Math 1120. Calculus Test 3.

March 21, 2001 Name
The first 11 problems are true-false problems that count 3 points each. The rest are
counted as marked. The total value of the test is 125.
True-false section. Circle the correct choice. You do not need to show your work on
these problems.

1.

True or false. If f and ¢ are differentiable and a and b are constants, then
wmlaf (@) +bg(x)] = agi f(x) + big(x).
Solution: True. This is just the rule that talks about the derivative of the
sum and of a constant times a function.

True or false. If f/(x) > 0 for each x in the interval (—1, 1), then f is increasing
on (—1,1).

Solution: True.

True or false. If f”(x) < 0 on the interval (a,c) and f”(x) > 0 on the interval
(¢,b), then the point (¢, f(c)) is a point of inflection of f.

Solution: True.

True or false. If f(a) < 0, f(b) > 0, and f'(x) > 0 for each z in (a,b), then
there is one and only one number ¢ in (a, b) such that f(c) = 0.

Solution: True. The Intermediate Value Theorem guarantees that there is at
least one ¢ in (a, b), and the condition f’'(z) > 0 for each z in (a,b) guarantees
that there can be no more than 1 such point.

True or false. The graph of a function cannot touch or intersect a horizontal
asymptote to the graph of f.

Solution: False. There is nothing in the definition of horizontal asymptote
that implies this.

True or false. If f'(c) = 0, then f has a relative maximum or a relative
minimum at x = c.

Solution: False. The function can have neither a max nor a min at a station-
ary point. Look at f(z) = 23 and 0.

True or false. If f has a relative maximum or a relative minimum at = = ¢,
then f'(c) = 0.

Solution: False. All we can tell is that c¢ is a critical point. It might be a
singular point.
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8.

10.

11.

12.

13.

True or false. If f'(c) = 0 and f”(¢) < 0, then f has a relative maximum at
r=c.

Solution: True. This is just the second derivative test.

True or false. If f and g are differentiable, then -L[f(2)g(z)] = f'(z)g'(z).
Solution: False. Look up the product rule.

I'(x)
g'(z)"

True or false. If f and g are differentiable, then i[%]

T
drlg(xz

Solution: False. Look up the quotient rule.

True or false. If f and g are differentiable and h(z) = f o g, then A/(x) =
flg(@)]g (x).

Solution: False. Look up the chain rule.

(12 points) Find the absolute maximum value and the absolute minimum value
of the function f(z) = 2® — 42? — 2 + 4 on the interval —2 < z < 6.

Solution: Note that f/(x) = 322—8x—1, so there are two critical points inside
the interval [—2, 6], lets call them o = % ~ 2.786 and 3 = % ~ —0.119.
We must compare the values f(a) ~ —8.208, (/) ~ 4.0606, f(—2) = —18, and
f(6) = 70. Clearly, the largest and smallest values of f occur at the endpoints,
6 and —2 respectively.

(12 points) Let f be the function whose graph is shown below. On the same
axes, plot the graph of f/(x).
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14.

15.

16.

17.

(12 points) Find the interval(s) where f(z) = 2* — 62* — 4z + 8 is increasing.
Solution: Find f'(z) and determine the critical points of f. f'(x) = 32* —
12z —4, and by the quadratic formula, the critical points are o = 12144148 VIGMHS ~

4.309, and o = 20144448 V%;MHS ~ —.309. Because f is cubic with positive coef of
x3, it follows that f is increasing on (—oo, 3] and on|w, 00).

(12 points) Find the relative maxima and relative minima, if any, of g(z) =
2+ 3.

Solution: First note that ¢'(z) = 2z — 32273, which has value zero when
r™ = 1/16, ie, when x = +2. Examining either the graph or the second
derivative at these two points reveals that they are both locations of relative
minimums, and that g(—2) = g(2) = 8.

(12 points) Let f(z) = z* + 223 — 122° + 6.

(a) Find the interval(s) where f is concave upward and the interval(s) where

f is concave downward. Use the Test Interval technique to determine the
places where f” is positive and where it is negative.
Solution: Find f' and f”. f'(z) = 42® 4+ 62> — 24x + 6 and f"(x) =
1202 + 122 — 24 = 12(2* + © — 2) = 12(x + 2)(x — 1), so there are two
places where concavity COULD change. In fact the test interval technique
applied to f” shows that f”(x) > 0 on (—o0,—2) and on (1,00). Thus f
is concave up on these two intervals and down on [—2,1].

(b) Find the inflection points of f, if there are any.

Solution: There are two points of inflection, (=2, f(—2) = (-2, —60)
and (1,—-3).

(12 points) Consider the rational function

(222 — 3)(z — 2)
(22 —4)(x+1) "

fz) =

(a) Find the horizontal asymptotes.

Solution: The coefficient of 23 in the numerator is 2 while that in the
denominator is 1, so y = 2/1 is the horizontal asymptote.
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(b) Find the vertical asymptotes.

Solution: To find the vertical asymptotes, you must first reduce the
fraction to lowest terms, which mean cancelling out the common factors,
in this case, just the x —2’s. This results in a denominator that has value
0 only at x =1 and x = 2, so these are the two vertical asymptotes.

(c) Compute lim f(x).

Solution: The limit in question is the same as the horizontal asymptote,
2.
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18.

On all the following questions, show your work.

(20 points) The quantity demanded per month, x of a certain brand of electric
shavers is related to the price, p, per shaver by the equation p = —0.1z +
10,000 (0 < x < 20,000), where p is measured in dollars. The total monthly
cost for manufacturing the shavers is given by C(z) = 0.00002z® — 0.4z? +
10,0002 + 20,000. Construct the revenue function, R(x). How is the profit
related to revenue and cost? Find P’'(z), where P(z) denotes the profit func-
tion. How many shavers should be produced per month in order to maximize
the company’s profit? What is the maximum profit?

Solution: First, the revenue function is R(x) = z - p(z) = x(—0.12 + 10, 000)
and the profit function is given by P(zx) = R(z) — C(z). Thus P(x) =
2(—0.1z + 10,000) — (0.000022% — 0.4z + 10,000z + 20,000), and P'(z) =
—0.22 + 10, 000 — 0.0000622 4 0.8z — 10, 000. Combining terms and simplifying
yields P'(z) = 0.6z — 0.000062%, which leads to the critical point z = 10, 000,
and a maximum profit of 9,980, 000.



