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1 Abstract

In the paper “Groups that Distribute over Mathematical Structures”, [5], we stated that a

group (S, ·) on a set S left (or right) distributes over an arbitrary mathematical structure

(S, ∗) on the same set S if and only if respectively for all fixed t ∈ S the permutation

Lt (x) = t · x (or Rt (x) = x · t) is a similarity mapping on (S, ∗). A similarity mapping f on

(S, ∗) is a permutation on S that preserves the structure of (S, ∗) such as a homeomorphism

on a topological space, an automorphism on a binary operator or a similarity mapping on a

binary relation. Also, Lt (x) and Rt (x) are called the left and right translations by t. For

example, the group (R, ◦, +) both left and right distributes over the space of real numbers

(R, T ) with the usual topology. In other words, for all subsets U of R, and for all x ∈ R,

U + x = x + U is an open subset of R if and only if U is an open subset of R. See [5] for the

details.

In this paper we define and give a reasonably complete solution for a naturally occurring

example that involves what we call an n-star which is structurally the same as n lines in the

plane intersecting in
(

n
2

)
district points.

However, an equally important purpose of this paper is to show that if a structure (S, ∗) is

given, then a fundamental idea is to see if a group (S, ·) exists such that (S, ·) left-distributes

or right-distributes over (S, ∗) .

This paper takes the reader on a long journey, but we hope that it is a reasonably fast

and easy journey.
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2 Introduction

Suppose (S, ∗) is an arbitrary structure on a set S. In the paper [5] which the reader can

easily access electronically, we show how to construct all groups (S, ·) on S such that (S, ·)
left-distributes or right-distributes over (S, ∗) if such a group exists. However, usually such

a group (S, ·) will not exist. Our construction used the group of all similarity mappings

on (S, ∗) which we now call
(
F , ◦

)
. We showed that a group (S, ·) exists such that (S, ·)

left-distributes over (S, ∗) if and only if there exists a subgroup
(
G, ◦

)
of

(
F , ◦

)
such that(

G, ◦
)

is uniquely transitive on S. This means that for every a, b ∈ S, there exists a unique

f ∈ G such that f (a) = b. If such a
(
G, ◦

)
exists then a group (S, ·) that left-distributes

over (S, ∗) was defined in theorem 3, [5] as follows.

First, we arbitrarily choose 1 ∈ S to be the identity of (S, ·). Then we index G =

{ft : t ∈ S} so that ∀i ∈ S, fi (1) = i. We can do this since
(
G, ◦

)
is uniquely transitive

on S, and we can do it by either renaming the members of S or renaming the members

of G. A group (S, ·) with identity 1 that left-distributes over (S, ∗) is then defined by

∀i, j ∈ S, i · j = fi (j). It is also very important to emphasize that in theorem 3, [5] we also

proved that the groups (S, ·) and
(
G, ◦

)
are isomorphic (i.e., (S, ·) ∼=

(
G, ◦

)
) through the

isomorphism fi ◦ fj = fi·j .

It is also obvious that if the group (S, ·) left-distributes over (S, ∗) then the group (S,�)

defined by a� b = b · a will right-distribute over (S, ∗) .

By studying the paper [5], it becomes obvious that intuitively a necessary condition

on (S, ∗) is that the structure of (S, ∗) must be fairly homogeneous and symmetric. This

follows from the transitive property of (G, ◦) We cannot tell just by looking at a structure

(S, ∗) whether it is homogeneous and symmetric enough or not. However, any time that we

encounter a structure (S, ∗) that appears to be fairly homogeneous and symmetric then it

is natural to ask if a group (S, ·) exists which left (or right) distributes over (S, ∗). We now

proceed to illustrate this by studying n-stars. Intuitively these stars look alike. But some

have groups that left (or right) distribute over them and some do not, and this illustrates the

delicate balance that must exist. We will show that a necessary condition is that n = pt where

p is a prime of the form p = 4k+3 and t is odd. Also, we will construct all types of groups

(up to isomorphism) that left (or right) distribute over the n-star. This construction uses

an Abelian group on the set {1, 2, · · · , n = pt} and a group of automorphisms on this Abelian
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group.

3 Generalized n-Stars

In sections 3-5 we study n-stars using one set of definitions, and in sections 6-7 we use a

different set of definitions. Also, in section 7 we state an axiom. Then in sections 8-10 we use

the material in sections 3-7 including the axiom of section 7 to construct all types of groups

that left (or right) distribute over the n-stars. In section 11 we use different techniques to

prove the axiom of section 7 and also to prove deeper properties of the n-stars. For example,

we prove that a necessary condition on the n-stars is that n = pt where p is a prime of the

form p = 4k + 3 and t is odd. Then in section 12 we give some applications.

Suppose n lines in the plane called L = {l1, l2, · · · , ln} = {1, 2, · · · , n} intersect each

other in
(

n
2

)
= n(n−1)

2
distinct points which we call DL = {{li, lj} : i 6= j, li, lj ∈ L} =

{{i, j} : i 6= j, i, j ∈ {1, 2, · · · , n}}. DL stands for doubleton sets on L. If these n lines

are the sides of a regular n-gon, then these
(

n
2

)
points can be viewed as generalized n-stars.

However, we must allow points at infinity when n is even. In Fig. 1 we show the n-stars for

n = 3, 4, 5, 6 and in Fig. 2 we show the n-star for n = 7. We denote the n-star by (DL, ∗) .

Let us define the group (F, ◦) of all permutations on L = {l1, l2, · · · , ln} = {1, 2, · · · , n}
using composition of functions. This group (F, ◦) which contains n! permutations is the

standard symmetric group on L. It is almost obvious that each permutation f on L de-

fines a corresponding line preserving permutation f on DL when ∀ {i, j} ∈ DL, f ({i, j}) =

{f (i) , f (j)}. For example if f =

 l1 l2 l3 l4 l5

l3 l1 l5 l2 l4

,

then f =

 {l1l2} {l1l3} {l1l4} {l1l5} {l2l3} {l2l4} {l2l5} {l3l4} {l3l5} {l4l5}
{l1l3} {l3l5} {l2l3} {l3l4} {l1l5} {l1l2} {l1l4} {l2l5} {l4l5} {l2l4}

 .

This line preserving permutation f is shown in Fig. 3, and the reader should study this care-

fully. In Fig. 3 we note that line l1 is moved to l3, line l2 is moved to l1, line l3 is loved to

l5, line l4 is moved to l2 and line l5 is moved to l4. This changes the positions of the points

{i, j} as shown. The important thing to notice is that if 4 points in the first drawing lie in

a straight line then these same 4 points lie in a straight line in the second drawing. This is

why we call f a line preserving permutation on DL. In Lemmas 1, 2 we show that these n!

line preserving permutations on DL form a group using composition of functions. Lemmas
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1, 2 also relate this group of line preserving permutations on DL and the symmetric group

on L.

Lemma 1 Suppose, f, g are permutations on L = {l1, l2, · · · , ln} = {1, 2, · · · , n} where

n ≥ 3. Also, f, g are the corresponding line preserving permutations on DL. Then f 6= g

implies f 6= g. Thus, the mapping f → f is 1− 1.

Proof. Since f 6= g,∃a ∈ L such that f (a) 6= g (a) .

Suppose b ∈ L\ {a}. Now if f ({a, b}) = {f (a) , f (b)} 6= g ({a, b}) = {g (a) , g (b)} then

there is nothing to prove.

Therefore, suppose {f (a) , f (b)} = {g (a) , g (b)}.
Therefore, f (a) 6= g (a) implies f (a) = g (b) and f (b) = g (a) .

Since n ≥ 3 suppose c ∈ L\ {a, b}.
Now, f (a) = g (b) implies f (a) 6= g (c) .

Therefore, since f (a) 6= g (a) we see that f ({a, c}) = {f (a) , f (c)} 6= {g (a) , g (c)} =

g ({a, c}). Therefore, f ({a, c}) 6= g ({a, c}) which implies f 6= g.

Lemma 2 If f, g are permutations on L = {l1, l2, · · · , ln} and f, g are the corresponding

line preserving permutations on DL then f ◦ g = f ◦ g.

Note 1 Thus when n ≥ 3 the symmetric group of all permutations on L which we call (F, ◦)
is isomorphic to the corresponding group of line preserving permutations on DL which we

now call
(
F , ◦

)
. That is, (F, ◦) ∼=

(
F , ◦

)
.

Proof of Lemma 2 (f ◦ g) ({i, j}) = {(f ◦ g) (i) , (f ◦ g) (j)}. Also,
(
f ◦ g

)
({i, j}) =

f (g ({i, j})) = f ({g (i) , g (j)}) = {f (g (i)) , f (g (j))} = {(f ◦ g) (i) , (f ◦ g) (j)}. There-

fore, f ◦ g = f ◦ g. �

4 Groups that Distribute over n-Stars

We say that a permutation f on DL is a similarity mapping on the n-star (DL, ∗) if and only

if f maps lines onto lines. It is easy to show that this is true if and only if f corresponds to

some permutation f on L = {l1, l2, · · · , ln} as defined above. Thus,
(
F , ◦

)
is also the group

of all similarity mappings on (DL, ∗) and as above we have
(
F , ◦

) ∼= (F, ◦). The reason that

the above is true is that the n− 1 points on the line l1 can be mapped in (n− 1)! different
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ways onto the n − 1 points of any line li. Also, once the n − 1 points on line l1 have been

mapped onto li, the mapping of the other points of the n-star are uniquely determined from

this. This gives a total of n · (n− 1)! = n! different mappings which is the same number as

the n! permutations on L.

Of course, from the paper [5] this means that a group (DL, ·) with operator (·) on the set

DL left-distributes over the n-star (DL, ∗) if and only if for all fixed t ∈ DL, the permutation

{(xi, t · xi) : xi ∈ DL} is a line preserving permutation on DL.

If we examine the 5 stars shown in Fig. 1 and Fig. 2, we see that the points on these 5

stars intuitively seem to be fairly homogeneous and symmetric. As always in such a case, it

is natural to ask if there exists a group (DL, ·) that left (or right) distributes over the n-star

(DL, ∗) as n ranges over {3, 4, 5, 6, · · · } .

In sections 5-11 we give a reasonably complete solution to the following Main Problem.

Main Problem Find all n-stars (DL, ∗) on the set L = {l1, l2, · · · , ln} that have groups

(DL, ·) that left (or right) distribute over them. Also, for each n-star (DL, ∗) that has a

group (DL, ·) that left (or right) distributes over it, find all of the different types of groups

(DL, ·), up to isomorphism, that left (or right) distribute over (DL, ∗) .

5 A Necessary Condition on (DL, ∗)

Lemma 3 If |DL| = n(n−1)
2

is even, then there does not exist a group (DL, ·) that left (or

right) distributes over the n-star (DL, ∗) when L = {l1, l2, · · · , ln} .

Proof. As always let
(
F , ◦

)
be the group of all line preserving permutations on DL. Using

the introduction, suppose there exists a subgroup
(
G, ◦

)
of

(
F , ◦

)
such that

(
G, ◦

)
is uniquely

transitive on DL. Of course,
(
G, ◦

)
must have exactly

∣∣G∣∣ = n (n− 1) /2 permutations since(
G, ◦

)
is uniquely transitive on DL and |DL| = n(n−1)

2
. Since

∣∣G∣∣ is even, by the Syloe

theorems of group theory we know that ∃f ∈ G such that f 6= i and f ◦ f = i, the

identity permutation on DL. By the isomorphism f ◦ g = f ◦ g stated in lemmas 1, 2, this

implies that ∃ a permutation f on L = {l1, l2, · · · , ln}, such that (1) f 6= I, (2) f ◦ f = I,

the identity permutation on L, and (3) f, f correspond to each other as defined earlier by

f ({i, j}) = {f (i) , f (j)}. Since f 6= I and f ◦ f = I, this implies that ∃i, j ∈ L, i 6= j, such

that f(i) = j and f (j) = i. Therefore, f ({i, j}) = {f (i) , f (j)} = {i, j}.

5



But since f 6= i, the identity permutation on DL, and since i ({i, j}) = {i, j}, we see that(
G, ◦

)
cannot be uniquely transitive on DL since f ({i, j}) = i ({i, j}) = {i, j} .

Corollary 1 If |L| = n is a positive integer of the form n = 4k or n = 4k + 1, then there

does not exist a group (DL, ·) that left (or right) distributes over the n-star (DL, ∗) since
n(n−1)

2
would be even.

6 Alternate Definitions for the n-Star

In this section we develop a bilingual approach by studying the n-stars (DL, ∗) in terms of

a new set of definitions. As always, (F, ◦) is the group of all permutations on L.

Definition 1 Suppose (G, ◦) ⊆ (F, ◦) is a group of permutations on L = {1, 2, · · · , n}
where n ≥ 3. We say that (G, ◦) is 2-transitive∗ on L if and only if ∀ doubleton subsets

{a, b} ,
{
a, b

}
⊆ L, ∃f ∈ G such that f ({a, b}) = {f (a) , f (b)} =

{
a, b

}
. Also, (G, ◦) is

uniquely 2-transitive∗ on L if and only if ∀ doubleton subsets {a, b} ,
{
a, b

}
⊆ L, ∃ a unique

f ∈ G such that f ({a, b}) =
{
a, b

}
.

Lemma 4 Suppose (G, ◦) is a uniquely 2-transitive∗ group of permutations on L = {1, 2, · · · , n} .

Then |G| = n(n−1)
2

.

Proof. There are exactly
(

n
2

)2
ordered pairs

(
{a, b} ,

{
a, b

})
where {a, b} ,

{
a, b

}
are

doubleton subsets of L. Also, each permutation f ∈ G generates exactly
(

n
2

)
ordered pairs

({a, b}), f ({a, b}) since {a, b} can be chosen in
(

n
2

)
different ways. Therefore, |G| =

(
n
2

)2(
n
2

) =(
n
2

)
= n(n−1)

2
.

Lemma 5 Suppose (G, ◦) ⊆ (F, ◦) is a group of permutations on L = {1, 2, 3, · · · , n} and(
G, ◦

)
⊆

(
F , ◦

)
is the corresponding isomorphic group of line preserving permutations on

DL as defined previously. This means that g ∈ G and g ∈ G correspond to each other (which

we write as g ↔ g) if and only if ∀ doubleton subset {a, b} ⊆ L, g ({a, b}) = {g (a) , g (b)}.
Then the group

(
G, ◦

)
is uniquely transitive on DL if and only if the group (G, ◦) is uniquely

2-transitive∗ on L.
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Proof. The proof follows immediately from the fact that

DL = {{a, b} : {a, b} is a doubleton subset of L} and from the fact that ∀ {a, b} ∈ DL, g ({a, b}) =

{g (a) , g (b)} .

Note 2 Suppose
(
G, ◦

)
and (G, ◦) are from lemma 5 and suppose (G, ◦) is uniquely 2-

transitive∗ on L. From lemma 5 this implies that
(
G, ◦

)
is uniquely transitive on DL.

Thus (G, ◦) is a uniquely transitive group of similarity mappings on the n-star (DL∗). As

summarized in section 2 (The Introduction) this implies that there exists a group (DL, ·) that

left-distributes over the n-star (DL, ∗). From section 2 we also know that (DL, ·) ∼=
(
G, ◦

)
,

and as always we know that
(
G, ◦

) ∼= (G, ◦). Therefore, (G, ◦) ∼=
(
G, ◦

) ∼= (DL, ·). This

triple isomorphism means that many of the properties that we develop for one of these three

groups will also be true for the other two groups.

Observation 1 Suppose f is a permutation on L = {1, 2, · · · , n}. Then f can be partitioned

(i.e., broken down) into the cycles k1-cycle, k2-cycle, · · · , km-cycle where
m∑

i=1

ki = |L| = n and

where each ki-cycle satisfies the following. ∀x ∈ ki-cycle, f (x) , f2 (x) , f3 (x) , · · · , fki (x) are

all distinct and fki (x) = x. If k1 ≤ k2 ≤ · · · ≤ km, we say that f is of type (k1, k2, · · · , km).

Two permutations f, g on L are said to be similar if they are of the same type. Also, if f, g

are permutations on L then it is a standard lemma that f and g are similar if and only if

there exists a permutation h on L such that f = h−1 ◦ g ◦ h.

Lemma 6 Suppose (G, ◦) ⊆ (F, ◦) is a uniquely 2-transitive∗ group of permutations on

L = {1, 2, , n}, then

1. |G| = n(n−1)
2

and n(n−1)
2

is odd.

2. Each f ∈ G is of type (a), (b) or (c).

Type (a) (k, k, k, · · · , k) where k 6= 1, k|n and k is odd. Thus, ∀x ∈ L, f (x) , f2 (x) , · · · , fk (x)

are all distinct and fk (x) = x.

Type (b) (1, , k, k, · · · , k) where k 6= 1, k|n − 1 and k is odd. Thus, ∃a ∈ L such that

f (a) = a and ∀x ∈ L\ {a} , f (x) , f2 (x) , . . . , fk (x) are all distinct and fk (x) = x.

Type (c) (1, 1, 1, · · · , 1) which is the identity permutation I.

Proof. (1) follows from Lemmas 3, 4 and 5. We now prove (2). First, suppose f ∈
G is of type (k1, k2, · · · , km) and at least one ki is even. This implies that there exist
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an even positive integer m such that f, f2, f3, · · · , fm = I are all distinct which implies

that ({f i : i = 1, 2, · · · , m} , ◦) is a subgroup of (G, ◦) having m elements. But this implies

m|n(n−1)
2

which is impossible since m is even and n(n−1)
2

is odd. Therefore, k1, k2, · · · , km are

all odd.

Next, suppose f ∈ G\ {I} and f has two self-loops. That is k1 = k2 = 1. This means that

∃a 6= b, a, b ∈ L such that f (a) = a, f (b) = b. Therefore, f ({a, b}) = {f (a) , f (b)} = {a, b} .

Also, I ({a, b}) = {a, b}. But since f 6= I, this implies that (G, ◦) is not uniquely 2-

transitive∗ on L. Therefore, if f ∈ G\ {I} then f can have at most one self-loop.

Next, suppose f ∈ G\ {I} and f has no self-loops and 2 ≤ ki < kj for some i < j. This

implies that ∃x ∈ L such that f (x) , f2 (x) , · · · , fki (x) = x are all distinct. Also, fki 6= I

since ki < kj.

Also, of course, fki ∈ (G, ◦) since (G, ◦) is a group.

Using the above x, we know that x 6= f (x) since ki ≥ 2. Also, fki ({x, f (x)}) ={
fki (x) , fki+1 (x)

}
= {x, f (x)}. Also, I ({x, f (x)}) = {x, f (x)}. However, since fki 6= I

this implies that (G, ◦) is not uniquely 2-transitive∗ on L. Thus, f must be of type (a) when

it has no self-loops.

Likewise, if f ∈ G\ {I} has one self-loop then f must be of type (b).

In Corollaries 2, 3, (G, ◦) is uniquely 2-transitive∗ on L = {1, 2, · · · , n} .

Corollary 2 ∀g ∈ (G, ◦), define the order of g to be the smallest positive integer m such

that gm = I. If g is of type (a) then order (g) is odd and order (g) |n. Also, order (g) 6= 1.

Furthermore, if g is of type (b) then order (g) is odd and order (g) |n−1. Also, order (g) 6= 1.

Corollary 3 Suppose |L| = n ≥ 4. Then (G, ◦) cannot be an Abelian group.

Proof. The proof is the same as the proof of lemma 39. Corollary 3 is not used in this

paper.

Definition 2 (G, ◦) is a group of permutations on L and A ⊆ G. We say that A is a normal

subset of (G, ◦) if ∀f ∈ G, f−1 ◦ A ◦ f = {f−1 ◦ g ◦ f : g ∈ A} = A.

Notation 1 (G, ◦) is a uniquely 2-transitive∗ group of permutations on L = {1, 2, · · · .n}.
Using Lemma 6, let us partition G = Ga ∪Gb ∪{I} where Ga consists of those permutations

in G of type (a), Gb consists of those permutations in G of type (b) and I is the identity

permutation on L.
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Lemma 7 Each of Ga, Gb, {I} is a normal subset of (G, ◦) .

Proof. Since ∀f, g ∈ G, f−1 ◦ g ◦ f is of the same type as g and since each g ∈ G is of

type (a), (b) or {I}, it is obvious that Ga, Gb and {I} are normal subsets of (G, ◦) .

Lemma 8 Suppose a group (G, ◦) of permutations on L = {1, 2, 3, · · · , n} is 2-transitive∗ on

L. Then (G, ◦) is transitive on L when |L| = n ≥ 3. Transitive means that ∀a, b ∈ L, ∃g ∈ G

such that g (a) = b.

Proof. Let a, b ∈ L be arbitrary. We show that ∃g ∈ G such that g (a) = b. Therefore,

suppose that there does not exist g ∈ G such that g (a) = b. Since |L| ≥ 3, let c ∈ L\ {a, b}.
Now, ∃g ∈ G such that g ({a, c}) = {g (a) , g (c)} = {b, c} since {a, c} and {b, c} are doubleton

subsets of L. Since g (a) 6= b we must have g(a) = c, g(c) = b. Now, g = g2 = g ◦ g ∈ (G, ◦)
satisfies g (a) = (g2) (a) = (g ◦ g) (a) = g (g (a)) = g (c) = b. Therefore, (G, ◦) is transitive

on L.

Lemma 9 Suppose a group (G, ◦) of permutations on L = {1, 2, · · · , n} where n ≥ 3 is

uniquely 2-transitive∗ on L. Then n is odd.

Proof. Since (G, ◦) is uniquely 2-transitive∗ on L = {1, 2, · · · , n}, we know by Lemma

4 that |G| = n(n−1)
2

.

Also, by Lemma 8 we know that (G, ◦) is transitive on L since n ≥ 3. Let us fix a ∈ L

and define (Ka, ◦) to be the subgroup of (G, ◦) that consisted those members g ∈ G that

map a to a. That is, Ka = {g ∈ G : g (a) = a}. (Ka, ◦) is called the stabilizer subgroup of a.

For b ∈ L suppose we wish to compute all f ∈ (G, ◦) that satisfy f (a) = b. Since (G, ◦)
is transitive on L we know that ∃ at least one f ∈ (G, ◦) such that f (a) = b. Then the set

f ◦Ka =
{
f ◦ g : g ∈ Ka

}
gives all f ∈ (G, ◦) that satisfy f (a) = b.

Now f ◦ Ka is just a left coset of the subgroup (Ka, ◦) of the group (G, ◦). Therefore,

∀b ∈ L, ∃ exactly |Ka| members f ∈ (G, ◦) that satisfy f (a) = b.

Therefore, |G| = n(n−1)
2

= |Ka| · n since |L| = n and each f ∈ G maps f (a) somewhere

in L. Therefore, |Ka| = n−1
2

which implies that n is odd.

Corollary 4 Combining Lemma 6-(1) and Lemma 9 we know the following. Suppose (G, ◦)
is a uniquely 2-transitive∗ group of permutations on L = {1, 2, 3, · · · , n} where n ≥ 3. Then

|G| = n(n−1)
2

. Also, n(n−1)
2

is odd and n is odd.

This implies that n must be of the form n = 4k + 3.
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Corollary 5 Suppose (G, ◦) is a uniquely 2-transitive∗ group of permutations on L = {1, 2, 3, · · · , n}
where n ≥ 3. ∀a ∈ L, define (Ka, ◦) = ({g ∈ G : g (a) = a} , ◦) to be the stabilizer subgroup

of a.

Then |Ka| = n−1
2

and |Ka| is odd.

Also, ∀a, b ∈ L, there exists exactly n−1
2

members f ∈ (G, ◦) satisfying f (a) = b.

Proof. Given in the proof of Lemma 9.

Applications 1 Suppose (G, ◦) is a uniquely 2-transitive∗ group of permutations on L =

{1, 2, · · · , n} where n ≥ 3. From Lemma 6, we know that each f ∈ (G, ◦) is of type (a), (b),

or (c).

(a) (k, k, k, · · · , k) where k 6= 1, k|n and k is odd.

(b) (1, k, k, · · · , k) where k 6= 1, k|n − 1 and k is odd. Since n − 1 is even, we now know

that k|n−1
2

, and we also know n−1
2

is odd.

(c) (1, 1, 1, 1, · · · , 1) which is the identity permutation I.

If f ∈ (G, ◦) is of type (a) then ∀a ∈ L, f (a) 6= a. This means that f maps no a ∈ L to

itself. If f ∈ (G, ◦) is of type (b), then ∃ exactly one a ∈ L such that f (a) = a. ∀a ∈ L, as

always define (Ka, ◦) = ({g ∈ G : g (a) = a} , ◦) to be the stabilizer subgroup of a.

Since L = {1, 2, · · · .n} we see that (K1, ◦) , (K2, ◦) , · · · , (Kn, ◦) are the n stabilizers of

(G, ◦). Of course, ∀i, j ∈ L, if i 6= j then Ki ∩Kj = {I} . We easily see that each f ∈ (G, ◦)
that is of type (b) is a member of exactly one of (K1, ◦) , (K2, ◦) , · · · , (Kn, ◦). Also, if

f ∈ (G, ◦) is of type (a) then f /∈ (K1 ∪K2 ∪ · · · ∪Kn) . Of course, I (which is of type (c)) is

a member of each Ki, i = 1, 2, · · · , n. Since |Ki\ {I}| = n−1
2
−1 = n−3

2
for each i = 1, 2, · · · , n,

since |G| = n(n−1)
2

and since (Ki\ {I}) ∩ {Kj\ {I}} = φ when i 6= j, we see that the number

of members f ∈ (G, ◦) that are of type (a) or type (c) equals n(n−1)
2

− n(n−3)
2

= n.

Since each f ∈ (G, ◦) is of type (a), (b) or (c), we know the following. The order of each

permutation f ∈ (G, ◦) divides n or it divides n−1
2

and the order of I (which is 1) is the only

order that divides both n and n−1
2

. Therefore, exactly n−1 non-identity members f ∈ (G, ◦)
have an order that divides n, and these n − 1 permutations make up Ga = H\ {I} where

H = Ga ∪ {I} . Also, exactly n(n−1)
2

− n = n(n−3)
2

non-identity members f ∈ (G, ◦) have an

order that divides n−1
2

and these n(n−3)
2

permutations make up G\H = (∪n
i=1Ki) \ {I} .
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(H, ·)
I

(G, ◦)

(K7, ◦)

(K6, ◦)

(K5, ◦)

(K4, ◦) (K3, ◦)

(K2, ◦)

(K1, ◦)

(Kn, ◦)

Fig. 4. (G, ◦) , (H, ◦) = (Ga ∪ {I} , ◦) and the stabilizers (Ki, ◦) , i = 1, 2, · · · , n.

As stated above, we are defining H = {f ∈ G : f = I or f is of type (a)} = Ga ∪ {I}
where Ga is from Notation 1, and we again note that |H| = n. Also, note that K1 ∪K2 ∪
· · · ∪Kn = Gb ∪ {I} from Notation 1.

Of course, ∀a ∈ L we immediately know that the stabilizer (Ka, ◦) is a group. Also, since

|H| = n we immediately suspect that (H, ◦) is a group as well. However, this fact is much

harder to prove, and in section 11 we use different techniques to prove it. In section 11 we

also show that (H, ◦) is an Abelian p-group of order |H| = pt where p is a prime of the form

p = 4k + 3 and t is odd. We also show that ∀f ∈ H\ {I}, order (f) = p. Thus, we see that

(H, ◦) is not a very complicated group.

Lemma 10 Suppose (G, ◦) is a uniquely 2-transitive∗ group of permutations on L = {1, 2, · · · , n}
where n ≥ 3. Then ∀a ∈ L, ∀f, g ∈ (Ka, ◦) if f 6= g then f and g are totally different on

L\ {a}. That is, ∀x ∈ L\ {a} , f (x) 6= g (x) .

Proof. If f 6= g and f (x) = g (x) for some x ∈ L\ {a}, then f ({a, x}) = {f (a) , f (x)} =

{a.f (x)} = {g (a) , g (x)} = g ({a, x}) . This implies that (G, ◦) is not uniquely 2-transitive ∗

on L.

Lemma 11 (G, ◦) is a uniquely 2-transitive ∗ group of permutations on L = {1, 2, · · · , n}
where n ≥ 3.

Then the set H = Ga ∪ {I} is a normal subset of (G, ◦) .

Thus, if (H, ◦) is a subgroup of (G, ◦) then (H, ◦) is a normal subgroup of (G, ◦) .

11



Proof. This follows from Lemma 7.

The triple isomorphism (G, ◦) ∼=
(
G, ◦

) ∼= (DL, ·) of Note 2 means that many of the

properties that we prove for (G, ◦) will also be true for
(
G, ◦

)
and (DL, ·). For this reason

we believe that it is worthwhile to prove a few more lemmas before we continue the main

business of solving the Main Problem. Lemmas 12-16 can be omitted in a short reading of

this paper. Lemmas 12-14 will suggest that we must develop different techniques if we hope

to prove that (H, ◦) is a group. This is because Lemmas 12-14 have proved futile to us in

proving that (H, ◦) is a group. These new techniques are given in Section 11.

Lemma 12 (G, ◦) is a uniquely 2-transitive∗ group of permutations on L = {1, 2, · · · , n} , n ≥
3, and as always H = Ga∪{I}. If (H, ◦) is a subgroup of (G, ◦) then it is uniquely transitive

on L.

Proof. Suppose f 6= g, f, g ∈ (H, ◦) and ∃a ∈ L such that f (a) = g (a). Now

(f−1 ◦ g) (a) = a and also f−1 ◦ g ∈ H and f−1 ◦ g 6= I. However, (f−1 ◦ g) (a) = a and

f−1◦g 6= I implies that f−1◦g ∈ Ka\ {I} which is impossible since (Ka\ {I})∩(H\ {I}) = φ.

Therefore, ∀a ∈ L, f (a) 6= g (a). From this and from the fact that |H| = |L| = n, we see

that ∀a, b ∈ L, ∃f ∈ (H, ◦) such that f (a) = b. Thus, (H, ◦) is transitive on L which implies

that (H, ◦) is uniquely transitive on L.

Lemma 13 (G, ◦) is a uniquely 2-transitive∗ group of permutations on L = {1, 2, · · · , n},
n ≥ 3, and as always H = Ga∪{I} . Suppose ∀a, b ∈ L, ∃ a unique f ∈ H such that f (a) = b.

Then (H, ◦) is a subgroup of (G, ◦) .

Proof. Suppose f, g ∈ H and f ◦g ∈ G\H. Therefore, ∃a ∈ L such that f ◦g ∈ Ka\ {I} .

Now f 6= I and g 6= I. Also, f ∈ H is true if and only if f−1 ∈ H since H = Ga ∪ {I}. Now

(f ◦ g) (a) = f (g (a)) = a since f ◦ g ∈ Ka. Therefore, g (a) = f−1 (a). Now g 6= f−1 since

f ◦ f−1 = I /∈ G\H.

However, g 6= f−1, g ∈ H, f−1 ∈ H and g (a) = f−1 (a) contradicts the hypothesis. This

contradiction implies that f, g ∈ H and f ◦ g ∈ G\H is impossible. Therefore, (H, ◦) is

a closed operator. Therefore, since |H| = n is finite and I ∈ H we see that (H, ◦) must be a

group.

Lemma 14 Suppose (G, ◦) is a uniquely 2-transitive∗ group of permutations on

L = {1, 2, · · · , n}, n ≥ 3. Also, suppose there exists a subgroup
(
H, ◦

)
of (G, ◦) of order∣∣H∣∣ = n. Then

(
H, ◦

)
= (H, ◦) which implies that (H, ◦) is a subgroup of (G, ◦) .

12



Proof. Of course, I ∈ H and I ∈ H. Suppose, f ∈ H\ {I} . Now, order (f) 6= 1 and

order (f) |n. Also,
∣∣H\ {I}∣∣ = n− 1. Now from Applications 1 we know that exactly n− 1

non-identity members f ∈ (G, ◦) have an order that divides n, and these n−1 permutations

make up H\ {I} = Ga. Therefore, H\ {I} = H\ {I} which implies that H = H.

Corollary 6 Suppose (G, ◦) is a uniquely 2-transitive∗ group of permutations on

L = {1, 2, 3, · · · , n = pt} , pt ≥ 3, where p is a prime. Since by Corollary 4, pt = 4k + 3 is

necessary we must have p = 4k + 3 and t is odd. As always, H = Ga ∪ {I}. Then (H, ◦) is

a subgroup of (G, ◦) .

Proof. Since |G| =
pt(pt−1)

2
we know by the Syloe theorems that (G, ◦) has a subgroup(

H, ◦
)

of order
∣∣H∣∣ = pt. By Lemma 14,

(
H, ◦

)
= (H, ◦) which implies that (H, ◦) is a

subgroup of (G, ◦) .

Lemma 15 (G, ◦) is a uniquely 2-transitive∗ group of permutations on L = {1, 2, · · · , n} , n ≥
3. Then ∀a, b ∈ L, the groups (Ka, ◦) and (Kb, ◦) are conjugates. This means that ∃f ∈
(G, ◦) such that f−1Kaf = Kb. Thus, ∀a, b ∈ L, (Ka, ◦) ∼= (Kb, ◦) .

Proof. Let g ∈ Ka be arbitrary. Now g ∈ Ka is true if and only if g (a) = a.

By Lemma 8, we know that (G, ◦) is transitive on L. Therefore, ∃f ∈ (G, ◦) such that

f (b) = a. Now (f−1 ◦ g ◦ f) (b) = (f−1 ◦ g) (f (b)) = (f−1 ◦ g) (a) = f−1 (g (a)) = f−1 (a) =

b. Thus, by using this f we see that ∀g ∈ Ka, f
−1 ◦ g ◦ f ∈ Kb. Since |Kb| = |Ka| = n−1

2
and

since the function {(g, f−1 ◦ g ◦ f) : g ∈ Ka} is 1-1 we see that f−1 ◦Ka ◦ f = Kb.

Lemma 16 (G, ◦) is a uniquely 2-transitive∗ group of permutations on L = {1, 2, · · · , n} , n ≥
3. Then ∀f ∈ (G, ◦) ,∀a ∈ L, ∃b ∈ L such that f−1 ◦Ka ◦ f = Ka.

Proof. The proof is the same as the proof of Lemma 15 since the fact that f is a

permutation on L implies that ∃b ∈ L such that f (b) = a.

Comments 1 ∀f ∈ G, the function {(g, f−1 ◦ g ◦ f) : g ∈ G} will map I to I, map H to H

and map the Ka’s (as a varies over L) 1-1 among themselves.

Also, ∀a ∈ L, it is true that {f ∈ G : f−1 ◦Ka ◦ f = Ka} = Ka. We can write more of

these lemmas, but we believe that the reader has been exposed to a good sample of what is

going on in all groups (G, ◦) ∼=
(
G, ◦

) ∼= (DL, ·). So we are now going to get down to the

13



main business of finding all of the types of groups (DL, ·) that left (or right) distribute over

the n-stars (DL, ∗) as n ranges over n ∈ {3, 4, 5, 6, · · · } .

We now use Section 6 to help us solve this Main Problem.

7 Using Section 6 to Solve the Main Problem

In this section (G, ◦) is a uniquely 2-transitive∗ group of permutations on {L = 1, 2, · · · , n} , n ≥
3. As always H = Ga ∪ {I} .

Also, ∀a ∈ L, (Ka, ◦) = ({f ∈ G : f (a) = a} , ◦) is the stabilizer subgroup of a.

Since we need different techniques to prove that (H, ◦) is always a subgroup of (G, ◦), we

will temporarily add this fact as Axiom 1 and postpone the proof of Axiom 1 to Section 11.

Axiom 1 (H, ◦) = (Ga ∪ {I} , ◦) is a subgroup of (G, ◦) .

Note 3 Of course, by Lemma 11, (H, ◦) is a normal subgroup of (G, ◦). Therefore, the

left cosets of (H, ◦) are identical to the right cosets of (H, ◦) .

Lemma 17 Assuming that Axiom 1 is true, we have (H ◦Ka, ◦) = ({h ◦ k : h ∈ H, k ∈ Ka} , ◦) =

(G, ◦) where a ∈ L is arbitrary but fixed. Also, the n−1
2

permutations f ∈ (Ka, ◦) lie in dis-

tinct cosets of (H, ◦). Also, the n permutations f ∈ (H, ◦) lie in distinct left cosets of (Ka, ◦)
and the n permutations f ∈ (H, ◦) also lie in distinct right cosets of (Ka, ◦) .

Proof. Follows from elementary group theory since (H, ◦) is a normal subgroup of

(G, ◦) , |G| = n(n−1)
2

= |H| · |Ka| and H ∩Ka = {I} .

Notation 2 Assuming that a ∈ L is fixed, denote Ka =
{

g1, g2, · · · , gn−1
2

}
where g1 =

I. Thus, each gi is a permutation on L and g1, g2, · · · , gn−1
2

lie in distinct cosets of the

normal subgroup (H, ◦) of (G, ◦). Also, ∀gi ∈ (Ka, ◦) define Fgi
: (H, ◦) → (H, ◦) to be the

permutation on the normal set H defined by ∀f ∈ H, Fgi
(f) = gi ◦ f ◦ g−1

i . Since (H, ◦) is

a normal subgroup of (G, ◦) we see that ∀gi ∈ Ka, Fgi
: (H, ◦) → (H, ◦) is an automorphism

on (H, ◦). Also, Lemma 18 is easy to prove.

Lemma 18 ∀gi, gj ∈ (Ka, ◦) , Fgi
◦ Fgj

= Fgi◦gj
.

14



Proof. For all f in H,
(
Fgi

◦ Fgj

)
(f) = gi◦

(
gj ◦ f ◦ g−1

j

)
◦g−1

i = (gi ◦ gj)◦f◦(gi ◦ gj)
−1 =

Fgi◦gj
(f) .

Note 4 Of course, ∀gi ∈ (Ka, ◦) , Fgi
(I) = I.

Lemma 19 ∀gi, gj ∈ (Ka, ◦) if gi 6= gj then Fgi
: (H, ◦) → (H, ◦) and Fgj

: (H, ◦) → (H, ◦)
are totally different on H\ {I}. That is, ∀f ∈ H\ {I} , Fgi

(f) 6= Fgj
(f) .

Proof. Suppose Fgi
(f) = Fgj

(f) for gi 6= gj and f ∈ H\ {I}. Then gi ◦ f ◦ g−1
i =

gj ◦ f ◦ g−1
j . Therefore,

(
g−1

j ◦ gi

)
◦ f = f ◦

(
g−1

j ◦ gi

)
.

Let g−1
j ◦ gi = gt. Now gt ∈ Ka\ {I} since g−1

j ◦ gi ∈ Ka and gi 6= gj.

Therefore, gt ◦f = f ◦gt which implies gt = f ◦gt ◦f−1. Now f ∈ H\ {I} implies f /∈ Ka.

Therefore, f (a) = b where a 6= b.

Now, gt (b) 6= b since gt ∈ Ka\ {I} and Kb ∩ (Ka\ {I}) = φ. See Fig. 4. Now gt = f ◦
gt ◦ f−1 implies that gt (b) = (f ◦ gt ◦ f−1) (b) = (f ◦ gt) (f−1 (b)) = (f ◦ gt) (a) = f(gt (a)) =

f (a) = b, which is a contradiction to gt (b) 6= b. This contradiction proves that the initial

assumption in this proof must be incorrect which proves the lemma.

Note that Axiom 1 was not used to prove Lemma 19.

Corollary 7 ∀gi, gj ∈ (Ka, ◦), if gi 6= gj then Fgi
6= Fgj

.

Proof. This is obvious since gi and gj are totally different on H\ {I} .

Lemma 20 From Lemma 18 and Corollary 7 we see that
({

Fgi
: Fgj

∈ Ka

}
, ◦

) ∼= (Ka, ◦)
by the isomorphism Fgi

◦ Fgj
= Fgi◦gj

.

Discussion 1 If (G, ◦) is a uniquely 2-transitive∗ group of permutations on L = {1, 2, · · · , n} , n ≥
3, and (H, ◦) = (Ga ∪ {I} , ◦) satisfies Axiom 1, then we now know the following about

(H, ◦). There must exist a group of automorphisms on (H, ◦) which we momentarily call

(A, ◦) =
({

a1, a2, · · · , an−1
2

}
, ◦

)
that satisfies the following conditions which we will later

call the Standard Hypothesis.

First, of course |A| = n−1
2

. Also, ∀ai, aj ∈ A, if ai 6= aj then ai and aj are totally different

on H\ {I}. That is, ∀f ∈ H\ {I} , ai (f) 6= aj (f) .

Also, of course, we know that |H| = n where n is odd and also |A| = n−1
2

satisfies n−1
2

is

odd. From the triple isomorphism (G, ◦) ∼=
(
G, ◦

) ∼= (DL, ·) that we discussed in Note 2, we
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know that all three of these groups must have a subgroup that is analogous to (H, ◦) and

that has properties analogous to the above.

We will soon drop to a lower level and use the notation (L, ·) instead of (H, ◦), where

L = {1, 2, . . . , n} is our original set of lines. We show that if the above statements about

(H, ◦) hold true for any group (L, ·) on L = {1, 2, · · · , n} , n ≥ 3, then we can use (L, ·) to

construct a group (DL, ·) on DL = {{i, j} : i 6= j, i, j ∈ L} such that (DL, ·) left (or right)

distributes over the n-star (DL, ∗) on L. However, in order to do this we need a little more

information which we give in Observation 2 and in Lemmas 21-23. Before we continue we

need to emphasize one thing. In the Main Problem, we are not trying to find all of the groups

(DL, ·) that left or right distribute over the n-stars (DL, ∗) on L. What we are trying to do

is find all of the different types of groups (up to isomorphism) that left (or right) distribute

over the n-stars (DL, ∗) on L = {1, 2, · · · , n}. The point is that two isomorphic groups can

act on (DL, ∗) in different ways.

Observation 2 Since H ◦Ka = G from Lemma 17 and since H ∩Ka = {I}, it is obvious

that each f ∈ G can be uniquely written as f = h◦g where h ∈ h, g ∈ Ka. Suppose f, f ∈ G

and f = h ◦ g, f = h ◦ g, h, h ∈ H, g, g ∈ Ka.

Now f ◦ f = (h ◦ g) ◦
(
h ◦ g

)
=

[
h ◦

(
g ◦ h ◦ g−1

)]
◦ [g ◦ g] =

[
h ◦ Fg

(
h
)]
◦ [g ◦ g] . That

is, (h ◦ g) ◦
(
h ◦ g

)
=

[
h ◦ Fg

(
h
)]
◦ [g ◦ g] where h ◦ Fg

(
h
)
∈ H and g ◦ g ∈ Ka.

If we write each f ∈ G as the ordered pair f = (h, g) , h ∈ H, g ∈ Ka, then (h, g)◦
(
h, g

)
=(

h ◦ Fg

(
h
)
, g ◦ g

)
where h ◦ Fg

(
h
)
∈ H, g ◦ g ∈ Ka.

Of course, Fg ◦ Fg = Fg◦g from Lemma 18. Therefore, instead of using ordered pairs

(h, g) , h ∈ H, g ∈ Ka, let us use the ordered pairs (h, Fg) , h ∈ H, g ∈ Ka where as always

Fg (f) = g ◦ f ◦ g−1 is an automorphism on (H, ◦) .

Also, let us define the operation ({(h, Fg) : h ∈ H, g ∈ Ka} , ·) by ∀ (h, Fg) ,
(
h, Fg

)
∈

H ×{Fg : g ∈ Ka} , (h, Fg) ·
(
h, Fg

)
=

(
h ◦ Fg

(
h
)
, Fg ◦ Fg

)
, where Fg ◦Fg = Fg◦g. Note that

F−1
g = Fg−1 .

The following Lemma 21 has an easy straight forward proof, and we also prove essentially

the same thing in Lemmas 31, 32.

Lemma 22 and Lemma 23 should then be almost obvious.

Of course, ({Fg : g ∈ Ka} , ◦) is a group of automorphisms on (H, ◦) and if g 6= g then

Fg and Fg are totally different on H\ {I} .

Lemma 21 ({(h, Fg) : h ∈ H, g ∈ Ka} , ·) is a group with identity (I, FI) and (h, Fg)
−1 =
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(Fg−1 (h−1) , Fg−1).

Proof. The easy proof is left to the reader.

Lemma 22 ({(h, Fg) : h ∈ H, g ∈ Ka} , ·) ∼= (G, ◦) .

The proof follows from the discussion in Observation 2.

Lemma 23 Since (DL, ·) ∼=
(
G, ◦

) ∼= (G, ◦) from Note 2, we see that the following Standard

Hypothesis gives necessary conditions that must be satisfied in order for a group (DL, ·) on DL

to exist such that (DL, ·) left-distributes over the n-star (DL, ∗) on L = {1, 2, · · · .n} , n ≥ 3, if

we also assume that (DL, ·) must satisfy the analogy of Axiom 1. From the triple isomorphism

(G, ◦) ∼=
(
G, ◦

) ∼= (DL, ·), Axiom 1 means that for the group (DL, ·) there exists a subgroup

(H, ·) of (DL, ·) of order |H| = n, and, of course, (H, ·) is a normal subgroup of (DL, ·) by

Lemma 11.

In the Standard Hypothesis we are changing the notation and calling (H, ·) = (L, ·) and

we are denoting (A, ◦) =
({

g1, g2, · · · , gn−1
2

}
, ◦

)
.

Standard Hypothesis The following structure exists. Also, we have reason for changing

the notation, which will soon become clear.

(a) L = {1, 2, · · · , n} , n ≥ 3.

(b) n = 4k + 3.

(c) ∃ a structure ((L, 1, ·) , (A, ◦)) on L having Properties 1-4.

(1) (L, 1, ·) is a group on L with identity 1. In section 11 we prove that (L, 1, ·) is an

Abelian p-group, but this is not needed now.

(2) (A, ◦) is a group of automorphisms on (L, 1, ·) where ◦ is composition of functions.

(3) |A| = n−1
2

and, of course, |L| = n.

(4) ∀g, g ∈ A if g 6= g then g and g are totally different on L\ {I}. This means that

∀x ∈ L\ {I} , g (x) 6= g (x) .
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Remark 1. Note that if ((L, 1, ·) , (A, ◦)) satisfies the Standard Hypothesis, we show

in Section 8-10 that a group (DL, ·) exists such that (1) (DL, ·) is isomorphic to the group

stated in Lemma 21 when ((L, ·), (A, ◦)) and ((H, ◦) , ({Fg : g ∈ Ka} , ◦)) correspond, and (2)

(DL, ·) left-distributes over the n-star (DL, ∗) on L = {l1, l2, · · · , ln} = {1, 2, · · · , n} , n ≥ 3.

We will state (1) very clearly in the last paragraph of Section 10. Note that in (1) we could

also write ((L, ·), (A, ◦)) ∼= ((H, ◦), ({Fg : g ∈ Ka} , ◦)), which means that the structures are

identical except that the entities have just been give different names.

Properties (1) and (2) mean that we are constructing (up to isomorphism) all of the

different types of groups (DL, ·) that left-distribute over the n-star (DL, ∗) .

In Section 8-10, ((L, 1, ·) , (A, ◦)) always denotes a structure that satisfies the Standard

Hypothesis, and we can think of L = {l1, l2, · · · .ln} or L = {1, 2, · · · , n} .

In Section 11, we prove additional facts about ((L, 1, ·) , (A, ◦)) such as (L, 1, ·) is Abelian,

but we do not need any of this now.

8 Stating the Main Theorem

Theorem 1 Suppose ((L, 1, ·) , (A, ◦)) satisfies the Standard Hypothesis where L = {1, 2, · · · , n} ,

n ≥ 3. Then there exists a group (DL, ·) that left-distributes over the n-star (DL, ∗). Also,

this group (DL, ·) is isomorphic to the group ({(h, Fg) : h ∈ H, g ∈ Ka} , ·) dealt with in

Lemma 21 where we are now using the notation ((L, ·) , (A, ◦)) in the place of ((H, ◦) , ({Fg : g ∈ Ka} , ◦)).
Of course, the group (DL,�) defined by a� b = b · a will right-distribute over (DL, ∗) .

In Section 9 we develop the algebraic machinery that is needed to prove Theorem 1.

Then in Section 10 we prove Theorem 1, and in the last paragraph of Section 10 we clearly

show that (DL, ·) ∼= ({(h, Fg) : h ∈ H, g ∈ Ka} , ·). Then in Section 11 in addition to proving

Axiom 1 we show that the isomorphic groups (H, ◦) ∼= (L, ·) must be Abelian p-groups with

| H |= |L| = pt where p is a prime of the form p = 4k + 3 and t is odd. We also show that

∀x ∈ L\ {1} , the order of x is p. However, we do not need this now.

9 Algebraic Machinery that we need

Lemma 24 If the structure ((L, 1, ·) , (A, ◦)), satisfies the Standard Hypothesis then for all

a ∈ L, a · a = a2 = 1 if and only if a = 1.
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Proof. Suppose a2 = 1, a 6= 1. Then ({1, a}, 1, ·) is a two-element subgroup of (L, 1, ·) .

This implies |L| is even which is impossible since |L| = 4k + 3

Lemma 25 In the structure ((L, 1, ·) , (A, ◦)) , ∀g ∈ A, g2 = g ◦ g = I if and only if g = I

where I is the identity permutation on L.

Proof. Suppose g 6= I and g ◦ g = I. Then ({g, I} , ◦) is a two element subgroup of

(A, ◦) . This implies 2| | A | which is impossible since |A| = n−1
2

= 2k + 1.

Lemma 26 In the structure ((L, 1, ·) , (A, ◦)) it is true that ∀g ∈ (A, ◦) ,∀x ∈ L\ {1} , g (x) 6=
x−1.

Proof. Suppose x ∈ L\ {1} and g (x) = x−1. First, suppose g = I, the identity

permutation on L. Then g (x) = x−1 implies x = x−1 which implies x2 = 1. However, by

Lemma 24, x2 = 1 is impossible when x 6= 1.

Second, suppose g 6= I, and g (x) = x−1 where x ∈ L\ {1} . Now g ◦ g ∈ (A, ◦) .

Also, (g ◦ g) (x) = g (g (x)) = g (x−1) = (g (x))−1 = (x−1)
−1

= x since g is an automor-

phism on (L, 1, ·) .

Now g ◦ g = g2 6= I by Lemma 25 since g 6= I.

Therefore, g2 6= I, g2 (x) = x and I (x) = x where x ∈ L\ {1}. However, this contradicts

condition c-4 of the Standard Hypothesis.

Definition 3 In the structure ((L, 1, ·) , (A, ◦)) ,∀x, y ∈ L, define the diameter of the set

{x, y} as D ({x, y}) = {xy−1, yx−1} .

Lemma 27 The following is true in ((L, 1, ·) , (A, ◦)).

(a) ∀x, y ∈ L, if x = y then D ({x, y}) = {1}. If x 6= y then D ({x, y}) = {xy−1, yx−1} is

a doubleton subset of L\ {1} .

(b) ∀x, y, x, y ∈ L, D ({x, y}) = D ({x, y}) or D ({x, y}) ∩D ({x, y}) = φ.

(c) Suppose, x, y, x, y ∈ L and D ({x, y}) = D ({x, y}). Then ∃ a unique t ∈ L such that

{x, y} · t = {x · t, y · t} = {x, y} .

19



Proof. (a) Suppose x 6= y and xy−1 = yx−1. This implies (xy−1) (xy−1) = (xy−1)
2

= 1

which implies xy−1 = 1 by Lemma 24. This is a contradiction since x 6= y.

(b) Now D ({x, y}) = {xy−1, yx−1} and D ({x, y}) = {xy−1, yx−1}. Suppose, D ({x, y})∩
D ({x, y}) 6= φ. Now, if xy−1 = xy−1 then yx−1 = yx−1. Also, if xy−1 = yx−1 then

yx−1 = xy−1. Likewise, if yx−1 = xy−1 then xy−1 = yx−1. Also, if yx−1 = yx−1 then

xy−1 = xy−1.

(c) We first prove that ∃ at least one t ∈ L such that {x · t, y · t} = {x, y}. Since

{xy−1, yx−1} = {xy−1, yx−1} by symmetry let us suppose xy−1 = xy−1. Therefore, x−1x =

y−1y = t−1. Therefore, x−1x = t−1, y−1y = t−1 which implies xt = x, yt = y. We now

show that t is unique. Therefore, suppose ∃t, t ∈ L, t 6= t, such that {xt, yt} =
{
xt, yt

}
.

Therefore,
{

xtt
−1

, ytt
−1

}
= {x, y}. Since tt

−1 6= 1 we must have, xtt
−1

= y and ytt
−1

= x.

Therefore, y−1x = tt−1 = tt
−1

. Therefore,
(
tt−1

) (
tt−1

)
=

(
tt−1

)2
= 1 which by Lemma 24

implies tt−1 = 1. This is a contradiction since t 6= t.

Lemma 28 The following is true in ((L, 1, ·) , (A, ◦)). Suppose i 6= j and i, j ∈ L are

arbitrary but fixed. Then D ({g (i) , g (j)}), as g ranges over g ∈ A, are pairwise disjoint

doubleton subsets of L\ {1}. Since |L|−1
2

= n−1
2

= |A| this implies that these doubleton sets

D ({g (i) , g (j)}) , g ∈ A, will partition L\ {1} .

Proof. First, we show that each D ({g (i) , g (j)}) , g ∈ A, is a doubleton subset of L\ {1}.
We know that ∀g ∈ A, g (i) 6= g (j) since g is a permutation on L since g : (L, 1, ·) → (L, 1, ·)
is an automorphism on (L, 1, ·). Therefore, by Lemma 27 (a) we know that D ({g (i) , g (j)})
is a doubleton subset of L\ {1} .

Next, suppose g 6= g, g, g ∈ A. We show that D ({g (i) , g (j)}) ∩ D ({g (i) , g (j)}) = φ.

Now,

D ({g (i) , g (j)}) =
{
g (i) · (g (j))−1, g (j) · (g (i))−1}

=
{
g (i) · g

(
j−1

)
, g (j) · g

(
i−1

)}
=

{
g

(
i · j−1

)
, g

(
j · i−1

)}
since g is an automorphism on (L, 1, ·) .

Likewise, D ({g (i) , g (j)}) = {g (i · j−1) , g (j · i−1)}. By Lemma 27(b) we show that

D ({g (i) , g (j)}) ∩ D ({g (i) , g (j)}) = φ by showing the following. First, we show that
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g (i · j−1) 6= g (i · j−1). Since i · j−1 6= 1 and g 6= g we know from property c-4 of the Stan-

dard Hypothesis that g (i · j−1) 6= g (i · j−1) . Second, we show that g (i · j−1) 6= g (j · i−1).

Therefore, suppose g (i · j−1) = g (j · i−1) .

Now j ·i−1 = (i · j−1)
−1

. Therefore, if we call i·j−1 = x we have x 6= 1 and g (x) = g (x−1).

Therefore, (g−1 ◦ g) (x) = x−1. However, since g−1◦g ∈ A and x 6= 1 this contradicts Lemma

26.

Definition 4 Using ((L, 1, ·) , (A, ◦)) , for each fixed x ∈ L and each fixed g ∈ A we define

the permutation f(x,g) on L by ∀t ∈ L, f(x,g) (t) = g (t) · x.

These permutations f(x,g), x ∈ L, g ∈ A, form a uniquely 2-transitive∗ group of permuta-

tions on L. However, we will instead deal with f(x,g) by using the definitions given in Sections

3-5.

Also, it is important to note that we could just as well have defined f(x,g) = x · g (t) and

this definitions is more analogous to the definitions in Section 7. However, since we prove

in Section 11 that (L, 1, ·) is an Abelian group anyway, then x · g (t) = g (t) · x and we can

see no compelling reason to change it.

For f(x,g) = g (t) · x, we note that x ∈ L, g ∈ A gives a total of |L| · |A| = n(n−1)
2

permutations on L. Definition 4 forms the common hypothesis for Lemmas 29-34.

Lemma 29 ∀x ∈ L, ∀g ∈ A, f(x,g) (t) = g (t) · x is a permutation on L.

Proof. Obvious.

Lemma 30 All of the n(n−1)
2

permutations f(x,g) (t) = g (t)·x, where x ∈ L, g ∈ A are distinct.

Proof. Suppose (x, g) 6= (x, g). First, suppose x 6= x. Now f(x,g) (1) = g (1)·x = 1·x = x.

Also, f(x,g) (1) = g (1) · x = x. Therefore, f(x,g) (1) 6= f(x,g) (1) which implies f(x,g) 6= f(x,g).

Second, suppose x = x, g 6= g. Also suppose ∀t ∈ L, f(x,g) (t) = f(x,g) (t) . Then ∀t ∈
L, g (t) ·x = g (t) ·x which implies ∀t ∈ L, g (t) = g (t). Since g 6= g this contradicts condition

c− 4 of the Standard Hypothesis.

Lemma 31 f(x,g) ◦ f(x,g) = f(g(x)·x,g◦g) where ◦ is the composition of functions.

Note 5 Compare this to the equation (h, Fg) ·
(
h, Fg

)
=

(
h ◦ Fg

(
h
)
, Fg ◦ Fg

)
given in

Observation 2. Also, we note that the operation g ◦ g is carried out in (A, ◦) and g (x) · x is

carried out in (L, 1, ·) .
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Lemma 31 implies that ◦ is a closed operator on
{
f(x,g) : x ∈ L, g ∈ A

}
.

Proof.

(
f(x,g) ◦ f(x,g)

)
(t) = f(x,g)

(
f(x,g) (t)

)
= f(x,g)(g (t) · x)

= g [g (t) · x] · x

= (g ◦ g) (t) · (g (x) · x)

= f(g(x)·x,g◦g) (t) .�

Lemma 32
({

f(x.g) : x ∈ L, g ∈ A
}

, ◦
)

: is a group where ◦ is the composition of functions.

See Lemma 21 which has the same proof.

Proof. (1) From Lemma 31, ◦ is a closed operator on
{
f(x.g) : x ∈ L, g ∈ A

}
.

(2) We prove f(1,I) is the identity permutation on L where 1 is the identify of (L, 1, ·) and

I ∈ A is the identity permutation on L.

Now f(1,I) (t) = I (t) · 1 = t · 1 = t.

Therefore, f(1,I) is the identity permutation on L.

(3) Of course, the composition of functions is always associative.

(4) We show that f(x,g) and f(g−1(x−1),g−1) are inverse permutations on L where g−1 is the

inverse permutation of g. See Lemma 21 noting that Fg−1 = (Fg)
−1 .

Now, f(x,g) ◦ f(g−1(x−1),g−1) = f(g[g−1(x−1)]·x,g◦g−1) = f(x−1·x,I) = f(1,I).

Using the permutations f(x,g) (t) = g (t) · x on L = {l1, l2, l3, · · · , ln} = {1, 2, · · · , n}, as

in section 3-5, let f (x,g) = f (x,g)({i, j}) =
{
f(x,g) (i) , f(x,g) (j)

}
= {g (i) · x, g (j) · x} be the

corresponding line preserving permutations on

DL = {{li, lj} : li 6= lj, li, lj ∈ L} = {{i, j} : i 6= j, i, j ∈ L}. From Lemma 32 and from the

isomorphism f ◦ h = f ◦ h of Lemmas 1,2 where f 6= h implies f 6= h, we know that these

line preserving permutations f (x,g) ({i, j}) on DL where x ∈ L, g ∈ A form a group under

composition of functions.

Lemma 33 The groups
({

f(x,g) : x ∈ L, g ∈ A
}

.◦
)

and
({

f (x,g) : x ∈ L, g ∈ A
}

, ◦
)

are iso-

morphic.

Proof. Follows from Lemmas 1,2 since f ◦ h = f ◦ h and f 6= h implies f 6= h.
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Lemma 34 The group
({

f (x,g) : x ∈ L, g ∈ A
}

, ◦
)

of line preserving permutations on DL is

uniquely transitive on DL. Therefore, from Lemma 5, the group
({

f(x,g) : x ∈ L, g ∈ A
}

, ◦
)

of permutations on L is uniquely 2-transitive∗ on L.

Proof. We must show that ∀ {i, j} ,
{
i, j

}
∈ DL,∃ a unique (x, g) with x ∈ L, g ∈ A

such that f (x,g) ({i, j}) =
{
i, j

}
. That is, {g (i) · x, g (j) · x} =

{
i, j

}
. Now D

({
i, j

})
is

a doubleton subset of L\ {1} by Lemma 27-a since i 6= j. Also, D ({g (i) · x, g (j) · x}) =

D ({g (i) , g (j)}). Therefore, a necessary condition on g is that D ({g (i) , g (j)}) = D
({

i, j
})

.

Since i 6= j, from Lemma 28, the sets D ({g (i) , g (j)}), g ∈ A, are pairwise disjoint doubleton

sets that partition L\ {1}. Also, from Lemma 27-b we know that ∀g ∈ A, D ({g (i) , g (j)})∩
D

({
i, j

})
= φ or D ({g (i) , g (j)}) = D

({
i, j

})
. Therefore, it follows that ∃ a unique g ∈ A

such that D ({g (i) , g (j)}) = D
({

i, j
})

. Using this unique g ∈ A, from Lemma 27-c ∃ a

unique x ∈ L such that {g (i) , g (j)} · x = {g (i) · x, g (j) · x} =
{
i, j

}
.

10 Constructing the group (DL, ·) of Theorem 1.

Proof of Theorem 1 Calling our collection of n lines L = {l1, l2, · · · , ln} = {1, 2, · · · , n},
we use the machinery developed in Section 9 to construct a group (DL, ·) that left-distributes

over the n-star (DL, ∗) when ((L, 1, ·) , (A, ◦)) satisfies the Standard Hypothesis. We know

that ∀x ∈ L, ∀g ∈ A, the permutation f (x,g) ({i, j}) = {g (i) · x, g (j) · x} on DL is a similarity

mapping on the n-star (DL, ∗) since it is a line preserving permutation on (DL.∗). Also, from

Lemma 34, this collection of similarity mappings on (DL, ∗) is a uniquely transitive group

of permutations on DL under composition of functions.

We are now in a position to use Theorem 3, [5] to construct a group (DL, ·) that left-

distributes over the n-star (DL, ∗). We have summarized this construction in the second

paragraph of the introduction.

First, we must arbitrarily choose and then fix an element of DL to be the identity of

(DL, ·). Let {1, θ} be the identity where 1 ∈ L is the identity of (L, 1, ·) and θ ∈ L\ {1} is

arbitrarily chosen and then fixed. In the notation of Theorem 3, [5] that we are using in

the Introduction, we have S = DL and
(
G, ◦

)
=

({
f (x,g) : x ∈ L, g ∈ A

}
, ◦

)
. Since

(
G, ◦

)
is

uniquely transitive on S = DL, we know that ∀ {i, j} ∈ DL, ∃ a unique (x, g) with x ∈ L

and g ∈ A such that f (x,g) ({1, θ}) = {g (1) · x, g (θ) · x} ≡ {x, g (θ) · x} = {i, j}. Therefore,

let us write each {i, j} ∈ DL as {i, j} = {x, g (θ) · x} = (x, g) where x ∈ L, g ∈ A. This gives
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a 1-1 correspondence {i, j} ↔ (x, g) where {i, j} ∈ DL and x ∈ L, g ∈ A. If we write each

{i, j} ∈ DL in this unique way, then G is automatically indexed as required in Theorem 3,

b, [5] and which we have stated in paragraph 2 of the Introduction. This is because

Arthur, the next line does not make sense. Is there an extra = sign? What follows does

not make logical sense to me either.

∀ {i, j} = {x, g (θ) · x} = (x, g) ∈ S = DL, f (x,g) ({1, θ})

= {g (1) · x, g (θ) · x} = {x, g (θ) · x} = (x, g) .

The group (DL, ·) with identity {1, θ} = {1, I (θ) · 1} = (1, I) that left-distributes over

the n-star (DL, ∗) is now defined in Theorem 3, [5] and also stated in paragraph 2 of the

Introduction as follows.

∀ {x, g (θ) · x} = (x, g) , {x, g (θ) · x}

= (x, g) ∈ S = DL, {x, g (θ) · x} · {x, g (θ) · x}

= (x, g) · (x, g) = f (x,g) ({x, g (θ) · x})

= {g (x) · x, [g (g (θ) · x)] · x}

= {(g (x) · x) , (g ◦ g) (θ) · (g (x) · x)}

= (g (x) · x, g ◦ g) where

g ◦ g ∈ A and g (x) · x ∈ L.

Note that we are also calling this (x, g) · (x, g) = (g (x) · x, g ◦ g) .

Compare this to Lemma 31. In section 11 we prove that (H, ◦) ∼= (L.·) is an Abelian

group. Therefore the claim that we made in Remark 1 and in Theorem 1 that (DL, ·) ∼=
({(h, Fg) : h ∈ H, g ∈ Ka} , ·) when ((L, ·) , (A, ◦)) and ((H, ◦), ({Fg : g ∈ Ka} , ◦)) correspond,

where ({(h, Fg) : h ∈ H, g ∈ Ka}, ·) is the group we dealt with in Lemma 21, should now be

clear.

11 Proving Axiom 1 and Other Properties of (H, ◦)

We will now use different techniques to prove Axiom 1 and also to derive other properties of

(H, ◦) .
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We begin by summarizing the ideas from Section 6 that we will use. In Section 6, (G, ◦)
is a uniquely 2-transitive∗ group of permutations on L = {1, 2, · · · , n} , n ≥ 3.

From Lemma 4, |G| = n(n−1)
2

and from Corollary 4, n is odd and n−1
2

is odd. In Corollary

5, we defined ∀a ∈ L, (Ka, ◦) = ({g ∈ G : g (a) = a} , ◦) to be the stabilizer subgroup of a.

Also, see Fig. 4. From Corollary 5, we know that ∀a ∈ L, |Ka| = n−1
2

.

We defined H = Ga ∪ {I} in Applications 1 and we showed in Lemma 11 that H is

a normal subset of (G, ◦). This means that ∀g ∈ G, g−1 ◦ h ◦ g = H. We also showed in

Applications 1 that |H| = n and ∀f ∈ H\ {I}, order (f) ≥ 2 and order (f) |n.

Also, ∀f ∈ G\H, order (f) ≥ 2 and order (f) |n−1
2

. Of course, order (I) = 1.

In section 7 we gave Axiom 1 which stated that (H, ◦) = (Ga ∪ {I} , ◦) is a subgroup of

(G, ◦) and, therefore, (H, ◦) is a normal subgroup of (G, ◦) .

We now prove Axiom 1, and for convenience we use the notation (G, I, ◦) = (G, 1, ·)
interchangeably. Definitions 5, 6 and Lemmas 35-38 are standard.

Lemma 35 Suppose (G, 1, ·) is any finite group and suppose x, y ∈ G satisfy (1) and (2).

(1). xy = yx. (2) order (x) and order (y) are relatively prime. Then order (x · y) = order

(x) · order (y) .

Definition 5 Suppose (G, 1, ·) is any finite group. ∀a, b ∈ G, we say that a and b are

conjugates (which we denote by a ∼ b) if and only if ∃x ∈ G such that b = x−1ax.

Observe that if a ∼ b then order (a) = order (b) .

Lemma 36 (G,∼) is an equivalence relation on G and partitions G into G = {1} ∪ S1 ∪
S2 ∪ · · · ∪ Sk where ∀i ∈ {1, 2, · · · , k} ,∀a ∈ Si,∀x ∈ G, a ∼ x is true if and only if x ∈ Si.

Also, 1 ∼ x is true if and only if x = 1.

Definition 6 Suppose (G, 1, ·) is any finite group. ∀a ∈ G, define Ca = {x ∈ G : ax = xa}.
Thus, Ca consists of those elements x of G that commute with a.

Lemma 37 ∀a ∈ G, (Ca, ·) is a subgroup of (G, 1, ·) .

Lemma 38 ∀a ∈ G define Sa = {x ∈ G : a ∼ x}. Then |Sa| = |G|
|Ca| .

Proof. For all x, y ∈ G, x−1ax = y−1ay is true if and only if yx−1 ∈ Ca which is true if and

only if x, y lie in the same right coset of Ca. The lemma follows from this.
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Corollary 8 ∀a, b ∈ G, if a ∼ b then obviously Sa = Sb is true and this implies that

|Sa| = |Sb| = |G|
|Ca| = |G|

|Cb|
. Therefore, |Ca| = |Cb| is true.

Lemma 39 (G, I, ◦) = (G, 1, ·) is a uniquely 2-transitive∗ group of permutations on L =

{1, 2, · · · , n}. As always H = Ga∪{I} = Ga∪{1}. Then ∀x ∈ H\ {1} ,∀y ∈ G\H, xy 6= yx.

Proof. Suppose xy = yx. From section 6, order (x) ≥ 2 and order (x) |n. Also, order

(y) ≥ 2 and order (y) |n−1
2

. Since n and n−1
2

are relatively prime we know that order (x) and

order (y) are relatively prime. Therefore, from Lemma 35, order (x · y) = order (x) · order

(y) . From section 6, we know that order (xy) |n or order (xy) |n−1
2

. But this is impossible

since order (x) does not divide n−1
2

and order (y) does not divide n. Therefore, xy = yx is

impossible.

Lemma 40 (G, I, ◦) = (G, 1, ·) is a uniquely 2-transitive∗ group of permutations on L =

{1, 2, · · · , n} .

As always, H = Ga ∪{I} = Ga ∪{1}. Suppose ∀x, y ∈ H, xy = yx. Then (H, ◦) = (H, ·)
is a subgroup of (G, ◦) = (G, ·) .

Proof. Of course, I = 1 ∈ H. Also, ∀x ∈ H, order (x) = order (x−1) which implies that

x−1 ∈ H. We now show that (H, ·) = (H, ◦) is a closed operator on H.

Therefore, suppose x, y ∈ H and xy ∈ G\H. Of course, this implies that x ∈ H\ {1}
and y ∈ H\ {1}. Now if xy ∈ G\H and x ∈ H\ {1}, then from Lemma 39 we know that

(xy) · x 6= x · (xy). But this is a contradiction since xy = yx implies that (xy) · x = x · (xy) .

Therefore, x, y ∈ H and x · y ∈ G\H is impossible. Therefore, (H, ◦) = (H, ·) is a closed

operation on H and we know that (H, ◦) = (H, ·) must be a subgroup of (G, ◦) = (G, ·) .

Lemma 41 (G, I, ◦) = (G, 1, ·) is a uniquely 2-transitive∗ group of permutations on L =

{1, 2, · · · , n}. Also, H = Ga ∪ {I} = Ga ∪ {1}. ∀a ∈ H\ {I} = H\{1} let Sa =

{x ∈ G : a ∼ x} where (G,∼) is defined in Definitions 5. Now, ∀a ∈ H\ {1} , Sa ⊆ H\ {1}
is true since ∀x ∈ Sa, order (x) = order (a). Sa ⊆ H\{1} is also true since H\ {1} = Ga is

a normal subset of (G, ◦) = (G, ·). Also, from Lemma 38, |Sa| = |G|
|Ca| is true. We now prove

that |Ca| and n−1
2

are relatively, prime.

Proof. Suppose |Ca| and n−1
2

are not relatively price. Therefore, ∃ a prime p such that

p| |Ca| and p|n−1
2

.
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Of course, p is odd since n−1
2

is odd. Since (Ca, ◦) = (Ca, ·) is a group and p| |Ca| we

know by the Syloe theorems that ∃x ∈ Ca such that order (x) = p. However, since p | n−1
2

and since order (x) ≥ 2, we know from section 6 that x ∈ G\H.

Now by the definition Ca = {x ∈ G : ax = xa} we know that x ∈ Ca implies that ax =

xa. But since a ∈ H\ {1} and x ∈ G\H we know from Lemma 39 that ax 6= xa. This

contradiction proves that our initial assumption is false which proves that |Ca| and n−1
2

must

be relatively prime.

Lemma 42 (G, I, ◦) = (G, 1, ·) is a uniquely 2-transitive∗ group of permutations on L =

{1, 2, · · · , n} , n ≥ 3. As always, H = Ga∪{I} . Then ∀a ∈ H\ {I} = H\ {1} , Ca∩(G\H) =

φ which implies that Ca ⊆ H.

Proof. Suppose x ∈ G\H. Since a ∈ H\ {I} and x ∈ G\H, from Lemma 39 ax 6= xa.

Therefore, x /∈ Ca.

Corollary 9 (G, I, ◦) = (G, 1, ·) is a uniquely 2-transitive∗ group of permutations on L =

{1, 2, · · · , n} , n ≥ 3. Also, H = Ga ∪ {I} . Then ∀x, y ∈ H, xy = yx.

Proof. Suppose a ∈ H\ {1}. From Lemma 38, |Sa| = |G|
|Ca| =

n(n−1)
2

|Ca| . Since from Lemma

41 |Ca| and n−1
2

are relatively prime, we know that |Ca| divides n and |Sa| =
[

n
|Ca|

]
·
[

n−1
2

]
.

Now Sa ⊆ H\ {1} and |H\ {1}| = n − 1. Therefore, |Sa| ≤ n − 1. From section 6,

|H| = n is odd. Therefore, if |Ca| 6= n then n
|Ca| ≥ 3 and this implies |Sa| ≥ 3

2
(n− 1) .

However, n−1 ≥ |Sa| ≥ 3
2
(n− 1) is impossible. Therefore, |Ca| = n = |H|. Therefore, since

from Lemma 42, Ca ⊆ H when a ∈ H\ {1}, we know that ∀a ∈ H\ {1} , Ca = H. Since 1 = I

commutes with all x ∈ H and since a∈ H\ {1} is arbitrary, we see that ∀x, y ∈ H, xy = yx.

Lemma 43 (Axiom 1) (G, I, ◦) = (G, 1, ·) is a uniquely 2-transitive∗ group of permutations

on L = {1, 2, · · · , n} , n ≥ 3. As always, H = Ga ∪ {I}. From Corollary 9 and Lemma 40,

we know that (H, I, ◦) = (H, 1, ·) is an Abelian subgroup of (G, ◦) = (G, ·) .

We now prove that (H, I, ◦) = (H, 1, ·) is not only an Abelian group but it is also an

Abelian p-group of order |H| = pt where p is a prime of the form p = 4k + 3 and t is odd.

Also, we prove that ∀x ∈ H\{I}, order (x) = p.

In order to do this, we use the following definitions from Notation 2 of section 7.

As always, (G, I, ◦) = (G, 1, ·) is a uniquely 2-transitive∗ group of permutations on L =

{1, 2, · · · , n} , n ≥ 3.
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For all gi ∈ (Ka, ◦) , Fgi
: (H, ◦) → (H, ◦) was an automorphism on the normal group

(H, ◦) defined by ∀f ∈ H, Fgi
(f) = gi ◦ f ◦ g−1

i .

Lemma 19 stated that ∀gi, gj ∈ (Ka, ◦), if gi 6= gj then Fgi
: (H, ◦) → (H, ◦) and

Fgj
: (H, ◦) → (H, ◦) are totally different on H\ {I}. Also, ∀f ∈ H,∀gi ∈ (Ka, ◦), it is

obvious that order (f) = order (Fgi
(f)) since Fgi

is an automorphism on (H, ◦) .

Also, of course ∀gi ∈ (Ka, ◦) , Fgi
(I) = I. Suppose that f ∈ H\ {I}. Since (1) - (4) are

true, then Lemma 44 is obvious.

(1) Fgi
(f) 6= Fgj

(f) when gi 6= gj and gi, gj ∈ (Ka, ◦) .

(2) Fgi
(f) ∈ H\ {I} , Fgj

(f) ∈ H\ {I} .

(3) Order (f) = order (Fgi
(f)) = order

(
Fgj

(f)
)
.

(4) |Ka| = n−1
2

and |H\ {I}| = n− 1.

Lemma 44 (G, I, ◦) = (G, I, ·) is a uniquely 2-transitive∗ group of permutations on L =

{1, 2, · · · , n} , n ≥ 3. Also, H = Ga ∪ {I} . Suppose f ∈ H\ {I} and define

Of = {g ∈ H\ {I} : order (g) = order (f)} .

Then
∣∣Of

∣∣ ≥ n−1
2

.

Applications 2 Lemma 44 implies that the elements f ∈ H\ {I} can have at most 2

different orders. Now (H, I, ◦) = (H, 1, ·) is a normal Abelian subgroup of (G, ◦) = (G, ·).
Also, |H| = n and n is odd.

Suppose p, q are distinct odd primes and p|n, q|n. Since p| |H| , q| |H| we know that ∃f, g ∈
H\ {I} such that order (f) = p and order (g) = q. Therefore, by Lemma 35, order (f ◦ g) =

p · q. Also, f ◦ g ∈ H\ {I} since (H, ◦) is a group. Therefore, since p, q, p · q are distinct, we

have a contradiction to the above statement that the elements of H\ {I} can have at most

two different orders. This contradiction implies that (H, I, ◦) = (H, 1, ·) must be a p-group.

Since from Corollary 4 we know that n = 4k + 3 we see that |H| = pt where p is a prime of

the form p = 4k + 3 and t is odd. We now show that if |H| = pt then ∀f ∈ H\ {I}, order

(f) = p.

Lemma 45 (G, I, ◦) = (G, I, ·) is a uniquely 2-transitive∗ group of permutations on L =

{1, 2, · · · , n} , n ≥ 3. Of course, |H| = n = pt where p is a prime of the form p = 4k + 3 and

t is odd. We prove that ∀x ∈ H\ {I}, order (x) = p.

28



Proof. Suppose ∃t ∈ H\ {I} such that order (t) 6= p. Of course, since (H, ◦) is a p-

group, we know that ∃x ∈ H\ {I} such that order (x) = p and ∃y ∈ H\ {I} such that order

(y) = p2. Of course from Applications 2 we know that ∀t ∈ H\ {I}, order (t) = p or order

(t) = p2.

From Applications 2 and Lemma 44, we can partition H into H = {I} ∪ Op ∪ Op2 such

that

(1)
∣∣Op

∣∣ =
∣∣Op2

∣∣ = n−1
2

= pt−1
2

,

(2) ∀x ∈ Op, order (x) = p and

(3) ∀x ∈ Op2 , order (x) = p2.

Suppose x ∈ Op2 and as always let (g (x) , ◦) be the subgroup of (H, ◦) that is generated

by x. Now (1) |g (x)| = p2, (2) exactly p (p− 1) elements of (g (x) , ◦) have an order of p2,

(3) exactly p − 1 elements of (g (x) , ◦) have an order of p and (4) one element (namely I)

has order 1. For all x ∈ Op2 define g (x) = {y ∈ g (x) : order (y) = p2}. We easily see that

∀x ∈ Op2 ,∀y ∈ g (x) it is true that y ∈ Op2 , g(x) = g(y) and g (x) = g (y) .

Indeed, ∀x, y ∈ Op2 , let us define x ≈ y if and only if y ∈ g (x). It is easy to prove that(
Op2 ,≈

)
is an equivalence relation on Op2 . Therefore,

(
Op2 ,≈

)
induces a partition of Op2

which we call Op2 = A1 ∪ A2 ∪ · · · ∪ Ar such that ∀i ∈ {1, 2, · · · , r} , |Ai| = p (p− 1). This

implies that
∣∣Op2

∣∣ = r ·p (p− 1) which is obviously impossible since
∣∣Op2

∣∣ = pt−1
2

. Therefore,

the initial assumption in the proof must be wrong, and this proves Lemma 45.

12 Applications

1. Suppose p is a prime of the form p = 4k + 1. Then by Corollary 1 there does not

exist a group (DL, ·) that left (or right) distributes over the p-star (DL, ∗) when L =

{1, 2, 3, · · · , p}.

2. Suppose p is a prime of the form p = 4k + 3. We show that there does exist a group

(DL, ·) that left-distributes over the p-star (DL, ∗) when L = {0, 1, 2, · · · , p− 1}. Note

that we are calling L = {0, 1, 2, · · · , p− 1} and not L = {1, 2, · · · , p}. As suggested by

the theory, to prove this we use the mod p field Zp = ({0, 1, 2, · · · , p− 1} , 0, 1, +,−, ·,÷) .

Also, by that theory, we define (L, 0, +) = ({0, 1, 2, 3, · · · , p− 1} , 0, +) where (L, 0, +)

is the mod p cyclic group on {0, 1, 2, · · · , p− 1}, using mod p addition (+). Note that
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we are using the notation (L, 0, +) in the place of (L, 1, ·). By elementary number

theory, we also know that the mod p Abelian group ({1, 2, · · · , p− 1} , 1, ·), using mod

p multiplication (·), is a cyclic group.

Therefore, since 2|p − 1 we know that ({1, 2, · · · , p− 1} , 1, ·) has a cyclic subgroup

containing p−1
2

elements.

This implies that ∃m ∈ {1, 2, · · · , p− 1} such that m
p−1
2 = 1 and the elements

of the set
{

m, m2, m3, · · · , m
p−1
2 = 1

}
⊆ {1, 2, · · · , p− 1} are all distinct. Define

((L, 0, +) , (A, ◦)) as follows. First, of course, (L, 0, +) = ({0, 1, 2, · · · , p− 1} , 0, +).

Also, let (A, ◦) =
({

g1, g2, · · · , g p−1
2

}
, ◦

)
where each automorphism gi : (L, 0, +) →

(L, 0, +) is defined by ∀t ∈ L, gi (t) = mi · t and where mi · t is carried out in the field

Zp.

From the properties of the mod p field Zp, it is straightforward to prove that ((L, 0, +) , (A, ◦))
satisfies the conditions of the Standard Hypothesis. Therefore, the construction in

Section 10 produces a group (DL, ·) that left-distributes over the p-star (DL, ∗) when

p = 4k+3. Of course, (DL,�) defined by a�b = b ·a will right-distribute over (DL, ∗) .

3. Let Z3 = ({0, 1, 2} , 0, 1, +,−, ·,÷) denote the mod 3 field on the set {0, 1, 2}. We

consider the n-star where n = 3k, where k ∈ {3, 5, 7, 9, · · · } and 3k−1
2

= p and p is an

odd prime.

Let
(
V k

3 , 0, +
)

denote the k-dimensional vector space in this field Z3 that consists of

all k × 1 column vectors whose entries are in Z3.

Define (L, 1, ·) =
(
V k

3 , 0, +
)

where |L| =
∣∣V k

3

∣∣ = 3k.

The group of all automorphisms on (V k
3 , 0, +) has (3k−1)(3k−3)(3k−9)(3k−27) · · · (3k−

3k−1) elements. Since 3k − 1 = p, by the Syloe theorems it is, it is reasonably easy

to show that there exists a group (A, ◦) of automorphisms on
(
V k

3 , 0, +
)

such that

the structure ((L, 1, ·) , (A, ◦)) =
((

V k
3 , 0, +

)
, (A, ◦)

)
satisfies the conditions of the

Standard Hypothesis when L = V k
3 , 1 = 0 and · = +. Therefore, there exists a group

(DL.·) that left-distributes over the n− star (DL, ∗) when n = 3k and 3k−1
2

= p where

p is an odd prime. Also, (DL,�) where a� b = b · a right-distributes over (DL, ∗) .
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13 Discussion

If ((L, 1, ·) , (A, ◦)) satisfies the conditions of the Standard Hypothesis, then |L| = pk where

p is a prime of the form p = 4k + 3 and k is odd. Also, (L, 1, ·) is Abelian and ∀x ∈ L\ {1},
order x = p. This follows from (L, 1, ·) ∼= (H, I, ◦) and it can also be proved directly from

the properties of ((L, 1, ·), (A, ◦)) itself.

From group theory, we easily see that (L, 1, ·) must be isomorphic to the k-dimensional

vector space in the field Zp that consists of all k × 1 column vectors whose entries are in

Zp. We denote this vector space by (L, 1, ·) ∼=
(
V k

p , 0, +
)
. Also, of course, all automorphisms

gi :
(
V k

p , 0, +
)
→

(
V k

p , 0, +
)

can be represented by the linear transformation MV where M is

any k×k non-singular matrix in the field Zp and V is any k×k column vector in
(
V k

p , 0, +
)
.

The problem that we have not been able to completely solve is to find all groups (A, ◦) =

({M1, M2, . . . ,M(pk−1)/2}, ·) where Mi ◦ Mj = Mi · Mj(matrix multiplication) that satisfy

conditions c-2,c-3 and c-4, of the Standard Hypothesis. Note that ∀i 6= j, MiV is totally

different from MjV on V k
p \{0} if and only if Mi −Mj is non-singular.

Also, it seems plausible to us that a deeper analysis using the same ideas in this paper

would find not only all of the types of groups that left (or right) distribute over the n-stars

but also find all of these groups as well.
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Fig. 2 A 7-star.
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Fig. 3 A line preserving permutation.
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