
1

AVR Butterfly Training

Atmel Norway,
AVR Applications Group

2

Table of Contents
__

INTRODUCTION ...3
GETTING STARTED...4

REQUIRED SOFTWARE AND HARDWARE..4
SETTING UP THE HARDWARE...4
SETTING UP THE SOFTWARE...5
THE BUTTERFLY HARDWARE ..5

Front view ..5
Backside View ..6
Block Schematics ...6

TASK 1: GETTING EVERYTHING RUNNING!...7
INTRODUCTION:...7
TASK: ..7

TASK 2: BREAKPOINTS AND IO VIEW...8
INTRODUCTION..8
THEORY...8
TASK ...8

Breakpoints ..8
IO view...9

TASK 3: ADVANCED BREAKPOINTS AND STACK..10
INTRODUCTION..10
THEORY...10

Stack...10
Factorial function ..10

TASK ...11
TASK 4 ADVANCED BREAKPOINTS AND MASKS...13

INTRODUCTION..13
THEORY...13
TASK ...14

TASK 5 MAX AND MIN VALUES...15
INTRODUCTION..15
TASK ...15
HINTS ..15

TASK 6 SOUND PLAYER...16
INTRODUCTION..16
THEORY...16
TASK ...16
HINTS ..16

3

Introduction
This Training is based on the ATmega169 LCD microcontroller and the AVR Butterfly
board. This Board includes a JTAG connector which makes it very easy to use it as a
development and debug platform. The Butterfly is powered by a battery cell, but we will
in this exercise remove the battery and power it using a STK500 as a power supply
(saving the battery for later).

This Training consists of 6 tasks. The 4 first tasks do not require you to write code, but is
a tutorial; a step by step introduction to how to utilize the JTAG ICE to get the most out
of the OCD system!

Quick overview of the Tasks in this training

 Task 1: Getting Everything Running!
 Here you will be guided through the initial setup, and given a

description of the Butterfly features that we will use during this
training.

 Task 2: Breakpoints and IO view
 General Breakpoint use, HW vs. SW Breakpoints and how to

use the IO view to see what is going on inside the AVR

 Task 3: Advanced Breakpoints and Stack
 In this exercise we will look at a recursive function, and how we

can use advanced breakpoints to catch a stack overflow

 Task 4: Advanced Breakpoints and Masks
 A closer look at advanced breakpoints and how to set up a mask

to trap access to a range of memory locations

 Task 5: Programming: Max and Min Values
 Add a function that is able to store and display Max and Min

values as well as currently measured value.

 Task 6: Programming: Sound Player
 Turn the AVR Butterfly into a musical instrument.

This Training is based on a strip down version of the Butterfly Source code, and the
AVR064 and AVR065 application notes. The code has been stripped down to make it
easier to read and debug.

4

Getting Started
This section contains useful information regarding the Butterfly hardware, and how to
connect it to the STK500 to save your battery.

Required Software and Hardware
To complete this training you’ll need the following equipment

• AVR Studio 4.07
• IAR EWAAVR 2.28a C-Compiler
• Butterfly Demo Board
• JTAG ICE
• STK500 Board
• Power Supply for both STK500 and JTAG ICE

Setting up the Hardware

Setting up the STK500
The Butterfly Demo is normally
powered by a 3 volt battery cell. To
use the STK500 Board it should be
set up to provide VTG = 3 volt. This
is done in the “Board” settings in the
STK500 software (in AVR Studio 4)

Connecting the JTAG ICE
Once the STK500 board is set up to
provide correct voltage, connect the
JTAG ICE to the Butterfly board.
The JTAG connector is the middle
10bit header connector. Connect it as
shown in the picture.

5

Connecting Power
Power down the STK500 and JTAG
ICE. Connect a 2-wire cable (power)
between the STK500 and the
Butterfly Demo board as shown
below. (The pinout on the header
connectors are the same, and we
want to feed VTG and GND from
the STK500 to the Butterfly.

Verify all connections, and when sure that the power supply cables are correct, power up
the STK500, then the JTAG ICE.

Setting up the software
Both AVR Studio 4 and IAR compiler need to be installed to complete this training. The
training uses files located in a folder named “butterfly” in the C:\AVR folder. If you do
not have a folder with this name, you should install it now. Ask for the install disk.

Each Task has its own subfolder named Task1 to Task6. Each containing its own set of
files. After completing the first task, close it down, and open the next one to continue the
training.

The Butterfly Hardware

Front view

6

Backside View

Block Schematics
This is a (very) simplified schematic showing how the different peripherals are connected
to the ATmega169.

ATmega169

LCD
Dataflash

JTAG

PORTD

PORTB

UART

USI

ISP

V_in

N
TC

VCP

LD
R

BUZZER

SWITCH

PB5

PF1
PF0
PF2

PB[0..7]

PF[4..7]

PD[0..7]

PE[4..6]

PE[0..1]

PB[1..3]

PB[4,6,7]
PE[2,3]

PF3

PE7, PB[0..3]

32kHz

7

Task 1: Getting Everything Running!

Introduction:
This exercise uses a fully working C code, which should compile and run without further
modifications.
The purpose of this first task is to get all software and hardware up running, and to verify
that everything is working correctly. Once running, use a few minutes to familiarize
yourself with the code, and try to understand how it works.

Task:
Set up the hardware as explained in the Getting Started section. That is:

1. Remove Battery from the Butterfly Board
2. Set STK500 to deliver VTG = 3 Volt
3. power down STK500
4. Power off JTAG ICE and Connect it to your PC
5. Connect the JTAG ICE to the Butterfly Board
6. Connect Power strap from STK500 to Butterfly
7. Power up STK500
8. Power up JTAG ICE

Load Task1 (task1.prj) project in IAR Embedded Workbench (IAREW) and compile by
pressing F9 or selecting [Projects] | [Build All] from the pull down menu.
Files are located in the task1 folder at this location: C:\AVR\BUTTERFLY
Take a look at the Build output dialog window and verify that it compiles without errors
or warnings.

Open AVR Studio and select [Open] button (upper right icon).
Browse to the c:\avr\butterfly\task1\debug\exe folder and open the task1.d90 file.
This is the UBROF file which contains all necessary debug information for AVR Studio.

Select JTAG ICE as Debug Platform and ATmega169 as Device. If you know which
COM port the JTAG ICE is connected to, you may specify this in the “Connect” pull
down box, or just leave it as is. AVR Studio will then search for it on all available ports.
Press “Finish” button.
You should now see the C source code, and a yellow arrow indicating the position of the
program counter.

Press F5 to run the program, and have a look at the LCD Display. It should show a
number. This number is the 8 most significant bits of an ADC measurement on the Light
Dependent Resistor (LDR) located in the upper left corner on the Butterfly board. Verify
that the value changes depending on the light on the LDR.

Task 1 Completed

8

Task 2: Breakpoints and IO View

Introduction
We will in this exercise take a closer look at how the application works, and explain the
difference between hardware and software breakpoints.
The goal of the exercise is to understand how modifying bits in the IO view affects
operation, and some of the limitations on breakpoints

Theory
The JTAG ICE breakpoints differs from what you will find in the other AVR Emulators.
First of all you only have 3 general purpose hardware breakpoints to use. The term
hardware breakpoints referee to the internal OCD system. It contains 3 general breakpoint
registers which can contain breakpoint addresses. If more breakpoints are needed, break
instructions have to be added in the code. This will require a reprogramming of the flash
page containing the braked instruction. The JTAG ICE does not support software
breakpoints in the current version (Studio 4.07). Such support could be added in later
versions though. The 3 general purpose registers can also be combined to form complex
break conditions as will be used in Task 4.

Task
Open and compile Task2 project in IAR Embedded Workbench (EW) Make sure you do
not get any error messages or warnings.
Load the object file in AVR Studio, and run it to verify that it still works.
Restart the program emulation by pressing [SHIFT] | [F5] or pressing the “Reset” button
in the toolbar.

Breakpoints
Place 3 breakpoints (press F9 or “Toggle Breakpoint” in the “Debug” menu) at 3 lines
where you want to stop (break) program execution. The location of the breakpoints is not
important. Start program execution by pressing [F5] or selecting [Run] in the [Debug]
menu. Verify that program execution is stopped when the breakpoint is reached.

Now, try to add another breakpoint
exceeding the 3 hardware
breakpoints limit. What happens?
A breakpoint is added. Now try to
start program execution [F5]. You
should notice that a warning appear
in the “Output” window.
AVR Studio evaluates the number
of breakpoints at runtime. This is
done to allow the user to place the new breakpoints before removing the old ones.

9

Remove a breakpoint so you only have 3 breakpoints. Verify that the JTAG ICE now
starts executing the code, and that it stops at the first breakpoint.

IO view
We are now going to take a look at the IO view, and how changes we make here affect
operation.
Remove all previous breakpoints(“Remove breakpoints” in the “Debug” menu), and
place a single breakpoint on the first statement in the for(;;) loop as shown below. Run
the program [F5]. The program will now run through all the initialization routines and
stop in the main loop.

Expand the “Misc” icon in the IO view. This contains the LCD registers. Use your mouse
and check / uncheck some of the bits in the LCDDRxx registers. Notice that you now will
turn on / off segments on the Butterfly LCD display even if the program execution is
halted.

Why? Because changes done in the IO view are immediately updated in the AVR device
and present when continuing running the device! (This has not always been the case. The
first firmware version in the JTAG ICE did not support this functionality).

• Do you see the relation between the LCDDR registers and the LCD segments?
• Try changing the framerate and see how this affect the LCD (set LCDPS2 = 1)

Task 2 Completed

10

Task 3: Advanced Breakpoints and Stack

Introduction
In this exercise we will add a factorial calculation function to the Butterfly. This function
is quite intensive on SRAM usage, thus perfectly suited to illustrate what happens when
we get into a stack overflow situation. We will use advanced breakpoints to verify and
trap the stack overflow.

Theory

Stack
From the IAR documentation regarding stack size:

“The compiler uses the internal data stack, CSTACK, for a variety of user
program operations, and the required stack size depends heavily on the
details of these operations. If the given stack size is too small, the stack
will normally overwrite the variable storage which is likely to result in
program failure. If the given stack size is too large, RAM will be wasted.”

The IAR compiler reserves an area in SRAM for variable storage during program
execution. This reserved SRAM area is called CSTACK and is by default set to 0x20 (32)
bytes. If your program tries to use more than the allocated amount, it will start writing
other memory locations, with program failure as a likely result.

Factorial function
The factorial function: n! = 1 x 2 x 3 x 4 x … x n.
So: 3! = 1 x 2 x 3 = 6 and 12! = 479001600. This function is very easy to solve using
recurstion. Simply have the function call itself with n-1 until we reach n=1. To calculate
3! F(3) = f(3 * f(2 * f(1))) = f(3 * f(2 * 1)) = f(3* 2) = 6.
Written as a C function it will look like this:

unsigned long fact(int x)
{

if (x == 1)
 return(1);
 else
 return(x * fact(x-1));
}

This C function will calculate the factorial x. The higher x is the more times it calls itself,
thus eating up more of the CSTACK memory. At some point it will exceed the limits of
CSTACK, and generate a stack overflow situation.

11

Task
Compile Task4 and open the object file in AVR Studio. Notice the fact(3); function
located before the endless for loop. The CSTACK area is located after the extended IO
area in the address range 0x100 to 0x120 (32 bytes is the default CSTACK size).

Place a breakpoint at the
fist statement in the for(;;)
loop as shown in the
picture to the right.

Open the [Debug] | [JTAG
Options] menu, select the
[Breakpoints] tab, and add
a Data breakpoint at
location 0x0100 (see
picture below). Set break
mode to “After data
memory read or writes”.

This advanced breakpoint will halt operation if location 0x0100 in data memory (SRAM)
is written. This is the first location in SRAM, and it will be the last location written
before the stack overflows and starts writing into the extended IO memory area.

Once both breakpoints are set press [F5] to execute the code. Notice that the program
now reaches and stops at the breakpoint in the for(;;) loop. This indicates that the fact(3)
does not reach the bottom the CSTACK space.

12

Now go back to the IAR EW and change the function to fact(10);
Recompile the code and restart the new code in AVR Studio. Run it, and you’ll see that
you now halt operation in disassembly mode. Change back to source view, do a single
step, and you’ll see that you are located in the fact function!
Single step the code and take a look at the LCD display. You’ll notice that the function
pushes data into the LCD registers!

Q: Why do we end up in disassembly mode?

A: __________________________________

Q: What is the highest fact(n) that do not give you a stack overrun? (Tip: Use the memory
view window to see how the SRAM is used by the fact(); function.

A: __________________________________

As you can see, the advanced data breakpoints can be very useful when you want to
verify that your pointers are not exceeding their valid boundaries.

Task 3 Completed

13

Task 4 Advanced Breakpoints and Masks

Introduction
In the previous exercise we used advanced breakpoints to trigger a break when a specific
data address was accessed. In this exercise we will look how to use the mask feature to
trigger a break condition for a range of addresses.

Theory
The theory behind masked
breakpoints are described in
greater detail in the JTAG ICE
User Guide (Technical Library
CD) but can be summed up as
follows:

When using masked
breakpoints a base address and
the mask is AND’ed together
to form a set of break vectors.
These are checked against the
program counter or the data
address AND’ed with the same
mask to see it a valid break
condition has occurred.

14

In this exercise we will use masked breaks to halt operation if any of the LCD registers
are written. To do this we have to construct a mask so that all accesses to these registers
result in a valid break condition. Use the JTAG ICE User Guide and set up a suitable
Mask and Base address to achieve this. To make it simpler; break on all accesses starting
from 0xE0 to 0xFF (see register summary figure above, or use the ATmega169 datasheet
on the TechLib CD)

Find a Base and Mask that will do this:

Base: ________________________

Mask: ________________________

Task
Compile and start Task4 project in AVR Studio. Enter the mask and base values in the
JTAG ICE breakpoint dialog, and verify that the JTAG ICE halts operation when
accessing locations as determined by your breakpoint mask and base. (We will use the
same fact(10); function as we know this will overflow the stack and write to the LCD
registers in extended IO space.

Task 4 Completed

15

Task 5 Max and Min Values

Introduction
In this exercise we will add two variables that will store the maximum and minimum
values read from the LDR. We have added a function that reads the joystick and returns a
value depending on movement (up, down, left, right, push). Use this function to display
max value if pushed up, min value if pushed down, and currently measured value
otherwise.

Task
Open task5, complete the code in IAR EW, and test it out on the JTAG ICE and
Butterfly.

Hints
Will be given as you work (you might write them down for later reference here)

 __

__

__

__

Task 5 Completed

16

Task 6 Sound Player

Introduction
Now we are going to turn the Butterfly into a musical instrument! We will add a function
that will change a tone played on the buzzer based on the measured LDR value.

Theory
In normal PWM mode we only change the
duty cycle of the signal. So to be able to
use the PWM for frequency generation we
will make use of a special mode. The
Clear Timer on Compare match (CTC)
mode. In this mode the TCNT1 register
will be cleared when it reaches the
OCR1A value. By lowering the value in
this register, the TCNT1 reaches the value
quicker, thus generating a higher
frequency on the OC1A pin (see figure).
Note that the OC1A pin must be configured as output.

Task
Make a program that uses the measured value on
the LDR as OCR1A value for the Timer Counter 1.

• Clear Timer on Compare Match (CTC) Top
value in OCR1A

• Prescaler = 1
• Toggle OC1A on compare match
• Turn sound on by pressing stick up
• Turn sound off by pressing stick down

By changing the light on the LDR the buzzer will
now play different frequencies.

Hints
(To set up the Timer Counter Register, you need to configure these registers: TCCR1A,
TCCR1B, OCR1AH/L and DDRB)

Task 6 Completed ?

f 2f

OC1A

TCNT1

f 2f

OC1A

TCNT1

CLK = 8MHz

Prescaler

TCNT1

OCR1A

= Waveform
Generator

	Introduction
	Getting Started
	Required Software and Hardware
	Setting up the Hardware
	Setting up the software
	The Butterfly Hardware
	Front view
	Backside View
	Block Schematics

	Task 1: Getting Everything Running!
	Introduction:
	Task:

	Task 2: Breakpoints and IO View
	Introduction
	Theory
	Task
	Breakpoints
	IO view

	Task 3: Advanced Breakpoints and Stack
	Introduction
	Theory
	Stack
	Factorial function

	Task

	Task 4 Advanced Breakpoints and Masks
	Introduction
	Theory
	Task

	Task 5 Max and Min Values
	Introduction
	Task
	Hints

	Task 6 Sound Player
	Introduction
	Theory
	Task
	Hints

