Extra Lecture Notes Floating Point Numbers

Floating Point (a brief look)

- We need a way to represent
- numbers with fractions, e.g., 3.141592653589793238462642
- very small numbers, e.g., 000000001
- very large numbers, e.g., 3.15576×10^{9}
- Numbers with fractions:

$$
2^{3} 2^{2} 2^{1} 2^{0} 2^{-1} 2^{-2} 2^{-3}
$$

Big and small numbers

- Solution for decimal - scientific notation
$-2.5 \times 10^{15}=2,500,000,000,000,000$
- Can do the same for binary:
$-2 \mathrm{MB}=2 \times 2^{20}$ or $10_{2} \times 10_{2}{ }^{10100}$
- This is called a floating-point number
- In general, composed of sign, exponent, significand:
$(-1)^{\text {sign }} \times$ significand $\times 2^{\text {exponent }}$
- more bits for significand gives more accuracy
- more bits for exponent increases range
- IEEE 754 floating point standard:
- single precision: 8 bit exponent, 23 bit significand
- double precision: 11 bit exponent, 52 bit significand

IEEE 754 floating-point standard

- Leading " 1 " bit of significand is implicit
- Exponent is "biased" to make sorting easier
- Biasing is a way of representing negative numbers
- All 0s is smallest exponent all 1 s is largest
- bias of 127 for single precision and 1023 for double precision
- summary: $(-1)^{\text {sign }} \times(1+$ significand $) \times 2^{\text {exponent }- \text { bias }}$
- Example:
- decimal: $-.75=-3 / 4=-3 / 2^{2}$
- binary: -. $11=-1.1 \times 2^{-1}$
- floating point: exponent $=126=01111110$
- IEEE single precision:

10111111010000000000000000000000

Show the IEEE 754 binary representation for the number 20.0 in single and double precision:

$$
20=10100 \times 2^{0} \text { or } 1.0100 \times 2^{4}
$$

Single Precision:
The exponent is $127+4=131=128+3=10000011$
The entire number is
01000001101000000000000000000000
Double Precision:
The exponent is $1023+4=1027=1024+3=10000000011$
The entire number is:
010000000011010000000000000000000000
0000000000000000000000000000

Examples of Floating Point Numbers

Show the IEEE 754 binary representation for the number 20.5_{10} in single and double precision:

```
20.0=10100 x 20},0.5=0.1\times\mp@subsup{2}{}{0}\mathrm{ together
1.01001 x 24
```

Single Precision:
The exponent is $127+4=131=128+3=10000011$
The entire number is
01000001101001000000000000000000
Double Precision:
The exponent is $1023+4=1027=1024+3=10000000011$
The entire number is:
010000000011010010000000000000000000 0000000000000000000000000000

Examples of Floating Point Numbers

Show the IEEE 754 binary representation for the number -0.1_{10} in single and double precision:

$$
0.1=\frac{0.00011 \times 2^{0} \text { or } 1.1 \underline{0011} \times 2^{-4}}{\text { (the } \underline{0011} \text { pattern is repeated) }}
$$

Single Precision:
The exponent is $127-4=123=01111011$
The entire number is 10111101110011001100110011001100
Double Precision:
The exponent is $1023-4=1019=01111111011$
The entire number is:
1011111110111001100110011001100110011001 100110011001100110011001

Floating Point Complexities

- Operations are somewhat more complicated (see text)
- In addition to overflow we can have "underflow"
- Result of two adding two very small values becomes zero
- Accuracy can be a big problem
$-1 /(1 / 3)$ should $=3$
- IEEE 754 keeps two extra bits, guard and round
- four rounding modes
- positive divided by zero yields "infinity"
- zero divide by zero yields "not a number" (NaN)
- Implementing the standard can be tricky
- Not using the standard can be even worse

