Binary numbering

	16	8	4	2	1		32	16	8	4	2	1
0						32						
1						33						
2						34						
3						35						
4						36						
5						37						
6						38						
7						39						
8						40						
9						41						
10						42						
11						43						
12						44						
13						45						
14						46						
15						47						
16						48						
17						49						
18						50						
19	1	0	0	1	1	51						
20						52						
21						53						
22						54						
23						55						
24						56						
25						57						
26						58						
27						59						
28						60						
29						61						
30						62						
31						63						

1.

Representing Rational Numbers

- 2. Find the value of each of the binary expressions
 - (a) 1010101₂
 - (b) 1101101₂
 - (c) 11.01101₂
- 3. Find the binary and ternary representations of
 - (a) 1995 using both the remainder method and the subtraction method.
 - (b) 1996 using both the remainder method and the subtraction method.
 - (c) 0.25
 - (d) 0.2.
 - (e) 1/3.
- 4. Perform the indicated arithmetic
 - (a) $1101_2 \times 10111_2$
 - (b) $1001_2 \times .1_2$
 - (c) $10000_2 \times 1.00101_2$
 - (d) $1101_2 + 10111_2$
 - (e) $1001_2 + 1011.1_2$
 - (f) $10111100_2 100101_2$
- 5. Find the base -2 representation of each of the integers from 1 up to 30.
- 6. Find the factorial representation of each of the integers from 1 up to 30.
- 7. Find a Fibonacci representation of each of the integers from 1 up to 30.
- 8. An increasing sequence 1, 3, 4, 9, 10, 12, 13, ... consists of all those positive integers which are powers of 3 or sums of distinct powers of 3. Fine the 100th term of the sequence (where 1 is the first term, 3 is the second, etc.)

Representing Rational Numbers

9. Each column in the table provides the representation of the numbers from 1 to 12 for a certain system of enumeration. Of course, the entries in column A are decimal representations. Study the pattern, and determine the method of representation. Then replace the ?'s with the appropriate representations.

A	B	C	D	E	F
1	0	1	1	1	1
2	1	10	10	2	110
3	10	100	11	10	111
4	2	101	20	11	100
5	100	1000	21	12	101
6	11	1001	100	20	11010
7	1000	1010	101	21	11011
8	3	10000	110	22	11000
9	20	10001	111	100	11001
10	101	10010	120	101	11110
11	10000	10100	121	102	11111
12	12	10101	200	110	11100
13	?	?	?	?	?
14	?	?	?	?	?
15	?	?	?	?	
16	?	?	?	?	?
17	?	?	?	?	?
18	?	?	?	?	?

10. The floor of a real number x, denoted $\lfloor x \rfloor$ is the largest integer that is not bigger than x. The fractional part of a real number x, denoted $\langle x \rangle$, is defined by $\langle x \rangle = x - \lfloor x \rfloor$. For example, $17\frac{2}{3} = \lfloor 17\frac{2}{3} \rfloor + \langle 17\frac{2}{3} \rangle = 17 + \frac{2}{3}$ and $-2\frac{1}{3} = \lfloor -2\frac{1}{3} \rfloor + \langle -2\frac{1}{3} \rangle = -3 + \frac{2}{3}$. Solve simultaneously:

$$x + \lfloor y \rfloor + \langle z \rangle = 1.1$$

 $\langle x \rangle + y + |z| = 2.2$

$$\lfloor x \rfloor + \langle y \rangle + z = 3.3$$