Extra Lecture Notes Floating Point Numbers

Floating Point (a brief look)

- We need a way to represent
 - numbers with fractions, e.g., 3.141592653589793238462642
 - very small numbers, e.g., .00000001
 - very large numbers, e.g., 3.15576×10^9
- Numbers with fractions:

Big and small numbers

• Solution for decimal - scientific notation

 $-2.5 \ge 10^{15} = 2,500,000,000,000,000$

- Can do the same for binary:
 - $-2MB = 2x2^{20} \text{ or } 10_2 \times 10_2^{10100}$
 - This is called a *floating-point number*
 - In general, composed of sign, exponent, significand: $(-1)^{sign} \times significand \times 2^{exponent}$
 - more bits for significand gives more accuracy
 - more bits for exponent increases range
- IEEE 754 floating point standard:
 - single precision: 8 bit exponent, 23 bit significand
 - double precision: 11 bit exponent, 52 bit significand

IEEE 754 floating-point standard

- Leading "1" bit of significand is implicit
- Exponent is "biased" to make sorting easier
 - Biasing is a way of representing negative numbers
 - All 0s is smallest exponent all 1s is largest
 - bias of 127 for single precision and 1023 for double precision
 - summary: $(-1)^{\text{sign}} \times (1 + \text{significand}) \times 2^{\text{exponent} \text{bias}}$
- Example:
 - decimal: $-.75 = -3/4 = -3/2^2$
 - binary: $-.11 = -1.1 \ge 2^{-1}$
 - floating point: exponent = 126 = 01111110

Examples of Floating Point Numbers

Show the IEEE 754 binary representation for the number 20.0 in single and double precision:

 $20 = 10100 \text{ x } 2^0 \text{ or } 1.0100 \text{ x } 2^4$

Single Precision:

The exponent is 127+4 = 131 = 128 + 3 = 10000011The entire number is

 $0 \ 1000 \ 0011 \ 0100 \ 000$

Double Precision:

The exponent is 1023+4 =1027=1024 + 3 =1000000011 The entire number is:

Examples of Floating Point Numbers

Show the IEEE 754 binary representation for the number 20.5_{10} in single and double precision:

 $20.0 = 10100 \text{ x } 2^0, 0.5 = 0.1 \text{ x } 2^0$ together 1.01001 x 2^4

Single Precision:

The exponent is 127+4 = 131 = 128 + 3 = 10000011The entire number is

 $0 \ 1000 \ 0011 \ 0100 \ 1000 \ 0000 \ 0000 \ 0000 \ 000$

Double Precision:

The exponent is 1023+4 =1027=1024 + 3 =1000000011 The entire number is:

Examples of Floating Point Numbers

Show the IEEE 754 binary representation for the number -0.1_{10} in single and double precision:

 $0.1 = 0.00011 \ge 2^{\circ} = 0.110011 \ge 2^{-4}$

(the 0011 pattern is repeated)

Single Precision:

The exponent is $127-4 = 123 = 0111 \ 1011$

The entire number is

1 0111 1011 1001 1001 1001 1001 1001 100

Double Precision:

The exponent is 1023-4 = 1019 = 0111111011The entire number is:

Floating Point Complexities

- Operations are somewhat more complicated (see text)
- In addition to overflow we can have "underflow"
 - Result of two adding two very small values becomes zero
- Accuracy can be a big problem
 - 1/(1/3) should = 3
 - IEEE 754 keeps two extra bits, guard and round
 - four rounding modes
 - positive divided by zero yields "infinity"
 - zero divide by zero yields "not a number" (NaN)
- Implementing the standard can be tricky
- Not using the standard can be even worse