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Divisibility is a fundamental concept of number theory and is one of the con-
cepts that sets it apart from other branches of mathematics. Another approach to
divisibility questions is through the arithmetic of remainders, or the theory of con-
gruences as it is now commonly known. The concept was first introduced by Carl
Friedrich Gauss (1777-1855) in his Disquisitiones Arithmeticae; this monumental
work, which appeared in 1801 when Gauss was 24 years old, laid the foundations of
modern number theory.

We say that a is congruent to b modulo m, and we write

a ≡ b (mod m),

if m divides the difference a−b; that is, provided a−b = km or a = b+km for some
integer k. If m |/ (a− b), then we say that a is incongruent to b modulo m and in
this case we write a 6≡ b (mod m). For example, 3 ≡ 24 (mod 7), 19 ≡ −2 (mod 7),
−15 ≡ −64 (mod 7) since 7 | (3− 24), 7 | (19 + 2), and 7 | (−15 + 64), respectively.

The number m is called the modulus of the congruence. Congruences with the
same modulus behave in many ways like ordinary equations. For if a ≡ b (mod m)
and c ≡ d (mod m), then a± c ≡ b± d (mod m) and ac ≡ bd (mod m).

A warning is in order here. It is not always possible to divide congruences. If
ac ≡ bc (mod m), it need not be true that a ≡ b (mod m). For example, 15·2 ≡ 20·2
(mod 10), but 15 6≡ 20 (mod 10). Even more distressing is that we can have ab ≡ 0
(mod m) with a 6≡ 0 (mod m) and b 6≡ 0 (mod m). For example, 6 · 4 ≡ 0 (mod
12), while clearly 6 6≡ 0 (mod 12) and 4 6≡ 0 (mod 12). However, it is permissible to
cancel c from the congruence ac ≡ bc (mod m) provided (c,m) = 1.

Let a be an integer. For any positive integer m, by the division algorithm, we
have a = mq+ r where 0 ≤ r ≤ m− 1, and clearly a ≡ r (mod m). The number r is
called the least positive residue modulo m. Hence, every a is congruent modulo m
to one and only one of the integers in the set {0, 1, 2, ...,m−1}, namely the (unique)
remainder when divided by m. (Hence the justification of Gauss’ phrase arithmetic
of remainders.) It should be clear now that a ≡ b (mod m) if and only if a and
b have the same remainders when divided by m. We say that a and b are in the
same equivalence class modulo m if they have the same remainder. We can think
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of ≡ as behaving almost exactly like = if we do not make a fuss over the difference
between numbers in a particular equivalence class. Hence modulo 10 we see very
little difference, so to speak, between 2 and 12 and 202 and −3002.

We will now see how congruences can be used to solve some problems, that
otherwise might be cumbersome to solve. First note that we can make repeated use
of the useful result that a ≡ b (mod m) and c ≡ d (mod m), imply a ± c ≡ b ± d
(mod m) and ac ≡ bd (mod m). For example, if a ≡ b (mod m), then an ≡ bn (mod
m). Hence, for example, 1017 ≡ 117 ≡ 1 (mod 9) and 1017 ≡ (−1)17 ≡ −1 ≡ 10
(mod 11). Note that 1017 is quite a large number, but we found the remainders
quite effortlessly! We quote the limerick by Martin Gardner about the modulus 10:

There was a young fellow named Ben
Who could only count modulo ten.
He said, “When I go
Past my last little toe,
I shall have to start over again.”

Problems:

1. Let f(x) = 375x5 − 131x4 + 15x2 − 435x− 2. Find the remainder when f(97)
is divided by 11.

2. Prove that a number is divisible by 8 if and only if the integer formed by its
last three digits is divisible by 8.

3. Prove that a number is divisible by 3 if and only if the sum of its digits is
divisible by 3, and that an integer is divisible by 9 if and only if the sum of its
digits is divisible by 9.

Solution: We prove the rule for divisibility by 9. Let N =
∑m
k=0 ak10k where

0 ≤ ai ≤ 9 and am 6= 0. Clearly N ≡ ∑m
k=0 ak (mod 9), since 10k ≡ 1k ≡ 1

(mod 9). Hence N ≡ 0 (mod 9) if and only if
∑m
k=0 ak ≡ 0 (mod 9).2

4. Given the number 2492, double the units digit and subtract it from the number
formed by the other digits. We get 249−2×2 = 245. Repeating this algorithm
we get 24− 2× 5 = 14. Since 14 is clearly divisible by 7, the original number
2492 must be divisible by 7. Prove this rule for checking divisibility by 7.

2We are instinctively using the following rules for congruences which really need proof: for any
modulus m, a ≡ b implies b ≡ a, and a ≡ b, b ≡ c, imply a ≡ c.



Solution: Let N =
∑m
k=0 ak10k where 0 ≤ ai ≤ 9 and am 6= 0. Then

N = 10(
m∑
k=1

ak10k−1) + a0

≡ 10(
m∑
k=1

ak10k−1)− 20a0 (mod 7)

≡ 10(
m∑
k=1

ak10k−1 − 2a0) (mod 7).

Hence N ≡ 0 (mod 7) if and only if
∑m
k=1 ak10k−1 − 2a0 ≡ 0 (mod 7), since

(10, 7) = 1.

5. The residues modulo 7 of the powers of 10, starting with 100 are

1, 3, 2, 6, 4, 5, 1, 3, 2, · · · .

Let w0 = 1, w1 = 3, w2 = 2, w3 = 6, w4 = 4, w5 = 5, w6 = 1, wn+6 = wn for
n ≥ 0. Prove that N =

∑m
k=0 ak10k is divisible by 7 if and only if

∑m
k=0 akwk

is divisible by 7. (Repeat the process until we get an integer that is EASY to
check for divisibility by 7.)

6. Prove that an integer is divisible by 11 if and only if the difference between
the sum of the digits in the odd places and the sum of the digits in the even
places is divisible by 11. (Use congruence modulo 11, otherwise you will have
to establish some other way that 11 | (10k + 1) if k is odd, and 11 | (10k − 1)
if k is even.)

7. Prove that every odd integer other than a multiple of 5 has some multiple that
is a string of 1’s (called a repunit).

8. If a and b are odd integers, prove that a2 + b2 is never a square.

Solution: For any integer c, c2 ≡ 02, 12, 22, or 32 (mod 4). That is, c2 ≡ 0
or 1 (mod 4). The odd squares can only be congruent to 1 modulo 4. Hence
a2 + b2 ≡ 1 + 1 ≡ 2 (mod 4). But 2 is not a square modulo 4.

9. Prove that a2 − 11b2 = 13 has no integer solutions.

Solution: Modulo 11 we have for any solution a and b that a2 ≡ 13 ≡ 2 (mod
11). But the squares modulo 11 are 0, 1, 4, 9, 5, and 3. The number 2 is not



in this list!3 You should try to prove that the above equation has no solutions
by some other method.

10. Prove that 6 | (n3 − n) for any integer n.

11. Prove that 30 | ab(a4 − b4) for ever pair of integers a and b.

Solution: The most efficient way to solve this problem is probably by using
congruence modulo 2, 3, and 5. Consider each number in turn. For example,
for the modulus 5, either 5 | a or 5 | b or, by checking the numbers a ≡ 1,
2, 3, and 4 (mod 5), we have a4 ≡ 1 (mod 5). Similarily for b. Hence
a4 − b4 ≡ 1− 1 ≡ 0 (mod 5). That is, 5 | (a4 − b4).

12. Fermat’s Little Theorem: If p is a prime and p |/ a, prove that ap−1 ≡ 1 (mod
p). (Hint: Show that (k + 1)p − kp ≡ 1 (mod p) for k = 0, 1, 2, · · ·.)

13. Find the remainder when 319566 is divided by 23, and also when divided by
17.4

14. Our present calendar, the Gregorian calendar, was introduced by Pope Gregory
XIII in 1582 to correct a slight error in the Julian calendar (introduced by
Julius Caesar in 46 B.C.) which was gradually accumulating into a significant
error. The Julian calendar is the same as the Gregorian calendar, except
that every year (such as 1900) divisible by 100 is a leap year. Thus the Julian
calendar has three extra days every four centuries. In 1582, the Julian calendar
was in error by 10 days; thus October 5, 1582 (Julian calendar) was converted
to October 15, 1582 (Gregorian calendar). (Actually there is still a slight
error in the Gregorian calendar which will amount to a full day in about 3300
years.) The Gregorian calendar was adopted in 1582 by France and Spain,
but England and her North American colonies waited until 1752 to adopt it
and Russia did not adopt it until after the revolution in 1917. In 1976 J. H.
Conway composed the following limerick to compute the day of the week on
which any date from 46 B.C. can be computed.

3These so-called Pell equations have infinitely many solutions in many cases. For example, the
equation a2 − 1141b2 = 1 has infinitely many positive integer solutions, the smallest one being
a = 1036782394157223963237125215 and b = 30693385322765657197397208.

4Computing large powers ak (mod m) has a real-world use in creating secure codes. In order
to create these codes, it is necessary to find two large primes, say between 100 and 200 digits, and
then the modulus m is the product of these primes. If the primes are kept secret, it is impossible
to factor m even with the fastest computers to retrieve the two primes.



The last of Feb., or of Jan. will do
(Except that in Leap Years it’s Jan. 32)
Then for even months use the month’s own day,
And for odd ones add 4, or take it away*

Now to work out your doomsday the orthodox way
Three things you should add to the century day
Dozens, remainder, and fours in the latter,
(If you alter by sevens of course it won’t matter)

In Julian times, lackaday, lackaday
Zero was Sunday, centuries fell back a day
But Gregorian 4 hundreds are always Tues.
And now centuries extra take us back twos.

∗According to length or simply remember,
you only subtract for September, or November.

J. H. Conway, Jan., 1976

The first stanza gives a date for each month which falls on the same day of the week,
called the doomsday. These dates are January 31/32, February 28/29, March 3 +
4, April 4, May 5 + 4, June 6, July 7 + 4, August 8, September 9 - 4, October 10,
November 11 - 4, and December 12. Note that in 1997 this common doomsday is
Friday. The method to determine the doomsday is explained in the second stanza,
and the century day is defined in the third stanza. On what days of the week did
the following events occur?



January 28, 1986 Disaster of the 25th Apollo Mission.

February 14, 1982 Ocean Ranger sinking.

October 14, 1942 S. S. Caribou sunk.

August 10, 1941 Start of meeting of Churchill and Roosevelt in Placentia
Bay.

June 11, 1929 Probable date of the launching of the Bessie Marie, the
l ast three-mast schooner built in Newfoundland by the
great grandfather of the author.

January 23, 1862 Birthdate of the mathematician David Hilbert.

May 31, 1832 The great mathematician Évariste Galois died at the age
of 20 of peritonitis after a gun dual with pistols at 25
paces.

June 19, 1623 Birth of Blaise Pascal.

December 25, 1642 Sir Isaac Newton was born.

December 21, 1571 Johann Kepler was born in longitude 29◦7′, latitude
48◦54′.

January 25, 1736 Joseph Louis Lagrange was born in Turin, Italy.

October 31, 1517 Martin Luther nailed 95 Articles to the door of Witten-
burg Church.

March 23, 1749 Pierre Simon de Laplace was born at Beaumont-ln-Auge,
a Normandy village in sight of the English Channel.


