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This is the second of a series of columns about problems. I am soliciting problems from the
readers of M&I Quarterly. Mathematical problems and challenges have enlivened my life over many
years. In this column, I hope to share some of the ’ah ha’s’ I’ve enjoyed with my students and
friends. I’d like to share your ’ah ha’s’ too. I’m looking for problems with solutions that don’t
depend on highly technical ideas. Ideal problems should be easily understood and accessible to
bright high school students. Their solutions usually require a clever use of a well-known problem
solving technique. For example, double counting, the principle of inclusion/exclusion, the pigeonhole
principle, and Pick’s theorem. Submitted problems need not be original. However, if the problem
appeared in a contest, I want to acknowledge the contest. And, of course, if the name of the creator
is available, that should be included with the problem. If you have a few problems whose solutions
provoke you to say ’ah ha’, please share them with M&IQ readers. Send your problems and solutions
by email to me at hbreiter@email.uncc.edu . In general, we’ll list the problems in one issue and
their solutions in the next issue.

2.1 Longest path problem. Each rectangle in the diagram is 2 × 1. What is the length of the
longest path from A to B that does not retrace any part of itself? Prove that your answer is
the best possible.
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2.2 This captivating problem is due to John Conway, Princeton University. The Wizard Problem.
Two wizards get on a bus, and one says to the other ‘I have a positive number of children
each of which is a positive number of years old. The sum of their ages is the number of this
bus and the product of their ages is my age’. To this the second wizard replies ‘perhaps if you
told me your age and the number of children, I could work out their individual ages’. The
first wizard then replies ‘No, you could not.’ Now the second wizard says ‘Now I know your
age’. What is the number of the bus? Note: Wizards reason perfectly, can have any number
of children, and can be any positive integer years old. Also, consider the same problem but
with the additional assumption that the children are all different ages.



The solutions to the problems in column 1 follow.

1.1 Dinner Bill Splitting Problem.
A dinner bill for s dollars and t cents is to be split as evenly as possible between two couples,
where s and t are two-digit numbers. Since t is odd, the split cannot be exact. However, it
turns out that twice t dollars and s cents differs by just one cent from s dollars and t cents.
Find s and t. What can you say about s and t if we remove the restriction that they are
two-digit numbers.

Solution: First, we’ll state the problem in a more precise way. A dinner bill for s dollars and
t cents is to be split as evenly as possible between two couples, where s and t are two-digit
numbers. Since t is odd, the split cannot be exact. However, it turns out that twice t dollars
and s cents differs by just one cent from s dollars and t cents. Find s and t. Symbolically,
this means that |s.t − 2 · t.s| = 0.01 where s and t are two digit numbers. Let’s convert this
to an integer equation by multiplying by 100:

|100s + t− 2(100t + s)| = 1.

This is equivalent to |98s−199t| = 1 which can be interpreted as the two equations 98s−199t =
1 or 98s − 199t = −1. Before continuing with the problem at hand, let’s consider another
problem whose solution will propel us forward solving the one at hand. The Decanting Problem
is a liquid measuring problem that begins with two ungraduated decanters whose integer
capacities a and b are given. The problem is to determine the smallest amount of liquid that
can be measured and how such amount can be obtained, by a process of filling, pouring, and
dumping. Specifically, there are three actions we can take:

(a) fill an empty decanter,

(b) dump out a full decanter, and

(c) pour from one decanter to the other until either the receiving decanter is full or the
poured decanter is empty.

Let’s look at an easy one first. Let a = 3 and b = 5. A little thought and we see that we
can fill the 3 unit decanter twice, and dump the 5 unit decanter once to get 1 unit of liquid.
Specifically, 2 · 3 − 1 · 5 = 1. Next, suppose the decanters have capacities 5 units and 7
units. A little experimentation leads to the conclusion that 1 unit of water can be obtained by
filling the 5 unit decanter 3 times, pouring repeatedly from the 5 unit to the 7 unit decanter
and dumping out the 7 unit decanter twice. A finite state diagram is helpful to follow the
procedure:

(0, 0) =⇒ (5, 0) =⇒ (0, 5) =⇒ (5, 5) =⇒ (3, 7) =⇒ (3, 0) =⇒ (0, 3) =⇒ (5, 3)

(5, 3) =⇒ (1, 7) =⇒ (1, 0),

where the notation (x, y) means the 5-unit container has x units of liquid and the 7-unit
container has y units.

Notice that the procedure includes 3 fills and 2 dumps, with fills and dumps alternating and
separated by 4 pours. An arithmetic equation representing this is

3 · 5− 2 · 7 = 1.



Notice that not only does the arithmetic equation follow from the state diagram, the reverse
is also true. That is, given the arithmetic equation, it is an easy matter to construct the
state diagram. In the next example, the least amount that can be measured is not 1. Let the
decanters have sizes 15 and 99. Before reading on, can you see why it is impossible to obtain
exactly one unit of water? An equation can be obtained for any sequence of moves. Such an
equation is of the form

15x + 99y = z

where exactly one of the integers x and y is negative, and z is the amount obtained. Now
notice that the left side is a multiple of 3, so the right side must be also. Thus the least
positive amount that can be measured is 3 units. One can also reason as follows: each fill
adds a multiple of 3 units of water, each pour leaves the number unchanged, and each dump
removes a multiple of three units, so the amount on hand at each stage is a multiple of 3.

In fact, the answer is that the least amount that can be measured is the greatest common
divisor of the two decanter sizes, and the Euclidean algorithm tells us how to proceed. Suppose
c = GCD(a, b). The Euclidean algorithm yields a solution to

c = ax + by

where x and |y| are integers exactly one of which is positive and, except in trivial cases, the
other is negative. For convenience, we assume x is positive. Then the solution to the decanting
problem is to fill the a capacity decanter x times, repeatedly pouring its contents into the b
unit decanter. The b unit decanter will be dumped y times, so the total water on hand at the
end is the difference ax− by = c.

Let’s look at another specific example. Again we use the Euclidean Algorithm to solve the
decanting problem. There are two stages. The first stage is a sequence of divisions. The
second is a sequence of ‘unwindings’. For this example, let the decanter sizes be a = 257 and
b = 341. Use the division algorithm to get 341 = 1 · 257 + 84. Then divide 257 by 84 to get
q = 3 and r = 5. That is 257 = 3 · 84 + 5. Continue dividing until the quotient q becomes
0.Thus 84 divided by 5 yields 84 = 16 · 5 + 4. Finally, divide 5 by 4 to get 5 = 1 · 4 + 1.
This completes the first stage. Now to unwind, start with the final division scheme write
1 = 5−1 ·4. Then replace the 4 with 84−16 ·5 to get 1 = 5−1(84−16 ·5). This is equivalent
to 1 = 17 · 5− 1 · 84. Check this to be sure. Then replace 5 with 257− 3 · 84 to get

1 = 17 · (257− 3 · 84)− 1 · 84,

i.e., 1 = 17 ·257−52 ·84. Finally, replace 84 with 341−257 to get 1 = 17 ·257−52(341−257),
which we can rewrite as

1 = 69 · 257− 52 · 341.

Thus, the solution to the decanting problem is to measure out 1 unit of water by filling the
257 unit decanter 69 times, repeatedly pouring its contents into the 341 unit decanter, and,
in the process, dumping out the 341 unit decanter 52 times.

Now back to the bill splitting problem. Imaging that we have two decanters with capacities
a = 199 and b = 98. Notice that GCD(199, 98) = 1. As we did above, we can use the
Euclidean algorithm to find numbers x and y satisfying 199x + 98y = 1 where exactly one
of the numbers x, y is negative. We do this by dividing repeatedly. First, 98 into 199 yields



199 = 2 · 98 + 3, Then 3 into 98 yields 98 = 32 · 3 + 2 and finally we can write 1 = 3− 2. Next
we go to the unwinding stage.

1 = 3− 2

= 3− (98− 32 · 3)

= 3− 98 + 32 · 3
= 33 · 3− 1 · 98

= 33(199− 2 · 98)− 98

= 33 · 199− 66 · 98− 98

= 33 · 199− 67 · 98

Thus, we have the values s = 67 and t = 33. Indeed, 2 · 33.67− 67.34 = −1.

1.2 The 7-11 problem. A man goes into a convenience store, picks out four items, and goes to
check out. The clerk tells him that her cash register is broken, and she will use her calculator.
She proceeds to process the four amounts, and says, “that will be $7.11”. “Wait a minute”,
he protests, “you multiplied the prices together”. She promptly repeats the calculation, this
time adding the four amounts, and exclaims, “there, you owe $7.11, just as I said.” (There
is no tax on food in this state.) There are two questions. First, what is the name of the
convenience store, and what are the four prices? Challenge: try this problem with only three
items. You’ll have to change the $7.11, of course. Then try the problem for just two items.
There are lots of solutions. Find them all. Then try the 7-11 problem with three items and a
total bill of $8.25. Find some other total cost that could be used to solve the three item 7-11
problem.

Solution: The four prices are $1.25, $1.20, $1.50 and $3.16. To see how to get these numbers,
let x, y, u, and v denote the four prices, in dollars. Then xyuv = 7.11 and x + y + u +
v = 7.11. To eliminate the fractional part, multiply each of the unknowns and rename to
get x = 100x, y = 100y, u = 100u, and v = 100v. Thus we have xyuv = 108 · 7.11 and
x + y + u + v = 711. Factor the former to get xyuv = 711 · 106 = 26 · 32 · 56 · 79. It
follows that exactly one of x, y, u, v must be a multiple of 79. For convenience, let’s say
its v. Then v = 79, 158, 237, or 316. We start by examining the last choice, 316. In this
case, xyu = 711 · 106 ÷ 316 = 24 · 32 · 56 and x + y + u = 711 − 316 = 395. Note that
3
√

243256 = 50 3
√

18 > 125, so the sum x+y +u must be at least 3 ·125 = 375. Therefore we try
to minimize x+y+u subject to xyu = 243256. This occurs when we choose x, y, and u as close
together as possible. Hence, let x = 53 = 125, y = 23 ·3 ·5 = 120 and u = 2 ·3 ·52 = 150. Thus
the four prices are x = $1.25, y = $1.20, u = $1.50 and v = $3.16. In the three item problem,
we have the following: 6.00 (1, 2, 3); 8.25 (.75, 2, 5.5); 9.00 (.5, 4, 4.5); 10.80 (.4, 5, 5.4).



1.3 (1997 American High School Math Examination, problem 29) A number is called 7-special if
its decimal representation consists of only two digits, 0 and 7. For example, 7/99 = 0.07 and
7.707 are such numbers. It is possible to write 1 as a sum of 7-special numbers. If so, what is
the fewest number of 7-special numbers whose sum is 1?

Solution: Divide 1 by 7 to get 1/7 = .142857. If we can write 1/7 as a sum of number that
require on the digits 0 and 1, then we can multiply all these summands by 7 to write 1 as a
sum of 7-special numbers. Clearly we can write 1/7 as a sum of 8 numbers that require only
the digits 0 and 1. Try a = .111111, b = .011111, c = .010111, d = .010111, e = .000111,
f = .000101, g = .000101 and h = .000100. Replacing all the 1’s by 7’s results in eight
7-special numbers whose sum is 1.


