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1 Abstract

The problem of finding a path in a network each edge of which is at least as long as the

previous edge has attracted some attention in recent years. For example, problem 10 of the

2008 American Invitational Mathematics Exam asked a variation of this problem, namely to

find the number of paths of maximal length in the 4× 4 rectangular grid of dots such that

the edge length strictly increases from beginning to end. See [2]. Also, see [1].

A collection {a1, a2, a3, · · · , an} of n ≥ 2 distinct points in the plane is said to be mono-

tone if a1, a2, · · · , an can be ordered in some way ai1, ai2, · · · , ain such that the sequence of

consecutive distances D (ai1, ai2) , D (ai2, ai3) , · · · , D
(
ain−1 , ain

)
is non-decreasing. That is,

D (ai1, ai2) ≤ D (ai2, ai3) ≤ · · · ≤ D
(
ain−1 , ain

)
.

In this note, we show that n ≥ 2 distinct points in the plane is always monotone if and

only if n = 2, 3.

We also discuss the same problem for the general abstract graph where the
(
n
2

)
edges of a

complete undirected graph on n ≥ 2 vertices are assigned arbitrary real numbers. We show

that this abstract graph can always be monotonically arranged for a binary graph where we

assign just two different real numbers d,D, d < D, to the
(
n
2

)
edges. We then generalize this

binary theorem in a very primitive way to give necessary and sufficient conditions so that

any given abstract graph is monotone. The ultimate goal is to create a theorem analogous

to Hall’s marriage theorem that gives a more reasonable solution to this problem. We then
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generalize our results further. This problem was suggested to us by Patrick Vennebush. At

the end we give an open ended problem that can be dealt with using generalizations of the

ideas in this paper. Key words: binary, trinary, directed, undirected, and complete graphs;

Hall’s Marriage Theorem. MSC: 05C22, 05C38.

2 Introduction

Notation 1 If a, b are points in the plane, then D (a, b) = D (b, a) denotes the distance

between a, b.

Definition 1 Suppose {a1, a2, · · · , an} , n ≥ 2, is a collection of n distinct points in the

plane. A sequence ai1, ai2, · · · , ain where {a1, a2, · · · , an} = {ai1, ai2, · · · , ain} is said to

be a monotone path for a1, a2, · · · , an if D (ai1, ai2) ≤ D (ai2, ai3) ≤ D (ai3, ai4) ≤ · · · ≤
D

(
ain−1 , ain

)
.

Definition 2 A collection {a1, a2, · · · , an} of n ≥ 2 distinct points in the plane is said to

be monotone if there exists a monotone path ai1, ai2, · · · , ain for {a1, a2, · · · , an} .
If no monotone path exists for {a1, a2, · · · , an}, we say that a1, a2, · · · , an is not monotone.

In this note, we show that n ≥ 3 distinct points a1, a2, · · · , an in the plane is always

monotone if and only if n = 3.

In Section 6, we consider the same problem for the abstract graph where the
(
n
2

)
edges of

a complete undirected graph on n ≥ 2 vertices are assigned arbitrary real numbers. We show

that this abstract graph can always be monotonically arranged for a binary graph where we

assign just two different real numbers d,D, d < D, to the
(
n
2

)
edges.

We than generalize this binary theorem in an obvious and primitive way to give necessary

and sufficient conditions so that any given abstract graph is monotone. The ultimate goal

is to create a theorem analogous to Hall’s marriage theorem that gives a more reasonable

solution to this problem. In Section 8, we study more general derived graphs. In Section 9

we study trinary graphs which are undirected graphs where each edge is assigned 0 or 1 or

2. We generalize the plane work by showing that a trinary graph on n = 4 vertices or n ≥ 6

vertices is not always monotone.

We have also shown that a trinary graph on n = 5 vertices is always monotone, and we

give the solution in Section 10. In Section 11, we show that a graph on n = 5 vertices is not

always monotone if we assign 0 or 1 or 2 or 3 to each of the
(
5
2

)
= 10 edges.
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3 Cases 3,4,5

Lemma 1 Any three distinct points a1, a2, a3 in the plane is monotone.

Proof. This is obvious.

Note 1 We note that n distinct points a1 < a2 < a3 < · · · < an on a straight line

is always monotone. To see this, consider a1 < a2 < a3 < · · · < a2n+1 and the ordering

an+1, an+2, an, an+3, an−1, an+4, an−2, an+5, an−3, · · · , a2n+1, a1.

Also, consider a1 < a2 < · · · < a2n and the ordering an, an+1, an−1, an+2, an−2, an+3, an−3, · · · , a2n.
Lemma 2 There exists a nonmonotonal collection a1, a2, a3, a4 of 4 distinct points in the

plane.

Proof. Consider the rectangle a1 = (0, 0) , a2 = (1, 0) , a3 = (0, 10) , a4 = (1, 10) .

We show that a1, a2, a3, a4 is nonmonotonal.

Now each distance D (ai, aj) , i ̸= j must be 1 or 10 or
√
101 where 1 < 10 <

√
101.

Suppose ai1, ai2, ai3, ai4 is a monotone path for a1, a2, a3, a4. Now each distance 1, 10,
√
101

can be used at most one time in ai1, ai2, ai3, ai4 since the adjacent distances in the graph are

unequal. Therefore, D (ai1, ai2) = 1, D (ai2, ai3) = 10, D (ai3, ai4) =
√
101 and this is clearly

impossible.

Note 2 The rectangle in this proof is extended to prove Lemmas 5, 6 and Lemmas 9, 10.

Lemma 3 There exists a nonmonotonal collection a1, a2, a3, a4, a5 as of 5 distinct points

in the plane.

Proof. Let a1, a2, a3, a4, a5 be the 5 vertices, arranged in clockwise order, of a regular

pentagon inscribed in a circle.

Let us now move a1 clockwise on the circle by a very small amount ε and move a2 counter-

clockwise on the circle by the same very small amount ε. Thus, a1 goes to a1 and a2 goes to

a2. See Fig. 1.

We claim that a1, a2, a3, a4, a5 is nonmonotonal.

Now for a1, a2, a3, a4, a5, each distance D (ai, aj) , i ̸= j, must be d or D where d is the

side length of the pentagon and D is the diagonal length.

Therefore, a monotone path ai1, ai2, ai3, ai4, ai5 of a1, a2, a3, a4, a5 must satisfyD (ai1, ai2) =

D (ai2, ai3) = D (ai3, ai4) = D (ai4, ai5) = d or D (ai1, ai2) = D (ai2, ai3) = D (ai3, ai4) =

D (ai4, ai5) = D. Therefore, a monotone path for a1, a2, a3, a4, a5 must consist of consecu-

tive vertices such as a1, a2, a3, a4, a5 or alternate vertices such as a1, a3, a5, a2, a4. Now all

the distances between the vertices of a1, a2, a3, a4, a5 are still very close to d or D since ε

is very small. Therefore, a monotone path for a1, a2, a3, a4, a5, if a monotone path exists,

must still consist of consecutive vertices such as a1, a2, a3, a4, a5 or alternate vertices such as

a1, a3, a5, a2, a4. (Sections 6-10 shed much more light on this type of reasoning.)

If we now use symmetry in Fig. 1, we only need to consider the following 12 candidate

paths and we see that none of these 12 candidate paths is a monotone path . (We state the
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contradictions beside of each path.) Note that a chord subtending an arc of 0 ≤ θ ≤ 180◦

has a length of 2R sin(θ/2).

1. a1, a2, a3, a4, a5, D (a2, a3) > D (a3, a4) .

2. a1, a5, a4, a3, a2, D (a1, a5) > D (a5, a4) .

3. a1, a3, a5, a2, a4, D (a3, a5) > D (a5, a2) .

4. a1, a4, a2, a5, a3, D (a4, a2) > D (a2, a5) .

5. a5, a1, a2, a3, a4, D (a5, a1) > D (a1, a2) .

6. a5, a4, a3, a2, a1, D (a3, a2) > D (a2, a1) .

7. a5, a2, a4, a1, a3, D (a4, a1) > D (a1, a3) .

8. a5, a3, a1, a4, a2, D (a5, a3) > D (a3, a1) .

9. a4, a3, a2, a1, a3, D (a3, a2) > D (a2, a1) .

10. a4, a5, a1, a2, a3, D (a5, a1) > D (a1, a2) .

11. a4, a2, a5, a3, a1, D (a4, a2) > D (a2, a5) .

12. a4, a1, a3, a5, a2, D (a4, a1) > D (a1, a3) .

None of these 12 paths are monotone paths for a1, a2, a3, a4, a5 and the contradiction is

stated beside of each path.

This is studied further in Sections 8-12.

Lemma 4 Let 0 < ε, 0 < L.

Define A ∪ B by A = {a1, a2, a3} , B = {b1, b2} where a1 = (0, L) , a2 =
(
ε
2
, L

)
, a3 =

(ε, L) , b1 = (0, 0) , b2 = (ε, 0) .

Then there does not exist forA∪B a monotone path of the alternating form x1, x2, x3, x4, x5 =

ai1, bi2, ai3, bi4, ai5 where {ai1, ai3, ai5} = {a1, a2, a3} and {bi2, bi4} = {b1, b2} .
The easy proof is left to the reader.

Note 3 We use Lemma 4 in Proof 1 of Lemma 6.

As an interesting exercise, we let the reader prove that A ∪ B is monotone for all 0 <

ε, 0 < L.
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4 2n + 2 Distinct Points in the Plane

We now modify the rectangle of Lemma 2 to prove Lemmas 5, 6 and later to prove Lemmas

9, 10. Although our proofs are different from the proof of Lemma 2, we can see no reason

why Lemmas 5, 6 and Lemmas 9, 10 cannot be proved in a way that is very similar to the

way that we proved Lemma 2.

We leave this as a project for the reader after the reader has read our proofs.

Lemma 5 There exists a nonmonotonal collection of 2n+ 2 distinct points in the plane

for each n ≥ 1. (See also Lemma 9.)

Proof. By Lemma 2, we may assume that n ≥ 2.

Let ε > 0, L > 0 be fixed.

Define I [0, ε] = {(x, 0) : 0 ≤ x ≤ ε} and IL [0, ε] = {(x, L) : 0 ≤ x ≤ ε] .

Define A = {a1, a2, · · · , an} ⊆ IL[0, ε] and B = {b1, b2, · · · bn} ⊆ I [0, ε] where n ≥ 2 and

where a1, a2, · · · , an are distinct and b1, b2, · · · bn are distinct. Also, for 0 < ε < l, define

a = (l, L) , b = (l, 0). Thus, a /∈ A, b /∈ B.

Let us now agree that 0 < ε < l
100

and 0 < l < L
100

.

Thus, we have Fig. 2.

Fig.2. 0 < ε < l
100

, 0 < l < L
100

.

We show that this collection A ∪ {a} ∪ B ∪
{
b
}
of 2n+ 2 distinct points in the plane is

not monotone.

Define A = A ∪ {a} , B = B ∪
{
b
}
and let us denote A = {a1, a2, a3, · · · , an+1} , B ={

b1, b2, b3, · · · , bn+1

}
. Of course, A = {a1, a2, · · · , an} , B = {b1, b2, · · · , bn} .

Now the distance D (x, y) between two distinct points x, y ∈ A is much smaller than the

distance D (x, y) between a point x ∈ A and a point y ∈ B.

Also, the distance D (x, y) between two distinct points x, y ∈ B is much smaller than the

distance D (x, y) between a point x ∈ A and a point y ∈ B. This is because 0 < l < L
100

and

D (x, y) ≤ l < L
100

< L ≤ D (x, y) .

Suppose x1, x2, x3, · · · , x2n+2 is a monotone path for A∪B. By symmetry we may suppose

that x1 ∈ A. From the above distance inequalities, we now show that x1, x2, x3, · · · must

be of the alternating form x1, x2, x3, · · · = ai1, bi2, ai3, bi4, ai5, bi6, · · · , ai2n+1, bi2n+2, where

{ai1, ai3, · · · ai2n+1} = A and
{
bi2, bi4, · · · , bi2n+2

}
= B. In other words, if x1 ∈ A then the

sequence x1, x2, · · · , x2n+2 must alternate between A and B.

To see this, suppose that x1, x2, x3, · · · = ai1, ai2, ai3, · · · , aik, bik+1, · · · , k ≥ 1. From the

above distance inequalities and from the fact that D (x1, x2) ≤ D (x2, x3) ≤ D (x3, x4) ≤ · · ·
it is obvious that after we reach aik, bik+1 then the sequence x1, x2, x3, · · · must continue

to alternate between A and B. But this is impossible unless the sequence x1, x2, x3, · · ·
alternate between A and B from the very beginning since otherwise we would run out of
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points in the set A since A
#
= B

#
. In other words, x1, x2, x3, · · · with x1 ∈ A must be of

the alternating form x1, x2, x3, · · · = ai1, bi2,ai3, bi4, ai5, bi6, · · · .
We now note that the distance between a and bi ∈ B is larger than the distance between

points aj ∈ A, bk ∈ B. That is, D (a, bi) > D (aj, bk) .

Also, the distance between a and bi ∈ B is larger than D
(
a, b

)
. That is, D (a, bi)

> D
(
a, b

)
.

Also, the distance between b and ai ∈ A is larger than the distance between points

aj ∈ A, bk ∈ B. That is, D
(
b, ai

)
> D (aj, bk) .

Also, the distance between b and ai ∈ A is larger than D
(
a, b

)
. That is, D

(
b, ai

)
>

D
(
a, b

)
.

We now consider cases 1, 2, 3, 4 for the monotone path x1, x2, x3, · · · of A∪{a}∪B∪
{
b
}
=

A ∪B where x1 ∈ A.

Case 1. x1 = a, x2 = b.

Case 2. x1 = a, x2 = bi2 ∈ B.

Case 3. x1 = ai1 ∈ A, x2 = b.

Case 4. x1 = ai1 ∈ A, x2 = bi2 ∈ B.

As always, aij ∈ A,

bij ∈ B, aij ∈ A, bij ∈ B.

Case 1 In case 1, we have x3 = ai3 ∈ A, x4 = bi4 ∈ B and x1, x2, x3, x4, · · · =

a, b, ai3, bi4, · · · which is impossible since D
(
b, ai3

)
> D (ai3, bi4) .

Case 2 In Case 2 we have x3 = ai3 ∈ A and x1, x2, x3 = a, bi2, ai3 which is impossible

since D (a, bi2) > D (bi2, ai3) .

Case 3 In Lemma 5, we are assuming that n ≥ 2. Now since D
(
ai1, b

)
> D

(
b, a

)
we

see that x3 ̸= a. Therefore, x3 = ai3 ∈ A, x4 = bi4 ∈ B and we have x1, x2, x3, x4 · · · =
ai1, b, ai3, bi4, · · · which is impossible since D

(
b, ai3

)
> D (ai3, bi4) .

Case 4 For Case 4, we consider subcases (a), (b) for the monotone path x1, x2, x3, · · · .
(a) x1, x2, x3, · · · = ai1, bi2, ai3, bi4, · · · , x2k+1 = a, · · · , b, · · · , k ≥ 1, and

(b) x1, x2, x3, · · · = ai1, bi2, ai3, bi4, · · · , x2k = b, · · · , a, · · · , k ≥ 2.

By symmetry in the reasoning, we can assume Case (a) which means that the monotone

path x1, x2, x3, · · · gets to a before it gets to b. The reasoning for Case (b) is the same as

Case (a).

Now in Case (a) we see that x2k+2 ̸= b since D (bi2k, a) > D
(
a, b

)
.

Therefore, since x1, x2, x3, · · · is assumed to be a monotone path, we know that x2k+2 =

bi,2k+2 ∈ B and x2k+3 = ai,2k+3 ∈ A and this is impossible sinceD (a, bi,2k+2) > D (bi.2k+2, ai,2k+3).
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Therefore, x1, x2, x3, · · · cannot be a monotone path which completes the proof of Lemma

5.

5 2n + 3 District Points in the Plane

Lemma 6 There exists a nonmonotonal collection of 2n + 3 district points in the plane for

each n ≥ 1. (See also Lemma 10). Proof 1. By Lemma 3, we may assume that n ≥ 2.

Let ε > 0, L > 0 be fixed. As in Lemma 5, define I [0, ε] = {(x, 0) : 0 ≤ x ≤ ε} and

IL [0, ε] = {(x, L) : 0 ≤ x ≤ ε} .
Define A = {a1, a2, · · · , an+1} ⊆ IL [0, ε] and B = {b1, b2, · · · , bn} ⊆ I (0, ε) where n ≥ 2

and where a1, a2, · · · , an+1 are distinct and b1, b2, · · · , bn are distinct.

Also, for 0 < ε < l define a = (l, L) , b = (l, 0). Therefore, a /∈ A, b /∈ B.

As in Lemma 5, let us now agree that 0 < ε < l
100

and 0 < l < L
100

.

Thus, we again have Fig. 2.

From Lemma 4 and by the mathematical inductive proof that we now use, we may

assume for all n ≥ 2 that the set A ∪ B does not have a monotone path of the alternat-

ing form x1, x2, x3, · · · , x2n+1 = ai1, bi2, ai3, bi4, ai5, bi6, · · · , ai,2n+1. That is, we assume that

no monotone path x1, x2, · · · , x2n+1 for A ∪ B exists with {x1, x3, x5, · · · , x2n+1} = A and

{x2, x4, x6, · · · , x2n} = B. We do not need an assumption this strong; however, when n ≥ 3,

by the inductive proof that we use, we may assume that A∪B is not monotone at all. This

means for n ≥ 3 that A ∪B does not have any type of monotone path x1, x3, x5, · · · , x2n+1.

We do not need this assumption about A ∪B in proof 2.

We note that in Lemma 4 and later in the inductive proof that we now use the bigger

that we make L the better off the proof is. In other words, there is no conflict in making L

bigger since we only require 0 < ε < l
100

and 0 < l < L
100

. The fact that we can enlarge L

without any conflict allows us to use induction to guarantee that A ∪ B does not have any

type of monotone path. We now show that the collection A∪{a}∪B ∪
{
b
}
of 2n+3, n ≥ 2,

distinct points in the plane is not monotone.

Again, define A = A∪ {a} , B = B ∪
{
b
}
. Let us now call A = {a1, a2, a3, · · · , an+2} and

B =
{
b1, b2, b3, · · · , bn+1

}
. Of course, A = {a1, a2, · · · , an+1} , B = {b1, b2, · · · , bn}.

Using the same type of distance argument as in Lemma 5 and using the fact that A
#
=

n + 2, B
#
= n + 1, we see that a monotone path x1, x2, · · · , x2n+3 of A ∪ B must be one of

the two forms (a), (b).

(a) x1, x2, x3, · · · = ai1, ai2, bi3, ai4, bi5, ai6, · · · , bi,2n+3.

(b) x1, x2, x3 = ai1, bi2, ai3, bi4, · · · , bi,2n+2, a1,2n+3.
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In (a), ai2, bi3, ai4, bi5, · · · alternates between A and B and in (b) ai1, bi2, ai3, bi4, · · · alter-
nates between A and B.

We have 7 cases to consider. Cases 1, 2, 3 are cases for (a) and cases 4, 5, 6, 7 are cases

for (b).

Case 1. x1 = a, x2 = ai2 ∈ A.

Case 2. x1 = ai1 ∈ A, x2 = a.

Case 3. x1 = ai1 ∈ A, x2 = ai2 ∈ A.

Case 4. x1 = a, x2 = b.

Case 5. x1 = a, x2 = bi2 ∈ B.

Case 6. x1 = ai1 ∈ A, x2 = b.

Case 7. x1 = ai1 ∈ A, x2 = bi2 ∈ B.

If we study the proof of Lemma 5, we see that Cases 2, 3, 6, 7 are proved in the proof

of Lemma 5 since we know that in cases 2, 3, 6, 7 the subsequence x2, x3, x4, x5, · · · cannot
be a monotone path for

[
A ∪ {a} ∪B ∪

{
b
}]
\ {x1} since

[
A ∪ {a} ∪B ∪

{
b
}]
\ {x1} is not

monotone in Cases 2, 3, 6, 7. Therefore we only need to consider Cases 1, 4, 5.

Case 1. x1 = a, x2 = ai2 ∈ A.

We consider two subcases (a), (b) of Case 1.

(a) x1, x2, x3, · · · = a, ai2, bi3, ai4 · · · , ai2k, b, ai,2k+2, bi,2n+3, · · · where 1 ≤ k ≤ n.

(b) x1, x2, x3, · · · = a, ai2, bi3, ai4, bi5, ai6, · · · , ai,2n+2, b.

In subcase (a), b is not the last term in the monotone path x1, x2, x3, · · · and in subcase

(b), b is the last term in the monotone path x1, x2, x3, · · · .
Now subcase (a) is impossible since D

(
b, ai,2k+2

)
> D (ai,2k+2, bi,2k+3) .

Also, subcase (b) is impossible because the subsequence ai2, bi3, ai4, bi5, · · · , ai,2n+2 tells

us that the set A ∪ B has a monotone path ai2, bi3, ai4, bi5, · · · that starts at ai2 ∈ A and

alternates between set A and set B and this contradicts the inductive assumption that we

make about A ∪B. Therefore, Case 1 is impossible.

Case 4. Now, x1, x2, x3 · · · = a, b, ai3, bi4, · · · which is impossible since D
(
b, ai3

)
>

D (ai3, bi4) .

Case 5. Now x1, x2, x3, · · · = a, bi2, ai3, · · · which is impossible sinceD (a, bi2) > D (bi2, ai3) .

This completes the proof of Lemma 6.

Lemma 6 can also be proved by the drawing of Proof 2, when n ≥ 2.

Proof 2. The following drawing can be used to prove Lemma 6 when n ≥ 2.

We useA = {a1, a2, · · · , an} ⊆ IL [0, ε] andB = [b1, b2, · · · , bn] ⊆ I [0, ε] where a1, a2, · · · , an
are distinct and b1, b2, · · · , bn are distinct.

Let a = (l, L) , a∗ = (.99l, L) , b = (l, 0) where 0 < ε < l
100

, 0 < l < L
100

.

We do not need to assume anything about the monotonicity of A ∪B in Proof 2.
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We now use a proof that is similar to Proof 1 to show that A ∪ {a, a∗} ∪ B ∪
{
b
}
is not

monotone.

We first define A = A ∪ {a, a∗} , B = B ∪
{
b
}
.

We show that a monotone path x1, x2, x3, · · · of A ∪ B must alternate between A and

B exactly as in Proof 1. As in Proof 1, we consider all possible cases for x1, x2 where

x1 ∈ A, x2 ∈ A or x1 ∈ A, x2 ∈ B.

These cases are as follows.

1. x1 ∈ {a, a∗} , x2 ∈ {a, a∗} .

2. x1 ∈ {a, a∗} , x2 ∈ A.

3. x1 ∈ A, x2 ∈ {a, a∗} .

4. x1 ∈ A, x2 ∈ A.

5. x1 ∈ {a, a∗} , x2 ∈ B

6. x1 ∈ {a, a∗} , x2 = b.

7. x1 ∈ A, x2 = b

8. x1 ∈ A, x2 ∈ B

Cases 1, 2, 5, 6 are taken care of in the proof of Lemma 5.

We now leave the details of Cases 3, 4, 7, 8 as an exercise for the reader. These details

are slightly more complex than in Proof 1.

As stated previously, we can see no reason why the ideas used in the proof of Lemma 2

cannot also be used to prove Lemmas 5, 6.

Also, the drawing used in our proofs of Lemmas 5, 6 can be extended further by placing

more points on the upper right and lower right.

6 Abstract Graphs

Let a1, a2, a3, · · · , an, n ≥ 2, be n distinct vertices and let us connect an undirected edge

xij, i ̸= j, between each pair {ai, aj} of distinct vertices. Let us now assign to each edge

xij, i ̸= j, an arbitrary real number aij.

We now call D (ai, aj) = D (aj, ai) = aij, i ̸= j, the distance between vertex ai and vertex

aj. We do not require D (a, b) +D (b, c) ≥ D (a, c).

Definition 1 and Definition 2 of Section 2 remain unchanged for these abstract graphs.
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Definition 3 A binary undirected graph on n vertices is an undirected graph in which

each aij ∈ {d,D} where d < D. We can also let aij ∈ {0, 1} . Of course this is equivalent to

defining an undirected graph where an edge is called 1 and the absence of an edge is called

0.

Lemma 7 A binary graph on n ≥ 2 vertices is always monotone.

Proof. We use mathematical induction on n. Lemma 7 is obviously true for n = 2.

Therefore, let n ≥ 3 and consider a binary graph on {a1, a2, · · · , an}. By induction, the

binary subgraph on {a1, a2, · · · , an−1} has a monotone path x1, x2, x3, · · · , xn−1.

We show how to add vertex an to this monotone path x1, x2, · · · , xn−1 to get a monotone

path for {a1, a2, · · · , an} .
Now the monotone path x1, x2, · · · , xn−1 for {a1, a2, · · · , an−1} must be one of three types

(a), (b), (c). We also show an in the 3 drawings.

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
........................................................................................................................................................................................• • • •

x
•
y

•
z

•

r s t

• •

•
an

0 0 0 0 1 1 1 1
(a).

......................................................................................................................................................................................• • • • • • •

s
• •

an

0 0 0 0 0 0 0 0 y
(b).

......................................................................................................................................................................................• • • • • • •

s
• •

•
an

1 1 1 1 1 1 1 1
(c).

y

Type (a) Now (r, s, t) can have 8 different values since r, s, t ∈ {0, 1} .

1. (r, s, t) = (0, 0, 0). Add x, an, y and take out edge xy or add y, an, z and take out edge

yz to get a monotone path for {a1, a2, · · · , an} .

2. (r, s, t) = (0, 0, 1). Add x, an, y and take out edge xy or add y, an, z and take out edge

yz.

3. (r, s, t) = (0, 1, 0). Add x, an, y and take out edge xy.
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4. (r, s, t) = (0, 1, 1). Add x, an, y and take out edge xy or add y, an, z and take out edge

yz.

5. (r, s, t) = (1, 0, 0). Add y, an, z and take out edge yz.

6. (r, s, t) = (1, 0, 1). Add y, an, z and take out edge yz.

7. (r, s, t) = (1, 1, 0). Add x, an, y and take out edge xy.

8. (r, s, t) = (1, 1, 1). Add x, an, y and take out edge xy or add y, an, z and take out edge

yz.

Type (b) Add y, an to get a monotone path for {a1, a2, · · · , an} .
Type (c) Add an, y to get a monotone path for {a1, a2, · · · , an} .
Observation 1 The proof of Lemma 2 tells us immediately that the conclusion of Lemma 7

is false if we allow the aij of an abstract graph to have three different values, say aij ∈ {0, 1, 2}.
We deal further with aij ∈ {0, 1, 2} in Lemmas 9, 10.

A Practical Construction 1 A practical construction for Lemma 7 is to use the proof of

Lemma 7 step by step with each of the subgraphs 1. {a1, a2}, 2.{a1, a2, a3}, 3.{a1, a2, a3, a4} , · · · , (n− 1) .

{a1, a2, a3, . . . , an} .
We add a3 to graph 1, add a4 to graph 2, add a5 to graph 3, · · · , to get monotone paths

on {a1, a2, a3} , {a1, a2, a3, a4} , {a1, a2, a3, a4, a5} , · · · , {a1, a2, a3, · · · , an} .
Lemma 8 Any monotone path x1, x2, x3, · · · , xn of a binary graph on n vertices {a1, a2, · · · , an}

can be constructed by the above Practical Construction.

Proof. We consider cases (a), (b), (c) for an arbitrary monotone path x1, x2, x3, · · · , xn

of a binary graph on {a1, a2, · · · , an}. Cases (b), (c) are left as easy exercises for the reader.

• • • •
x

•
p

•
y

• • •(a)
0 0 00 11 1 1

• • • •
x

•
p

• • •(b)
0 0 0 0 0 00
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• • • •
p

•
y

• • •(c)
1 1 1 11 1 1

In Case (a), we show how to add vertex P to a monotone path of the binary graph on

{a1, a2, · · · , an} \ {P} to give the given binary graph on {a1, a2, · · · , an} .
If we take out P from (a), we have two cases 1, 2 for the edge xy since edge xy can be 0

or 1.

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....................................................................................................................................................• • ••

x
•

0
•

y
•

0 1

•

•
p

0 0 0 1 1
(1)

1

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....................................................................................................................................................• • •

x
•

1
•

y
•

0 1

••

•
p

0 0 0 1 1 1
(2)

Now both cases 1, 2 show monotone paths for the binary graph on {a1, a2, · · · , an} \ {P}.
In both Case 1 and Case 2, when we add vertex P to the given monotone paths on

{a1, a2, · · · , an} \ {P} and take out edge xy by the algorithm of Lemma 7, we have the

given monotone path specified in Case (a). Case (b) and (c) is similar.

From this, we see that any monotone path for a binary graph on {a1, a2, · · · , an} can be

constructed by the practical construction.

7 A Hall Type Theorem

The ultimate goal is to create reasonable necessary and sufficient conditions that determine

whether an arbitrary abstract undirected graph on n distinct vertices has a monotone path

.
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Suppose aij are assigned to the undirected edges of a complete undirected graph on

distinct vertices {a1, a2, · · · , an} .
For each real number x, assign to edge xij, i ̸= j, the real number aij = 1 if aij ≥ x and

assign to xij the real number aij = 0 if aij < x. We call this the derived graph for x. Then

the original graph with aij assigned to the edges has a monotone path if and only if there

exists a fixed sequence x1, x2, x3, · · · , xn where {x1, x2, · · · , xn} = {a1, a2, · · · , an} such that

this fixed sequence x1, x2, · · · , xn is a monotone path of the derived graphs for all x.

This extremely primitive theorem at least suggests that a reasonably practical Hall’s type

theorem may actually exist for the problem under discussion.

Observation 2 We observe that the binary reasoning in this section and in Section 6

was used in Section 3 to easily prove Lemma 3. This reasoning is expanded much further in

Section 8.

8 Derived Graphs

Suppose each edge xij of a complete undirected graph on n distinct vertices a1, a2, · · · , an is

assigned a real number aij.

Let x1 < x2 < x3 < · · · < xn be arbitrary but fixed real numbers.

We now assign to each edge xij the real number aij = 0 if aij < x1, assign to xij the real

number aij = t if xt ≤ aij < xt+1 and assign to zij the real number aij = n if xn ≤ aij.

We call this {aij} graph the derived graph for x1 < x2 < · · · < xn. It is easy to see that

any monotone path of the original {aij} graph is also a monotone path of the derived {aij}
graph for any x1 < x2 < · · · < xn. From this it is easy to see that if the original {aij} graph
is monotone then the new derived {aij} graph is also monotone for all x1 < x2 < · · · < xn.

Therefore, it is necessary that the derived {aij} graph be monotone for all x1 < x2 <

· · · < xn in order for the original {aij} graph to be monotone. Also, the original {aij} graph
is monotone if and only if for each sequence x1 < x2 < · · · < xn the new derived {aij} graph
is monotone.

9 Trinary Graphs

Definition 4 A trinary undirected graph on n vertices is an undirected graph in which each

aij ∈
{
d, d, d

}
where d < d < d. We can also let aij ∈ {0, 1, 2} .

Lemma 9 There exists an nonmonotonal trinary graph of 2n+2 distinct vertices for each

n ≥ 1.

13



Proof. The proof of Lemma 2 takes care of the case where n = 1.

The proof of Lemma 5 can easily take care of the case where n ≥ 2. Using the drawing

and notation given in the proof of Lemma 5, we define D (x, y) as follows.

D (x, y) = 0 if x, y ∈ A,D (x, y) = 0 if x, y ∈ B.

D (x, y) = 1 if x ∈ A, y ∈ B.D
(
a, b

)
= 1.

D (a, x) = 2 if x ∈ B,D
(
b, y

)
= 2 if y ∈ A. The proof of Lemma 9 and Lemma 5 are

now the same.

Lemma 10 There exists an nonmonotonal trinary graph of 2n + 3 distinct vertices for

each n ≥ 2.

Proof. Proof 2 of Lemma 6 can be modified to prove Lemma 10. We let D (x, y) = 0 if

x, y ∈ A,D (x, y) = 0 if x, y ∈ B.

D (x, y) = 1 if x ∈ A, y ∈ Ḃ. D
(
a, b

)
= 1, D

(
a∗, b

)
= 1. D (a, x) = 2 if x ∈

B,D (a∗, x) = 2 if x ∈ B, D
(
b, y

)
= 2 if y ∈ A.

Proof 2 of Lemma 6 can now be used to prove Lemma 10.

Note 4 In section 10 we show that all trinary graphs on n = 5 vertices are monotone.

10 A Five-Vertex Graph With Three Distinct Edge

Labels Is Monotone

Definition: Given a graph with five vertices A,B,C,D and E with each of its ten edges

labeled either 1, 2 or 3, we say the graph is monotone if the vertices can be permuted into

VWXY Z in such a way that the labels on the four successive edges VW,WX, etc. are

non-decreasing.

Introductory Observations:

1. The graph is monotone if the vertices can be permuted in such a way that the labels

on the four successive edges are non-increasing.

2. If there are three successive edges with the same label, the graph is monotone.

3. If all ten of the edges in the graph have the same label, the graph is monotone. [Ob-

viously something much stronger is true.]

Terminology

1. We call an edge with label 1 a ‘1-edge’. Similarly, we have 2-edges and 3-edges.
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2. We say that a vertex has 1-degree d if there are exactly d 1-edges incident to the

vertex. We define 2-degree and 3-degree similarly. Thus, d is an integer between 0 and

4 inclusive, and, for each vertex, the sum of the 1-degree, the 2-degree and the 3-degree

must be four.]

Summary

We will show that any graph of the type described above is monotone. Our plan of attack

is to show first that if the graph does not have a vertex with 2-degree at least 2, then the

graph must be monotone. We accomplish this by considering separately the cases: (1) there

is at most one 2-edge in the graph and (2) there are exactly two 2-edges in the graph and

these edges are disjoint (so that there is no vertex with 2-degree at least 2).

We then consider graphs which contain at least one vertex with 2-degree at least two and

show that all such graphs are monotone. Note here that if the graph contains at least three

2-edges, the graph must contain at least one vertex with 2-degree at least two. Alternatively,

the graph might contain exactly two 2-edges which happened to be adjacent.

Lemma 11. If there is at most one 2-edge in the graph, the graph is monotone.

Proof: Since the graph has exactly ten edges and at most one of these is a 2-edge, there

must be at least five 1-edges or at least five 3-edges. Without loss of generality, we may

assume that there are at least five 1-edges. It follows that the sum of the 1-degrees must be

at least ten. Therefore there must be a vertex with 1-degree at least two.

Suppose then that edges AB and BC are both 1-edges. If, with X = D or E, AX or CX

were a 1-edge, the graph would be monotone, since we would have three successive 1-edges.

So, imagine that none of the edges AD,AE,CD and CE is a 1-edge. Then, since the graph

contains at least five 1-edges, at least three of BD,BE,AC and DE must be 1-edges. Thus,

at least one of BD and BE is a 1-edge and at least one of AC and DE is a 1-edge.

Suppose that BD is a 1-edge. If AC is a 1-edge, consider the path ACBD, which consists

of three successive 1-edges so the graph is monotone. Now suppose that BD and DE are

1-edges. Then ABDE consists of three successive 1-edges, and the graph is monotone.

The cases in which BE is a 1-edge are exactly similar. �
Lemma 12. If there are exactly two 2-edges in the graph and these edges are disjoint, the

graph monotone.

Proof: Suppose that AB and CD are the 2-edges. Without loss of generality, we may

assume that AC is a 1-edge. Now if both BE and DE are both 3-edges, the path ACDEB

solves the graph since the lengths of the successive edges are 1, 2, 3 and 3. Therefore, if the

graph is not monotone, either BE or DE must be a 1-edge. Considering the symmetry in

the graph, we may suppose, without loss of generality, that BE is a 1-edge.

Now, if EA is a 1-edge, CA,AE and EB are successive 1-edges and the graph is mono-

tone. Similarly, if EC is a 1-edge, AC,CE and EB are successive 1-edges and the graph is
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monotone. So, we assume that both EA and EC are 3-edges.

Now, if CB is a 1-edge, then EB, BC and CA are successive 1-edges and the graph is

monotone. Moreover, if CB is a 3-edge, then BC,CE and EA are successive 3-edges and

the graph is monotone.

We may now conclude that if the graph has exactly two 2-edges and these edges are

disjoint, the graph is monotone. �
Lemma 13. A five-vertex graph with edge labels 1, 2 and 3 is monotone.

Proof: Using Lemmas 11 and 12, we see that we need only consider graphs with either

at least three 2-edges or exactly two 2-edges which are NOT disjoint. It is easy to see that

if there are three or more 2-edges, there must be a vertex with 2-degree at least two. So, we

need only consider graphs which contain a vertex with 2-degree at least two. We will assume

that vertex B is such a vertex and that AB and BC are 2-edges.

If any one of the edges AX and CX with X = D or E is a 2-edge, the graph would

contain three successive 2-edges and would be monotone. So, we may assume that each of

these four edges is either a 1-edge or a 3-edge. We assume, without loss of generality, that

AE is a 1-edge. If CD is a 3-edge, the graph is monotone with path EABCD so we assume

that CD is a 1-edge. Arguing in the same fashion, we see that the edges AD and CE must

have the same label. If this common label is 1, then the successive edges AD,DC and CE

are all 1-edges and the graph is monotone. So we assume that AD and CE are both 3-edges.

So, to summarize, we are assuming that AB and BC are 2-edges, AE and CD are 1-edges

and AD and CE are 3-edges. [Drawing a diagram will help in what follows.] Consider AC.

If AC is a 1-edge, EA, AC and CD are successive 1-edges and the graph is monotone. If

AC is a 3-edge, DA,AC and CE are successive 3-edges and the graph is monotone. We

assume, therefore that AC is a 2-edge. Similarly, if DE is a 1-edge or if DE is a 3-edge, the

graph is monotone, so we assume that DE is a 2-edge.

At this point, the only edges whose labels are unknown are BD and BE. Consider BD.

If BD is a 2-edge, then AC,CB and BD are successive 2-edges and the graph is monotone.

If BD is a 1-edge, then consider DBACE, which has successive edge labels 1, 2, 2 and 3 so

the graph is monotone. If BD is a 3-edge, then consider EACBD, which also has successive

edge labels 1, 2, 2 and 3 so the graph is monotone. [We could also have considered the three

possible labels for BE and shown that the graph was monotone in each case.]

We conclude that the graph is monotone. �
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11 Graphs with aij ∈ {0, 1, 2, 3}
In this section, we allow the edges xij of an undirected graph on n ≥ 3 distinct vertices to

be assigned values aij ∈ {0, 1, 2, 3} .
Lemma 14 There exists an nonmonotonal graph on 5 distinct vertices when aij ∈

{0, 1, 2, 3} .
Let a1, a2, a3, a4, a5 be the 5 vertices arranged in clockwise order of a regular pentagon.

For each a1, a2, a3, a4, a5, let us define aij = 0 if aiaj is a side of the pentagon and aij = 2

if aiaj is a diagonal of the pentagon. A monotone path for a1, a2, a3, a4, a5 must consist of

consecutive vertices such as a1, a2, a3, a4, a5 or alternate vertices such as a1, a3, a5, a2, a4.

Let us now modify the above aij’s as follows to get a new graph. Let a12 = 0, a23 =

1, a34 = 0, a45 = 0, a51 = 1, a13 = 2, a14 = 3, a24 = 3, a25 = 2, a35 = 3. Now a monotone path

, if a monotone path exists, for this new graph must still consist of consecutive vertices or

consecutive alternate vertices. It is now easy to see that this new graph is not monotone. �
The proof above is very similar to the proof of Lemma 3.

12 A Variation

A variation of this problem is to find a maximal length monotone path in an undirected graph.

The approach we would take is to modify and generalize rectangularity type diagrams used

in the proofs of Lemmas 5 and 6. It seems easy to construct undirected graphs on n ≥ 6

vertices so that the maximal montone path has at most ⌈n+2
2
⌉ vertices. However, we believe

that even more can be said.

13 Discussion

For each m ∈ {2, 3, 4, 5, 6, · · · } , it is obvious that Lemmas 9, 10 remain true if we assign

to each edge xij of a complete undirected graph on n = 4 or n ≥ 6 vertices one of the

values aij ∈ {0, 1, 2, · · · ,m}. Also, Lemma 14 remains true if we assign to each edge xij of a

complete undirected graph on n = 5 vertices one of the values aij ∈ {0, 1, 2, 3, · · · ,m} where
m ∈ {3, 4, 5, 6, · · · } .

Acknowledgements. The monotonicity definition in this paper originated with Patrick

Vennebush, with whom we had several informative discussions.
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