CHAPTER 10
VARIABLES, MATH CAPABILITY, PROGRAM FLOW WORD COMMANDS
AND REPORT GENERATION

This chapter discusses variables, math capability, program flow word commands and report gener-
ation, all programming procedures that can be used within programs and subprograms. These same

procedures are also used in writing custom macros which will be discussed in chapter 11 “Custom
Macros”.

Variables are symbolic representations of specific numerical values that are assigned to them. Vari-
ables are used to input data into programs and subprograms in order to manipulate data and ma-
chine control commands within a program level or levels.

Math capability is the execution of the mathematical functions addition, subtraction, multiplication,
division and equals to within programs/subprograms.

Program Flow Word Commands are word commands that can be used to manipulate the order of
data processing within a program/subprogram.

Report Generation is the output of data such as comments, text, numbers and variables from pro-
grams/subprograms to external devices, such as printers and tape punch units.

10-1

10.1

VARIABLES

Variable is the term given to the concept of symbolic representation of a specific numerical
value. Variables have numerical values assigned to them. Variables are used to input data into
programs/subprograms and to manipulate data and machine control commands within a pro-
gram level or levels.

Call level has a significant impact on variable use and function when used in custom macros.
Different types of variables exist to facilitate communication and operation among various
macro call command levels. SEE Chapter 11 for more information on variable use in custom
macros.

Precision

The precision of variables used in custom macro is limited to an eight (8) place decimal
floating point number. In this system, the magnitude of a number effects its precision.
Precision is the number of digits to the right of the decimal. The limits of magnitude and
precision are as follows. '

Magnitude

Maximum: 99999999,
Minimum: -99999999.

Magnitude/Precision

Maximum: +.99999999
Minimum: +99999999.

A floating point system allows the control to deal with large magnitude, low precision
decimals as well as with small magnitude, high precision decimals with a minimum of
memory use. If the use of two or more variables in combination is encountered and they
are not of equal precision, calculation uncertainty can result; but the amount the
calculation is off .5 is minute. Remember, precision is limited to an eight place (total)
decimal system.

The machine control system consists of numerical control (NC), program control (PC) and
interface. Variables have different precision among PC and NC. The PC can access variables
with limited precision. The PC effectively reads a fix (section 10.2.2) of a number or
truncates the decimal portion, leaving only the integer portion. Therefore, if a program
command must pass a decimal quantity to the PC, it will be multiplied by 10,000. This is
done in the Monarch probe cycles and it is not likely to appear in a standard program.

Variable Types

With the Fanuc 11 control, there are three types of variables.

® local Variables. There are 33 local variables (#1 through #33). These 33 variables
are common to all levels when used in a program/subprogram, but limited to each
level when used in a custom macro. SEE Chapter 11.

® Common Variables. There are 100 variables in an 11MA control (#100 through #1489,
#500 through #549) that are commcen to all levels. In an 11MF control, there are 200
variables (#100 through #199, #500 through #539) that are common to all levels.

® System Variables. There are numerous variables common to all levels.

10-2

10.1.1 Local Variables

Local variables are used to assign arguments in programs or subprograms. Up to 33
variables may be used. See Chapter 11 for use of local variables with a custom macro.
All local variables are reset to vacant (or empty) on an M2 or M30 command, or on a
Clear, E-Stop Reset or Retract pushbutton operation.

NOTE: Not all local variables need to be programmed. If a local variable is not set
within the program, it is said to be “vacant” (or empty). If a variable is “vacant”, it has
no value. This does not mean the variable is zero. Zero is a value. Vacant means

empty.

The variable #0 is always vacant and can not be set to any other value. A local
variable is set equal to vacant if it is not set equal to a value within a given program. If
the programmer wishes to test a variable for vacancy, it can be tested with an IF
statement to see if it is equal to #0. This process would be useful for error checking in
certain types of programs.

When local variables are used within the program itseif, they are designated by #N
where N ranges from 1 through 33. Local variables in a program can be assigned a
value in a number of ways.

NOTE: When referring to the # sign, it is called ‘pound’. #1 is referred to as ‘pound

one’.
1. Avariable can consist of the code # and a number, i.e. #1, #2, #3, etc. up to #33.

2. A variable can consist of a formula, i.e. #1=[#1+1.]. In this example, one is
added to the current value in variable #1 and resets variable #1 to this amount.

When local variables are used in the macro call block, they are assigned by letter
address. SEE Chapter 11 for more information.

10-3

10.1.2 Common Variables

Common variables can be used for data manipulation within the main program or sub-
program without regard to level. They may be used common to or among subpro-
gram or program levels.

There are100 common variables on the 11MA control and 200 common variables on
the 11MF control that are common to all program/subprogram levels. #100 through
#149 (11MA control) or #100 through #199 (11MF control) are cleared at power
down. #500 through #549 (11MA control) or #500 through #599 (11MF control) are
not cleared at power down..

A. Reserved Common Variables

#100 through #199 and #554 through #569 for Conversational Automatic
Programming (11MF control)

#500 through #533 for Monarch’s probe cycles

#534 through #549 for Monarch’s MCL, used on all machines. NOTE: Some of the
variables reserved by the Monach MCL can be utilized by the end user.

#535 is always equal to the absolute pocket of the tool in the spindle. This is
usually used in conjuction with the M12 command. SEE chapter 6.

#536 is the value to adjust all tool length offsets, scaled by 10,000 when running in
inch, or scaled by 1000 when running in metric. This is used with the M950 com-
mand. SEE chapter 6, M350 command and the Monarch Probe Manual, ‘Delta Z°
cycle for more information.

#537 is the last value the tool offsets were adjusted by the M350 command.

B. Labeled Variables

A name up to eight (8) characters in length (with no spaces) may be assigned to
each of twenty variables (#500 through #519). These names are only significant
for display on the CRT screen under ‘SETTING, Common Variables’. These variables
must be indexed by numerals for our program use. A name may be assigned to a
single variable or to a string of variables using the following format.

Twenty (20) non-volatile variables #500 to #519 are reserved for Monarch
Cortland’s probe cycles. However, if you do not have Monarch’s probing cycles,
feel free to use these.

SETVNSOO[BOREDIA,RPLANE,ZDEPTH,OFFSET]
Where SETVNS500 means set variables starting with #500. #500 is BOREDIA, #501

is RPLANE, #502 is ZDEPTH. The commas between labels tell the control to move
to the next variable.

10-4

10.1.3 System Variables

System variables serve as a means of communication of NC or machine data to pro-
grams and subprograms. These variables are shared between the user and Monarch
Cortland.

There are numerous variables common to all levels. Some system variables are given in
the following charts:

® Chart 10-1: Miscellaneous System Variables
¢ Chart 10-2: System Variables for Work Offsets
® Chart 10-3: System Variables for Tool Offsets

if needed, additional system variables are given in Fanuc’s Operator Manual.

Reserved System Variables

#2090 through #2099, #2290 through #2299, #2490 through #2499 and #2690
through #2699 for Monarch'’s probe cycles.

All variables related to the G54 work coordinate system.

Special System Variables

Operator Messages

System variable #3006 can be used to activate operator messages that force the
message screen and stop the machine.

N10 #3006 = 1(message)
The above line demonstrates how a message can be put on the screen to guide

the operator through a sequence, such as automatic setup. The message is
placed between the parenthesis. It can be up to 26 characters long.

Alarm Messages

The control has the capability to put an alarm number and message on the screen
with a flashing alarm signal on the CRT. This will also stop the machine.

N10 #3000 = xx(alarm message)
The above demonstrates how an alarm message can be forced.

xx is the alarm number, It can range from 10 to 1000. The alarm message is put
between the parenthesis and can be up to 26 characters long.

Single Block Suppression

Single block suppression will allow you to make a portion of a program,
subprogram or a macro execute like one block with system variable #3003.

The following subprogram will run in a single block:

10-5

O10(HOLE)

N10 #3003 =1

N20

N30 NC statements
N40

N50 #3003 =0

N60 M99

#3003 = 1 turns on single block suppression
#3003 = - turns off single block suppression

In other words, all the blocks between #3003 =1 and #3003 = 0 will be executed
as one block.

The above message and single block suppression commands are used by Monarch’s
probe cycles.

10-6

CHART 10-1: MISCELLANEOUS SYSTEM VARIABLES

These values could be used to determine the current position of an axis, or the value of
the active tool offset.

: READING IN
A POSITIONAL INFORMATION DURING
MOVEMENT

#5001 X axis block end coordinate

#5002 Y axis block end coordinate

#5003 Z axis block end coordinate Possible

#5004 W axis block end coordinate

#5005 B axis block end coordinate

#5021 X axis present coordinate

#5022 Y axis present coordinate FROM

#5023 Z axis present coordinate MACHINE ZERO Impossible

#5024 W axis present coordinate

#5025 B axis present coordinate

#5041 X axis present coordinate

#5042 Y axis present coordinate WORK

#5043 Z axis present coordinate OFFSET Impossible

#5044 W axis present coordinate EFFECTIVE

#5045 B axis present coordinate

#5061 X axis skip signal position

#5062 Y axis skip signal position

#5063 Z axis skip signal position Possible

#5064 W axis skip signal position

#5065 B axis skip signal position

#5081 X axis tool offset value

#5082 Y axis tool offset value

#5083 Z axis tool offset value Impossible

#5084 W axis tool offset value

#5085 B axis tool offset value

#5101 X axis servo position deviation

#5102 Y axis servo position deviation

#5103 Z axis servo position deviation Impossible

#5104 W axis servo position deviation

#5105 B axis servo position deviation

10-7

CHART 10-2: SYSTEM VARIABLES FOR WORK OFFSETS (#5221 - #5325)

These values could be used to change or look at the values in a particular workpiece
offset.

Work offsets consist of five (5) available work coordinate systems G55 through G59 (2
through 6). A sixth work coordinate system G54 is restricted.

. WORK
VARIABLE NO. VALUE COORDINATE
SYSTEM

#5221 X work zero point offset value of the 1st axis G54
#5222 Y work zero point offset value of the 2nd axis

#5223 Z work zero point offset value of the 3rd axis

#5224 W work zero point offset value of the 4th axis

#5225 B work zero point offset value of the Sth axis

#5241 X work zero point offset value of the 1st axis G55
#5242 Y work zero point offset value of the 2nd axis

#5243 Z work zero point offset value of the 3rd axis

#5244 W work zero point offset value of the 4th axis

#5245 B work zero point offset value of the 5th axis

#5261 X work zero point offset value of the 1st axis G56
#5262 Y work zero point offset value of the 2nd axis

#5263 Z work zero point offset value of the 3rd axis

#5264 W work zero point offset value of the 4th axis

#5265 B work zero point offset value of the 5th axis

#5281 X work zero point offset value of the 1st axis G57
#5282 Y work zero point offset value of the 2nd axis

#5283 Z work zero point offset value of the 3rd axis

#5284 W work zero point offset value of the 4th axis

#5285 B work zero point offset value of the 5th axis \
#5301 X work zero point offset value of the 1st axis G58
#5302 Y work zero point offset value of the 2nd axis

#5303 Z work zero point offset value of the 3rd axis

#5304 W work zero point offset value of the 4th axis

#5305 B work zero point offset value of the 5th axis

#5321 X work zero point offset value of the 1st axis G59
#5322 Y work zero point offset value of the 2nd axis

#5323 Z work zero point offset value of the 3rd axis

#5324 W work zero point offset value of the 4th axis

#5325 B work zero point offset value of the Sth axis

10-8

CHART 10-3: TOOL OFFSETS

A programmer may want to adjust tool offsets to compensate for tool length or diameter
wear using a result from a probe cycle, i.e. contour mill a counterbore, probe a diameter,
adjust cutter radius compensation or re-cut a counterbore.

~

LENGTH (Hxx) RADIUS (Dxx)
Offset
Number Geometry (TLG) Wear (TLW) Geometry (TRG) Wear (TRW)

Comp Comp Comp Comp
1 #2001 #2201 #2401 #2601
2 #2002 #2202 #2402 #2602

3

o

[]
99 #2099 #2299 #2499 #2699

NOTE: The 11MA control only has variables #2001 through #2099. Machines with the probe
option or 11MF control have all four columns of variabies as shown.

10-9

10.2 MATHEMATICAL CAPABILITY

The Fanuc 11 control is capable of executing mathematical commands. These math commands
are included within the enhanced programming language user macro. Algebraic expressions
or expressions consisting of ordered operations with variables and/or constants, math oper-
ators and functions are the means of numerical data calculation available to the user.

The mathematical capability consists of:
. Math Operations
. Mathematical Functions
. Algebraic Expressions
10.2.1 Mathematical Operations(+ - */ =)
Addition, subtraction, multiplication and division can be done by the control during

the execution of a program. Listed below are these mathematical operations and the
appropriate programming symbol/character for each.

SYmBoLv/ MATHEMATICAL
CHARACTER OPERATION
+ ' Addition
- Subtraction
* Multiplication
/ Divisionv
= Equal To

Expressions using mathematical operations, variables, constants and functions may be
used together with letter addresses as program commands.

Example: N10 GO X[#1 + #2] .

In block N10, (GO) selects positioning mode, (X[#1 + #2]) positions the X axis to
the position equal to the value in variable 1 plus the value in variable 2.

Given: #1=1, #2 =10 therefore X will move to 11 in the selected units system.
Operations may also be used in expressions or formula which equate (=) one left side
of an expression to a right side expression. Constants, variables, functions and oper-

ators may be used.

Example: #1=#2 + #1

10-10

10.2.2 Mathematical Functions

A function is a multi-letter word which does a given mathematical routine on a

specified argument and returns the numeric value to the program. Functions are in
the form, ABC[#]].

Where: ABCis a multi-letter word for a specified function, such as SIN, TAN, ABS, etc.

- [#j] is argument or object of function enclosed within open and closed

brackets []. Functions may be included in algebraic expressions or word

address commands.

Sixteen mathematical functions which are summarized in Figure 10-4 are available to
the programmer.

INPUT
FUNCTION DESCRIPTION EXAMPLE #1 | ANSIERS
#II#K
#i = SIN[#J] Sine (degrees) #i = SIN[#{] 45 .707
#i = COS[#i] Cosine (degrees) #i = COS[#i] 45 .707
#i = TAN[#] Tangent (degrees) #i = TAN[#]] 45 1
#i = ATAN[#j/#k] |ArcTangent(degrees) #i = ATAN[#i/#k] 1 45°
#i = SQRT[#i] Square Root #i = SQRT[#{] 4 2
#i = ABS[#]] Absolute Value: #i = ABS[#i) -4 4
#i = BIN[#i] Conversion from BCD to BIN #i = BIN[#] 99 153
BCD = Binary Coded
Decimal
BIN = Binary
#i = BCD[#i] Conversion from BIN to BCD #i = BCD[#] 153 99
#i = ROUND[#i] Rounding (word address #i = ROUND{#j] 4.6 5.0
rounded to least input #1 = ROUND{#i] 461151 46115
increment)
#1 = FIX[#j] Truncate (disregard decimal #i = FIX[#]] 4.6 4.0
portion of #j)
#i = FUP[#{] Round up to nearest integer #i = FUP[#i] 4.4 5.0
#i = LN[#j] Natural Log #i = LN[#]] 1 0
#i = EXP[#{] Exponent with base #i = EXP[#] 1 2.718-
2818
FIGURE 10-4

MATHEMATICAL FUNCTIONS AVAILABLE TO THE PROGRAMMER

10-11

10.2.3 Algebraic Expressions

In the 11M control, constants, variables, mathematical operations and functions may
be combined to form algebraic expressions in programs.

Algebraic expressions may contain:

1. Areal orinteger constant. Example: real = 10.1; integer = 10
An integer has an understood decimal point.

2. Avariableindex. Example: #1

3. Mathematical Operation. Example #1=1.+1.

4. Functions. Example: #1=SIN[45]

5. Delimiters which are open and close brackets [].
Example: #1=#1*[#2 + #3]

These delimiters assign a priority or order of operation to the algebraic expression.
Operation is from inner most bracket to outer most bracket. The number of left
brackets must equal the number of right brackets in an expression. Up to five (5) levels
of brackets including the brackets used in functions may be included.

Order of operation is further controlled by execution sequence of various mathe-
matical operations contained within the expression.

. Functions

. Multiplication
. Division

. Addition

. Subtraction

In the absence of brackets, the above operations control the order of processing.

Order of operation affects both sides of an algebraic expression. Left side can be either
asingular variable or an index variable, i.e. #1= or #[#1 + #2] =

Right side can be either singular or multiple expressions consisting of constants,
variables and math operators, i.e. #1 = SIN[[[#2 + #3]*#4 + #5]*#6]

Where:

—
.

[#2 + #3)
2. Resultof 1, multiplied by #4
[#2 + #3]*#4]
3. Resultof 2, plus #5
([#2 + #3]*#4 + #5]
4. Result of 3, multiplied by #6
[[[#2 + #3]*#4 + #5]*#6]
5. Result of 4 as argument for function SIN
SIN[[[#2 + #3]*#4 + #5]*#6]
6. #1equatedtoresultofS

10-12

Below is an example of three fold nesting.
#{#31*#18 + #30*[1-#18]] = #[#30*[1-#18]*#33] + #[#30*#18] + #[#32*[1-#18]]

Note: Number of math operators should be one less than the number of constants
and variables.

Further Considerations

The Fanuc 11m control processes math statements, and conditional branches very fast,
almost too fast. If you are trying to single step through a program in which several
lines in a row contain math statements, conditional branches, variable assignments,
macro or subprogram call blocks, etc, one push of cycle start will probably cause
several blocks to execute. This is usually not a probiem unless you want to be able to
stop after each to correct answers.

Example:

010(M80 example 1)
N10 G90 GO G54

NC Statements

N80 G28 20

N90 #1 = SIN[45]

N100 #2 =[[15. + 2.]*#1]
N110 GS0 GO X#2

Program Continues

In The above example if you were running in single and were sitting at N80 and
pressed cycle start, the control would exectue blocks N80 through N100 all at once.
Again this is not a problem unless you want to stop after each block. To do that you
would have to insert an M80 command after each math statement as shown below.

010(M80 example 1)
N10 G90 GO G54

NC Statements

N80 G28 Z0

N85 M80

N90 #1 = SIN[45]

N9S M80

N100 #2 =[[15. + 2.]1*#1]
N105 M80

N110G90 GO X#2

Program Continues
Then once the program is proven out you can take out the M80 commands.

Here is an example where an M80 is needed to slow down the control to ensure that
the correct tool! offset is activated.

10-13

0O8973(SAFE START)
N10 GO0 G90 G54
N20 G49 Z0 HO

N30 G28 20
N40X10.Y10.T20M6
N50M80
N60S1000M3
N70G43H#5352.1

Program Continues

In this example the #535 is used for the H offset number (tool length offset). #535 is
always equal to the pocket number of the tool in the spindle. It is set by Monarch's
interface. In this example, the M80 has to be between thetool change and the G43
block. If it is not, the control will read ahead and substitute the #535 value in block
N70 before the tool change is made. If that happened the tool length offset that is
activated when the machine acts on block N70 would be the one of the previous tools
in the spindle. As you can visualize, this could be disastrous.

The rule about using an M80 in a part program is this; it should be used anytime you
will be looking at a variable controlled by an external device (the machine is con-
sidered an external device). Examples would be an axis position, tool in the spindle,
probe trip position, etc.

If you are not sure if you need an M80 command, putitin. It will not hurt anything.

10-14

10.3 PROGRAM FLOW CONTROL COMMANDS

Program flow within a given program level can be controlled by unconditional or conditional
branch commands and/or iteration commands.

10.3.1

10.3.2

Unconditional Branch

An unconditional branch is a statement which forces a jump from the current active
block (containing the unconditional branch) to the specified block within the program

level.

Example: GOTO10
In this example, the program unconditionally jumps to block N10.
Conditional Branch

Conditional branch is a statement which if a condition is true, forces a jump from the
current active block (containing the conditional branch) to the specified block within
the program level. If the conditional branch is false, the program processes and acts
upon the next block.

. Example: IF[#1EQ#2]GOTO10

In this example, the program would jump to block N10 if #1 is equal to #2. If #1 is not
equal to #2, the next block would be processed and acted upon.

IF[#1EQ#2] is considered a conditional expression. The evaluation of which results in
either a true (success) or false (failure) answer.

Logical operators available to the programmer are:

EQ equalto

NE notequal to

GT greater than

LT lessthan)

GE greater than or equal to
LE less than or equal to

So a conditional expression consists of a left term which is compared via logical
operators to a right term. These terms may consist of constants, variables or functions.

10-15

10.3.3 lteration (repetition) using IF and GOTO Statements

Iteration or repetition may be a requirement for many programs or subprograms.
Note: Where operational speed is a concern, an unconditional and/or conditional
branch, counter and counter increment may not be desired. Refer to the section
further along on WHILE DO statements, they run faster.

Example 1:

N10 #32 = 10 (number of rep)
N20 #33 =0 (initialize counter)
N30 IF[#33EQ#32]G0OT0220

NC statements

N200 #33 = #33 + 1
N210 GOTO30
N220 program continues

Example 2: Iteration loop counts up with a conditional and an unconditional
branch. In this example, the counter is initialized and incremented.

N10 #32 = 10 (number of reps)
N20 #33 =0 (initialize counter)
N30 #33=#33+1

NC statements
N210 IF[#33LT#32]GOTO230

N220 GOTO30
N230 Program continues

Example 3: Iteration loop count down with a conditional and an unconditional
branch. In this example, the counter isinitialized and decremented.

N10 #32 = 10 (number of reps)
N20 IF[#32EQQ0]GOT0220

NC statements
N200 #32 = #32-1
N210 GOTO20

N220 program continues

Example 4: Iteration loop count down with a conditional branch. The counter is
initialized and decremented.

N10 #32 =10 (number of reps)
N20 #32 = #32-1

NC statements

10-16

N200 IF[#32GT0]GOTO20
N220 Program continues

Example 5: Sample program to drill a series of holes using IF and GOTO state-
ments to create a loop. This cycle will drill 10 holes at 1.0 inch increments along
the X axis, starting at X1.0 Y1.0.

O0015(IF STATMENT)

N10 G90 GO G54

N20 G49 Z0 HO

N30 G28 Z0 M8

N40 G60 W-10.

N50 G55 X1.Y1.T1 M6

N60S1000 M3

N70G43 2.1 H1

N80 G99

N90 G81 R.1 Z-1. F10.

N100 #24 = 10. (NUMBER OF HOLES)
N110 #32=1. (INITIALIZE COUNTER)
N120 IF #32 GE #24 GOTO 160
N130 G91 X1.

N140 #32=#32+ 1.

N150GOTO 120

N160 G90 GO G54

N170 G49 HO 20

N180 G28 20

N190 M30

N10 through N90 are standard NC programming blocks.

N100

N110

N120

N130

N140

N150

N160

sets #24 equal to 10, the total number of holes to be drilled.

sets #32 =1 to initialize the counter. It is set to 1 because one hole has
already been drilled in block N9O.

is the beginning of the loop. The control will repeat blocks N120 through
N150 until the condition in block N120 is true (#32, the counter is greater
than or equal to #24, the total number of holes.) If the condition is true,
the control will execute the GOTO command in this block and jump to
N160 to continue with the program.

puts the control in incremental mode (G91) and moves the X axis 1.0 inch
then drills the next hole.

adds one to the counter #32

GOTO 120 sends the control back to block N120 to see if the condition in
block N120 is true yet.

the program continues.

NOTE 1: Air tapping (G184) will not work in this example due to its use of
common variables. :

10-17

NOTE 2: The variables for this example and the remaining examples in this
chapter were selected because of their letter representation when used as a
custom macro. SEE the example in Chapter 11 "Custom Macro”.
When executing GOTO statements, operational speed is reduced if a very long
program is being run. This occurs because the control searches forward to the end of
the program then reviews the program from the top. So in some cases an IF structure
for aloop may be time intensive.

In cases where time is a consideration and loops are nested to three (3) or less levels a
WHILE DO statement should be used.

10.3.4 Iteration (repetition) using WHILE DO Statements

WHILE DO statements should be used where time is a consideration and loops are
nested to three (3) or less levels.

With the use of a WHILE DO command, a number of.blocks may be repeated.
Example:

WHILE[conditional expression]DO1

NC statements

.END1

WHILE[conditional expression]DO2

i\lC statements

END2

WHILE[conditional expression]DO3

NC and macro statements

END3
RULES
1. WHILEDO 1, 2 and 3 are the only indexes allowed.
2. WHILE DO index and END index must exist for each DO condition.
3. WHILE DO statements may be nested to 3 levels.
WHiLE[conditional exp]DO1
WHILE[conditional exp]DO2
WHILE[conditional exp]DO3
END3

END2
END1

10-18

4. WHILE DO ranges cannot intersect

WHILE[]DO1
WHILE[]DO2
END1
END2

5. Abranch cannot be made from outside to inside a WHILE DO range

GOTO10
WHILE[]DO1
N10

END1

6. Abranch can be made from inside to outside a WHILE DO range

WHILE[]DO1
GOTO 10

END1

N10

7. Subprograms of programs can be called from within a WHILE DO range. WHILE
DO statements can be nested up to three more levels in the called subprogram.

WHILE[]DO1
M98 P1000
G67

. END1

EXAMPLES OF WHILE DO STATEMENTS

Example 1: Lets take the same example we used with the IF statement to drill a series
of holes and re-write the program to use the WHILE DO statement. This cycle will drill
10 holes at 1.0 inch increments along the X axis, starting at X1.0 Y1.0.

00015(WHILE-DO)

N10 G390 GO G54 _

N20 G49 Z0 HO

N30 G28 Z0 M8

N40 G60 W-10.

NS0 G55 X1.Y1.T1 M6

N60 51000 M3

N70G43 2.1 H1

N80 G99

N90 G81 R.1 Z-1. F10.

N100 #24 = 10. (NUMBER OF HOLES)
N110 #32 = 1. (INITIALIZE COUNTER)
N120 WHILE [#32 LT #24] DO1

N130 G91 X1.

N140 #32 = #32 + 1.

N150 END1

N160 G90 GO G54

N170 G49 HO Z0

10-19

N180G28 Z0
N190 M30

N10 through N90 are standard NC programming blocks.

N100

N110

N120

N130

N140

N150

N160

sets #24 equal to 10, the total number of holes to be drilled.

sets #32=1 to initialize the counter. It is set to 1 because one hole has
already been drilled in block N90.

is the beginning of the WHILE DO loop. The control will repeat the blocks
between the WHILE and END commands until the condition in the WHILE
block is false. In this example blocks N130 and N140 will repeat as long as the
counter #32 is less than #24, the total number of holes.

puts the control in incremental mode (G91) and moves the X axis 1.0 inch
then drills the next hole.

adds one to the counter #32
END1 marks the end of the WHILE DO loop. The control goes back to block
N120 to see if the loop should run again. If the condition in N120 is false (#32

is no longer less than #24) the control will move on to block N160.

the program continues

NOTE: Air tapping (G184) will not work in this example due to its use of local
variables.

Example 2: Example 1 used two local variables and one WHILE DO loop to make a row
of holes in the X axis. Let’s take that program and add a couple more variables and a
second WHILE DO loop, nesting the first one, to make the machine make a grid of
holes. This cycle will drill 50 holes at 1.0 inch increments; 10 rows of five holes along
the Y axis, starting at X1.0 Y1.0.

00015(GRID)

N10 G90 G0 G54

N20 G49 20 HO

N30 G28 Z0 M3

N40 G60 W-10.

N50 G55 X1.Y1.T1 M6

N60 S1000 M3

N70G43Z.1 H1

N80 G99

N90 G81R.12Z-1. F10.

N100 #24 = 10.(NUMBER OF HOLES IN X AXIS)

N110 #21=1.(INCREMENT BETWEEN HOLES IN X AXIS)
N120 #32 = 1.(INITIALIZE COUNTER FOR X AXIS)

N130 #25=5.(NUMBER OF HOLES IN Y AXIS)

N140 #22 = 1 (INCREMENT BETWEEN HOLES IN Y AXIS)
N150 #33 = 1.(INITIALIZE COUNTER FOR Y AXIS)

N160 WHILE [#32 LE #24] DO1

N170 IF #32 EQ 1 GOTO190

N180 GO0 Y 1. G91 X#21

10-20

N190 WHILE [#33 LT #25] DO2
N200 G91 Y#22

N210 #33=#33+1

N220 END2

N230 #33 = 1.(RESET Y AXIS COUNTER)
N240 #32=#32+1.

N250 END1

N260 G90 GO G54

N270 G49 HO Z0

N280 G28 Z0

N290 M30

N10 through N90 are standard NC programming blocks.

N100

N110

N120

N130

N140

N150

N160

N170

N180

N190

N200

N210

N220

N230

N240

sets #24 equal to 10, the total number of holes to be drilled in the X axis.
sets #21=1. This is used for the increment between holes along the X axis.

sets #32=1 to initialize the counter used for the X axis holes. It is set to 1
because one hole has already been drilled in block N90.

sets #25 = 5, the total number of holes to be drilled in the Y axis.

sets #22=1. This is used for the increment between holes along the Y axis.
sets #33 = 1 to initialize the counter used for the Y axis holes.

is the beginning of the first WHILE DO loop. This loop controls the number
of rows machined along the X axis. The machine will repeat the blocks N170
through N240 as long as the counter #32 is less than or equal to #24, the

total number of holes along the X axis.

is a conditional branch that is needed to jump past the move in block N180 if
the first row along the X axis is being machined.

(G90 Y1. G91 X#24) will move the machine to an absolute Y axis position of 1.
inch and an incremental X axis position of 1. inch.

is the beginning of the second WHILE DO loop. The control will repeat the
blocks N200 through N210 as long as the counter #33 is less than #25, the
total number of holes in the Y axis.

puts the control in incremental mode (G91) and moves the Y axis the value in
#22 then drills the next hole.

adds one to the Y axis counter #32.

END2 marks the end of the second WHILE DO loop. The control goes back to
block N190 to see if the loop should run again. If the condition in N190 is
false (#33 is no longer less than #25) the control will move on to block N230.

resets the Y axis counter back to 1.

adds one to the X axis counter #33.

10-21

N250 END1 marks the end of the first WHILE DO loop. The control goes back to
block N160 to see if the loop should run again. If the condition in N160 is

false (#32 is no longer less than or equal to #24) the control will move on to
block N260.

N260 the program continues

NOTE: Air tapping (G184) will not work in this example due to its use of local
variables.

In Example 2 the WHILE DO statements are nested as follows:

WHILE DO1
STEP 1
WHILE DO2
STEP 2
END2
STEP3
END1

Example 3: Now lets take the previous example (example 2) and put the WHILE DO
section into a subprogram so it can be used more than one place in the program.

00015 (MAIN PROGRAM)

N10G90 GO G54

N20 G49 Z0 HO

N30 G28 Z0 M8

N40 G60 W-10.

NS0 G55 X1.Y1.T1 M6

N60S1000 M3

N70G43 Z.1 H1

N80 G99

N90 G81 R.1Z-1. F10.

N100 #24 = 10. (NUMBER OF HOLES IN X AXIS)

N110 #21= 1. (INCREMENT BETWEEN HOLES IN X AXIS)
N120 #25=5. (NUMBER OF HOLES IN Y AXIS)

N130 #22 = 1. (INCREMENT BETWEEN HOLES IN Y AXIS)
N140 M98 P00O16

N150 G90 GO G54 .

N160 G49 HO Z0

N170G28 20

N180 G55 X1.Y1.T2 M6

N190 51000 M3

N200 G43 Z.1 H2

N210 G99

N220 G86 R.1 Z-1. FO.

N230 #24 = 10. (NUMBER OF HOLES IN X AXIS)

N240 #21 = 1. (INCREMENT BETWEEN HOLES IN X AXIS)
N250 #25=5. (NUMBER OF HOLES IN Y AXIS)

N260 #22 = 1. (INCREMENT BETWEEN HOLES IN Y AXIS)
N270 M98 P00 16

N280 G90 GO G54

N290 G49 HO Z0

10-22

N300 G28 20
N310 M30

00016 (GRID SUBPROGRAM)
N10 #32=1.

N20 #33=1.

N30 WHILE [#32 LE #24) DO1
N40 IF #32 EQ 1GOTO60

N50 G90 Y1. G91 X#21

N60 WHILE [#33 LT #25] DO2
N70 G91 Y#22

N8O #33 = #33 + 1

N90 END2

N100 #33 = 1.(RESET Y AXIS COUNTER)
N110 #32= #32+ 1.

N120 END1

N120 M99

NOTE: Air tapping (G184) will not work in this example due to its use of local
variables. ‘

In this example (example 3) we took the WHILE DO loops and the counter initialization
(#32 and #33) out of the part program and put them in a subprogram (00016). The
variables are set just before the call of the subprogram. In doing this the grid routine
can be used many places in one or more programs.

This way of programming, setting variables and calling a subprogram can be even

further simplified by using a custom macro call instead of a subprogram call. Refer to
Chapter 11 for this program modified to work with a custom macro.

10-23

10.4 EXTERNAL DATA OUTPUT COMMANDS

The 11M control is capable of external data output of character strings (comments, text, num-
bers) and formatted numerical data (variables). This data is output via RS 232C interface to
external devices, such as printers and tape punch units. With correct parameter settings and
equipment, program generated data may be easily output to any external device.

Command words that control data output by programmed instruction are:

POPEN
DPRNT
BPRNT
PCLOS

10.4.1

Command Words
POPEN

This command opens the output process by connecting processing of output data to
external 10 units prior to executing data output commands.

A POPEN command should be specified prior to beginning a set or group of data
output commands.

DPRNT

This command will output specified characters and numeric data in 1SO code. Numeric
values are assumed to consist of eight digit floating point decimal numbers.

The following formats apply:
DPRNT[argument]
DPRNT specifies decimal (ISO) code output.
[argument] specifies included characters and numeric characters.

A line feed carriage return is output by the data output command DPRNT[] after the
last character in the included string is output.

Line length is determined by maximum line length of the target output device.

EXAMPLE 1: Output of Character String with DPRNT. The program would look
like this. The * sign denotes a space code to be output.

DPRNT[This*is*a*example*of*report*generation*on* the*11M*control]
The output would look like this;

This is a example of report generation on the 11M control

10-24

EXAMPLE 2: Output of Character String and Variable Numerical Data
The program would look like this:

DPRNT[X#2([34]Y #5[34]]
DPRNT[BORE#2[34]]

Where:
Xis-acharacter
#Nisavariable
[34] is a format specification

3 specifies number of digits to the left of the decimal.
4 specifies number of digits to the right of the decimal.

[] are required to delimit the expression.
' The output would look like this.

X 1.0001Y 1.0003
BORE 1.0001

BPRNT

The BPRNT command will output specified characters on numerical data in binary
code. This is not usual for most printer/output cases. SEE Fanuc’'s operation/program-
ming manual for details.

PCLOS

This command closes the output process by releasing processing connection to
external output units.

A PCLOS command shall be specified following the last data out put command.

NOTE: Without fail, specify POPEN and PCLOS as a pai; within a given output
sequence.

EXAMPLE:
POPEN(]
DPRNT[]

PCLOS
normal NC program

10-25

COMPOSITE EXAMPLE OF EXTERNAL DATA OUTPUT

(NOTE: Line numbers are for reference use only and are not part of the program)

Line #
1 POPEN
2 DPRNT[]
3 DPRNT[Part*SN*#9[40]***Month*#10[20]*day*#11[20]*year*#12[20]*hour*
4 #13[20]* minute*#14[20]]
5 DPRNT][]
6 DPRNT[This*is*a*example*of*report*generation*on*the*11M*control)
7 DPRNTI[]
8 DPRNT[X#2{34]Y#5[34]]
9 DPRNT[Bore#2[34]]
10 DPRNT[Bore#2[34]Bore#5[34]]
11 DPRNT[This*space#2[34]This*space#5[34]]
12 DPRNT[Bore*dia*X*axis*#2[34]*bore*dia*Y*axis*#5[34]]
13 PCLOS
M30

The output would look like this:
1

Part SN 9999 Month 2 Day 13 Year 86 Hour 11 minute

This is a example of report generation on the 11M control

Nounnbh,wWwN

8 X 1.0001Y 1.0003

9 Bore 1.0001

10 Bore 1.0001Bore 1.0003

11 Thisspace 1.0001This space 1.0003

12 Boredia X axis 1.0001Bore dia Y axis 1.0003)
13

10.4.2 Parameter Settings

For a more complete listing of parameter settings, refer to Monarch’s Operator’s
Manual.

10-26

