
Introducing The Test Interval Technique

This essay is intended to be read before the class has discussed differentiation
of elementary functions. One of the fundamental ideas in calculus involves the use
of the derivative function in finding the intervals over which a given function is
increasing. The method simply requires us to build the sign chart for the derivative,
and we can do this for polynomials provided we can write them in factored form.
But there are other reasons why we might want to build the sign chart for a function

as well. If f(x) is given and we define a new function by g(x) =
√
f(x), then the

domain of g is the set of points for which f(x) ≥ 0, and if we let h(x) = ln(f(x)),
then the domain of h is the set of points for which f(x) > 0.

The purpose of this paper is to elaborate on the technique discussed in class for
finding the sign chart of a rational function. A rational function r(x) is a quotient of
two polynomial functions, p(x) and q(x). Of course, if q(x) is the constant function
with value 1, then r(x) = p(x)÷1 = p(x) is a polynomial itself, so all that is said here
about rational functions applies to polynomial functions. The sign chart for such a
rational function is a depiction of the number line separated into intervals by branch
points. Plus and minus signs are distributed across the number line depending on the
sign of the function at points of the interval. In a nutshell, we first pluck out of the
real numbers the places where the function can change sign. For a rational function
these points are the zeros of the numerator (aka zeros of the function) and the zeros
of the denominator (assuming the rational function is in reduced form, these are the
vertical asymptotes). Next, select a test point from each of the intervals determined
by the plucking.

1. Consider the function p(x) = (x+4)(x+2)2(x− 2)(x− 4)2. Note that p(x) is
already in factored form. The zeros of a polynomial in factored form can be
read off without trouble. We have x = −4,−2, 2 and 4. The multiplicities of
−2 and 4 are two. Thus we have four branch points to pluck as shown on the
chart below.

•
−4

•
−2

•
2

•
4

Note that the four branch points divide the number line into five test inter-
vals, (−∞,−4), (−4,−2), (−2, 2), (2, 4), (4,∞). Select a test point from each
interval. Let’s take −5,−3, 0, 3, and 5.

To determine the sign of the function at each test point, build a matrix with
test points listed down the side and factors listed along the top. In the current
case
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test point (x+ 4) (x+ 2)2 (x− 2) (x− 4)2 p(x)
−5 − + − + +
−3 + + − + −
0 + + − + −
3 + + + + +
5 + + + + +

•
−4

•
−2

•
2

•
4

+ + + + − − − − − − − − − − − − − − − + + + ++ + +

The power of the technique shows up here. It does not matter which point
in the interval is selected as the test point. The sign of the function does not
change over a test interval. You can see from the sign chart that p(x) changes
sign at −4 from positive to negative and at 2 from negative to positive. If
the problem we are given is to solve the inequality p(x) ≥ 0, we could do this
easily at this stage. The solution to p(x) > 0 is just (−∞,−4)∪(2, 4)∪(4,∞).
There are four zeros of p to add to this set, so we get (−∞,−4]∪{−2}∪[2,∞).

2. Consider the rational function

f(x) =
(x2 − 4)(2x+ 1)

(3x2 − 3)(x− 2)
.

Notice first that f is not in factored form. Factoring reveals that the numerator
and denominator have common factors. Thus

f(x) =
(x− 2)(x+ 2)(2x+ 1)

3(x− 1)(x+ 1)(x− 2)
.

We can cancel the common factors with the understanding that we are (very

slightly) enlarging the domain of f : f(x) = (x+2)(2x+1)
3(x−1)(x+1)

. Next find the branch
points. These are the points at which f can change signs. Precisely, they are
the zeros of the numerator and of the denominator. They are −2,−1/2, 1,−1.
Again we select test points and find the sign of f at of these points to get the
sign chart.

•
−2

•
−1

•
−1/2

•
1

+ + + + + + − − + − − − − + + + + + + + + ++ + +

Again suppose that we are solving f(x) ≥ 0 The solution to f(x) > 0 is
easy. It is the union of the open intervals with the + signs, (−∞,−2) ∪
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(−1,−1/2) ∪ (1,∞). It remains to solve f(x) = 0 and attach these solutions
to what we have. The zeros of f are −2 and −1/2. So the solution to f(x) ≥ 0
is (−∞,−2] ∪ (−1,−1/2] ∪ (1,∞). Notice that the branch points 1 and −1
are not included since f is not defined at these two points. It has vertical
asymptotes at these two places. Technically the value x = 2 should not be
included in the solution because the function f as originally defined is not
defined at x = 2. We make this exception repeatedly, however.
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