units. Since its release, this puzzle has become known as the Lattice Octagon
Problem.

A lattice polygon is a polygon whose vertices are points of a regularly spaced
array. Therefore, a rectangular lattice octagon is a lattice polygon where each of the
eight sides is perpendicular to its adjacent sides. One example of a rectangular lattice

octagon is shown in Figure 1.

Figure 1. A rectangular lattice octagon.



The lattice octagon in Figure 1 satisfies the requirement that each side length
from 1 to 8 units must be used. However, it has an area of only 43 square units, which
is significantly less than the maximum possible area.

This article provides a framework for solving this problem and other problems
that involve lattice polygons. In addition, it offers a number of suggestions for how to
use this problem in the classroom, as well as offering related problems that could be

investigated.

Investigating the Lattice Octagon Problem in the Classroom

To begin a classroom investigation, the following wording may provide a better
statement of the original problem:

What is the largest octagon in which adjacent sides are perpendicular
and the side lengths are 1, 2, 3, 4, 5, 6, 7, and 8 units (not necessarily
in order)?

Students can obviously explore this problem using pencil and graph paper. A
slightly better alternative is a geoboard, which allows students to easily determine
the area. The online geoboard available at
http://standards.nctm.org/document/eexamples/Chap4/4.2/standalone.htm uses a
10 x 9 grid, so students can calculate the area directly or they can calculate the area

of the unused squares and subtract from 90. A rectangular lattice octagon created



using this online manipulative is shown in Figure 2. The area of the octagon in

Figure 2 is 52 square units.
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Figure 2. A lattice octagon created using the interactive geoboard applet from the
NCTM E-Examples.

Better still is to provide students with a large piece of felt paper on which a grid of
squares has been drawn; in addition, provide eight thin strips of felt that are 1
through 8 units in length. The benefit of using felt is that the strips will stick to the
board but are not permanently affixed, so they can be rearranged easily during

investigation. The set of materials shown in Figure 3 was made from two pieces of felt



(99¢ each) and a Sharpie” permanent marker ($1.49) purchased at a local craft store.
A lattice with lines 3/4” apart was drawn on the lighter sheet of felt, and the strips
(1/4” wide) were cut from a darker sheet. Once the materials were purchased, the
entire set was constructed in about 10 minutes. To save preparation time, though,
you could have students prepare the boards and strips at the beginning of class.
Alternatively, students could prepare the materials as homework the night before the
lesson, and they could even begin the exploration of the problem as part of their
homework. Alternatively, we recommend creating several sets using felt, and then
offering the Lattice Octagon Problem on Monday as a problem of the week. The sets
that have been prepared can be left in the back of the classroom for student
investigation, and students can explore the problem when time permits. Tell students
that they can use the felt sets to investigate the problem throughout the week, that
they should keep notes on any discoveries they make, and that the full solution will

be discussed on Friday.




Figure 3. Grid of squares and strips made from felt.

Using the manipulatives, students will likely make two important discoveries.

First, students may discover that lattice octagons can be constructed by first
creating a rectangular frame with the eight segments, selecting two corners, and then
pushing each of the adjacent segments toward the center. One example of this
transformation is shown in Figure 4, in which two different lattice octagons are
generated from the same frame. Second, students will realize that most octagons can
be rearranged easily to create a different octagon. Consider the two lattice octagons
created in Figure 4. In a sense, these lattice octagons are complementary. Both begin
with a rectangle using the same arrangement of the eight segments around the
perimeter, but different segments are pushed toward the center to create a lattice
octagon. Consequently, the resulting octagons have different shapes and therefore

different areas.



Figure 4. Complementary lattice octagons made from the same rectangular
frame.

Students might also realize that octagons with a hollow interior are possible.
These octagons are generated from rectangular frames in which one side consists of
three segments and the opposite side consists of just one segment. Such is the case in
Figure 5, where the left side of the frame consists of three segments with lengths of
1, 2, and 3 units, while the right side of the frame consists of just one segment with a
length of 6 units. With such a frame, it is only possible to create an octagon only by
pushing segments that lie on the same side of the frame. From there, the jutting
rectangle can be pushed toward the center to create an octagon with a hollow

interior.



5 7

Figure 5. Another set of complementary lattice octagons, the second of which has
a hollow interior.

In the course of exploring lattice octagons, students will make many discoveries.
With each discovery, they come one step closer to solving the original problem. In

addition, they are also building a foundation for investigating several extensions.

Related Problems

One criterion of a good math problem is that it leads to other problems worthy of
investigation. The following are some questions that will likely arise when students
begin to explore the Lattice Octagon Problem:

1. Can the sides of the octagon be placed in order from end to end? That is,
can the sides be placed so that the 1-unit side is adjacent to the 2-unit
side, which is adjacent to the 3-unit side, which is adjacent to the 4-unit
side, and so on? For convenience, designate this arrangement as S ={1, 2,
3,4,5,6,7,8}.

2. What is the greatest area among all lattice octagons?

3. What s the least area among all lattice octagons?

4. How many non-congruent lattice octagons are there?



5. Isit possible to build a lattice decagon using side lengths from 1 to 10?

All of these questions allow for rich explorations in a high school mathematics
class. As it turns out, the fourth problem in the list is the key to answering all five
questions. Therefore, the solution to Problem 4 will be presented in detail, and the
answers to most of the other questions will be revealed within the solution to
Problem 4.

To solve Problem 4, first note that the sum of the interior angles of any polygon is
(n-2)x180°, so the sum of the interior angles of an octagon is (8 - 2) x 180° = 1080°.
The measure of each interior angle of a rectangular lattice octagon is either 90°
or 270°. Let x be the number of 90° angles, and let y be the number of 270° angles.
Then it must be the case that 90x + 270y = 1080. But we also know that x + y = 8,
because there are eight angles in an octagon. This system of equations implies that x
=6andy =2, so it follows that the measures of exactly two angles must be 270°,
while the measures of the other six must be 90°. This realization leads to several
possible cases. The two 270° angles can be:

a) adjacent,
b) separated by one 90° angle,
c) separated by two 90° angles, or

d) separated by three 90° angles.



If the two 270° angles were separated by more than three 90° angles, the result
would revert to one of the cases already identified above. Consequently, these are

the only four possible cases. These four cases are shown in Figure 6.

Figure 6. The four possible arrangements of rectangular lattice octagons.

Type (a) seems to be different from the others in the sense that it is U-shaped,
suggesting some sort of concavity property. (The octagon with a hollow interior in
Figure 5 above has this same basic shape.) We can formalize this mathematically as
follows. Define a set in the plane to be HV-convex provided that all vertical and all
horizontal line segments which have both endpoints in the set do not leave the set.
Thus, lattice octagons of type (a) are not HV-convex, while types (b), (c), and (d) are.

Suppose each octagon shown above is a lattice octagon with side lengths 1, 2, 3,
4,5, 6,7, and 8 units. Then the perimeter of every lattice octagonis1+2+3+4+5+
6 + 7 + 8 = 36 units. Consequently, lattice octagons of type (b) are impossible, because
it implies that x; + xg = 18, yet the maximum possible value of two side lengthsis 7 + 8
= 15. Further, lattice octagons of type (a) can be obtained from type (c) by arranging

segments X3, X4, and xs inside the octagon so that it is not HV-convex. (Note that this is



only possible if x5 < x; and x3 < X7, and these restrictions will be taken into account
when octagons of type (a) are counted.) In view of these two realizations, it becomes
clear that figures (c) and (d) are the only two arrangements that need to be
considered, and octagons of type (a) can be treated as complementary octagons of
type (c).

One of the important discoveries that students make when exploring the Lattice
Octagon Problem is realizing that every lattice octagon can be enclosed by a
rectangle. The smallest possible rectangle that can enclose a lattice octagon is called
its frame. Lattice octagons of types (c) and (d) can be derived directly from the two

types of frames (C) and (D) shown in Figure 7.
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Figure 7. Possible frames (C) and (D) for lattice octagons of types (c) and (d).
Two lattice octagons are congruent if they can be superimposed after rotation or
reflection. To avoid counting these congruency duplications, we make the following
assumptions about the frames for types (c) and (d). For rectangles of type (c), we
assume that the maximum value in the set {x;, X3, X5, X7} is either x; or x3. For
rectangles of type (d), we assume xg = 8. With these restrictions, Table 1 describes all

possible arrangements of side lengths for rectangles of types (c) and (d).



Table 1.

All Possible Arrangements of Side Lengths for Octagons of Types (c) and (d)

Octagons Associated with Rectangles of | Octagons Associated with Rectangles of
Type (C) Type (D)

{X2, X4, X6} {xuxsb | {xs,x7} | xs | {x2xa} | {{xuxshi{xs, xs}} | X6 | Xs
{1,2,3} {4,8} {57} | 6 {2,7} {{3,6},{4,5}} 1] 8
{1,2,4} {3,8} {s,6} | 7 {3,6} {{2,7},{4,5}} 1] 8
{1,2,5} {3,7} {46} | 8 {4,5} {{2,7},13,6}} 1] 8

{4,6} {{1,7),{3,5}} 2 | 8
{4,7} {{1,6},{2,5}} 3 | 8
{6,7} {{1,4},{2,3}} 5 | 8

The variables used in type (c), which represent numbers, can be arranged in 3! - 2!
- 21 = 24 distinct ways. This is because the numbers x,, x4, and xg can be arranged in 3!
= 6 ways, the numbers x; and x; can be arranged in 2! = 2 ways, and the numbers xs
and x; can be arranged in 2! = 2 ways. Also, each of these 24 arrangements gives one
lattice octagon of type (c). Because, as shown in the table, there are three different
ways to group the sides in creating an octagon, there are 24 - 3 = 72 noncongruent

lattice octagons of type (c).



In order to go from lattice octagons of type (c) to lattice octagons of type (a),
some restrictions must be placed on the numbers x4, X3, X5, and x;. As mentioned
previously, it must be the case that x3 < x5, which is equivalent to xs < x4, since x; + X3 =
Xs + X7. Therefore, since the largest value of {x;, X3, X5, X7} lies in the set {x;, x3}, we can
construct a lattice octagon of type (a) from type (c) if and only if x; > x5. This allows
the variables in type (c) to be arranged in 3! - 21 = 12 different ways. Thus, there are
12 - 3 =36 noncongruent lattice octagons of type (a).

Finally, observe that to go from rectangle (D) to lattice octagon (d), two opposite
corners must be collapsed. The lattice octagon (d’) in Figure 8 is given to emphasize
that either pair of opposite corners of the rectangle (D) must be considered for
collapsing. Of course, xg = 8 > x, and xg > x,. Also, Xg < X, and X < X,4. This leads to four

cases for type (d).

Figure 8. A lattice octagon of type (d’).
Case 1. x; = max{xy, X3, Xs, X7}. In this case, we can collapse either pair of opposite
corners in order to create a lattice octagon of type (d) or (d’). This yields 2 - 21 - 21 =8

lattice octagons.



e Case 2. x; = max{xy, X3, Xs, X7}. In this case, we can collapse only the upper
left and lower right corners to create a lattice octagon of type (d’). This
yields 1 - 2! - 21 =4 |attice octagons.

e Case 3. x3 = max{xy, X3, Xs, X7}. In this case, we can collapse only the upper
left and lower right corners to create a lattice octagon of type (d’). This
yields 1 - 2! - 2! =4 |attice octagons.

e Case 4. x5 = max{xy, X3, X5, X7}. In this case, we can collapse either pair of
opposite corners to create a lattice octagon of type (d) or (d’). This yields
2-2!.21=_8lattice octagons.

Combining cases 1 through 4, we see that rectangle (D) can be used to create a total
of 8 +4 + 4 + 8 = 24 non-congruent lattice octagons of type (d). Because, as shown in
the table, there are six different ways to group the sides in creating an octagon, we

have a total of 24 - 6 = 144 noncongruent lattice octagons of type (d).

Table 2.

Number of Lattice Octagons of Types (a)—(d).

Number of
Type
Lattice Octagons
(a) 36




(c) 72

(d) 144

Total 252

Table 2 indicates that there are 252 noncongruent lattice octagons. This result
answers Question 4. Returning to the list of five questions posed at the beginning of
this section, we can now answer several others.

For Question 1, the lattice octagon shown on the electronic geoboard in Figure 2
shows that the segments 1, 2, 3, ..., 8 can be placed in order.

For Question 2, note that the largest rectangle with perimeter 36 is a 9 x 9 square
whose area is 81 square units. Two rectangles can be removed from the corners, with
dimensions 2 x 3 and 1 x 4. This forms a lattice octagon of type (d), and its area is
71 square units. This octagon is represented by the arrangement described in the first
row of Table 1 for octagons associated with rectangles of type (D).

For Question 5, the answer is simply no. If segments with lengths 1 through 10
units were used to construct a decagon, the perimeter wouldbe1+2+3+..+10=
55 units. As shown above, the sum of the side lengths on opposite sides of the frame
must be equal, so the number of units in the perimeter must be even.

The solution to Question 3 is left for the reader.
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