Combinatorial Logic Design Principles

ECGR2181 Chapter 4 Notes

 $(\mathbf{Y} \cdot \mathbf{Z})'$ W·X· Y · Z OR NOR AND NAND BUFFER - INVERTER

 $(W \cdot X \cdot Y)'$

W·X·Y

х

Reading: Chapter 4

Logic System Design I

Boolean algebra

a.k.a. "switching algebra"

- deals with boolean values -- 0, 1

Positive-logic convention

analog voltages LOW, HIGH --> 0, 1

Negative logic -- seldom used

Signal values denoted by variables

(X, Y, FRED, etc.)

Boolean operators

Complem	nent:X' (op	posite c	of X)	
AND:	$X \cdot Y$			
OR:		X + Y		, binary operators, described
				functionally by truth table.

Х	Y	X AND Y	Х	Y	X OR Y	Х	NOT X
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
, 1	1	1	1	1	1		

More definitions

Literal: a variable or its complement $-X, X', FRED', CS_L$ Expression: literals combined by AND, OR, parentheses, complementation -X+Y $-P \cdot Q \cdot R$ $-A + B \cdot C$ $-((FRED \cdot Z') + CS_L \cdot A \cdot B' \cdot C + Q5) \cdot RESET'$

Equation: Variable = expression

 $- P = ((FRED \cdot Z') + CS_L \cdot A \cdot B' \cdot C + Q5) \cdot RESET'$

Logic symbols

(T1)	X + 0 = X	(T1')	$X \cdot 1 = X$	(Identities)
(T2)	X + 1 = 1	(T2 ')	$\mathbf{X} \cdot 0 = 0$	(Null elements)
(T3)	X + X = X	(T3')	$X\cdotX=X$	(Idempotency)
(T4)	(X')'=X			(Involution)

(T5) X + X' = 1 (T5') $X \cdot X' = 0$ (Complements)

Proofs by perfect induction

More Theorems

- (T6) X + Y = Y + X (T6') $X \cdot Y = Y \cdot X$ (Commutativity)
- (T7) (X + Y) + Z = X + (Y + Z) (T7) $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$ (Associated)
- $(T8) \qquad X \cdot Y + X \cdot Z = X \cdot (Y + Z)$
- $(T9) \qquad X + X \cdot Y = X$
- $(T10) X \cdot Y + X \cdot Y' = X$
- $(T11) \quad X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$
- $(T11') \quad (X + Y) \cdot (X' + Z) \cdot (Y + Z) = (X + Y) \cdot (X' + Z)$

(Consensus)

(T12)	$X + X + \dots + X = X$	(Generalized idempotency)
(T12')	$X \cdot X \cdot \ \cdots \ \cdot X = X$	
(T13)	$(\mathbf{X}_1 \cdot \mathbf{X}_2 \cdot \cdots \cdot \mathbf{X}_n)' = \mathbf{X}_1' + \mathbf{X}_2' + \cdots + \mathbf{X}_n'$	(DeMorgan's theorems)
(T13')	$(\mathbf{X}_1 + \mathbf{X}_2 + \dots + \mathbf{X}_n)' = \mathbf{X}_1' \cdot \mathbf{X}_2' \cdot \dots \cdot \mathbf{X}_n'$	
(T14)	$[F(X_1,X_2,,X_n,+,\cdot)]' = F(X_1',X_2',,X_n',\cdot,+)$	(Generalized DeMorgan's theorem)
(T15)	$F(X_1,X_2,\ldots,X_n) = X_1 \cdot F(1,X_2,\ldots,X_n) + X_1' \cdot F(0,X_2,\ldots,X_n)$	(Shannon's expansion theorems)
(T15')	$F(X_1, X_2,, X_n) = [X_1 + F(0, X_2,, X_n)] \cdot [X_1' + F(1, X_2,, X_n)]$	

DeMorgan Symbol Equivalence

Likewise for OR

DeMorgan Symbols

Logic System Design I

Even more definitions (Sec. 4.1.6)

Product term Sum-of-products expression Sum term Product-of-sums expression Normal term Minterm (n variables) Maxterm (n variables)

Row	Х	Y	Ζ	F	Minterm	Maxterm
0	0	0	0	F(0,0,0)	X′ · Y′ · Z′	X + Y + Z
1	0	0	1	F(0,0,1)	X′·Y′·Z	X + Y + Z'
2	0	1	0	F(0,1,0)	$X' \cdot Y \cdot Z'$	X + Y′+ Z
3	0	1	1	F(0,1,1)	$X' \cdot Y \cdot Z$	X + Y' + Z'
4	1	0	0	F(1,0,0)	X · Y ′ · Z′	X′+ Y + Z
5	1	0	1	F(1,0,1)	X · Y′ · Z	X' + Y + Z'
6	1	1	0	F(1,1,0)	$X\cdot Y\cdot Z'$	X′+Y′+Z
7	1	1	1	F(1,1,1)	$X\cdot Y\cdot Z$	X'+ Y'+ Z'

Combinational analysis

Signal expressions

New circuit, same function

"Add out" logic function

$$\begin{aligned} \mathsf{F} &= ((\mathsf{X} + \mathsf{Y}') \cdot \mathsf{Z}) + (\mathsf{X}' \cdot \mathsf{Y} \cdot \mathsf{Z}') \\ &= (\mathsf{X} + \mathsf{Y}' + \mathsf{X}') \cdot (\mathsf{X} + \mathsf{Y}' + \mathsf{Y}) \cdot (\mathsf{X} + \mathsf{Y}' + \mathsf{Z}') \cdot (\mathsf{Z} + \mathsf{X}') \cdot (\mathsf{Z} + \mathsf{Y}) \cdot (\mathsf{Z} + \mathsf{Z}') \\ &= 1 \cdot 1 \cdot (\mathsf{X} + \mathsf{Y}' + \mathsf{Z}') \cdot (\mathsf{X}' + \mathsf{Z}) \cdot (\mathsf{Y} + \mathsf{Z}) \cdot 1 \\ &= (\mathsf{X} + \mathsf{Y}' + \mathsf{Z}') \cdot (\mathsf{X}' + \mathsf{Z}) \cdot (\mathsf{Y} + \mathsf{Z}) \end{aligned}$$

Circuit:

Shortcut: Symbol substitution

Different circuit, same function

Another example

 $G(W, X, Y, Z) = W \cdot X \cdot Y + Y \cdot Z$

Combinational-Circuit Analysis

Combinational circuits -- outputs depend only on current inputs (not on history).

Kinds of combinational analysis:

- exhaustive (truth table)
- algebraic (expressions)
- simulation / test bench
 - Write functional description in HDL
 - Define test conditions / test vecors
 - Compare circuit output with functional description (or knowngood realization)

Combinational-Circuit Design

Sometimes you can write an equation or equations directly . Example (alarm circuit):

ALARM = PANIC + ENABLE · EXITING' · SECURE' SECURE = WINDOW · DOOR · GARAGE ALARM = PANIC + ENABLE · EXITING' · (WINDOW · DOOR · GARAGE)'

Corresponding circuit:

Alarm-circuit transformation

Sum-of-products form

- Useful for programmable logic devices

"Multiply out":

Sum-of-products form

Product-of-sums form

Brute-force design	row		× N ₂	N	\mathbf{X}_{0}	F
Truth table>	0	0	0	0	0	0
canonical sum	1	0	0	0	1	1
(sum of minterms)	2	0	0	1	0	1
	3	0	0	1	1	1
Example:	4	0	1	0	0	0
prime-number detector	5	0	1	0	1	1
- 4-bit input, $N_3N_2N_1N_0$	6	0	1	1	0	0
	7	0	1	1	1	1
	8	1	0	0	0	0
	9	1	0	0	1	0
	10	1	0	1	0	0
$F = \Sigma_{avarray} (1, 2, 3, 5, 7, 11, 13)$	11	0	0	1	1	1
$-2_{N3N2N1N0}(1,2,0,0,7,1,1,1,0)$	12	1	1	0	0	0
	13	1	1	0	1	1
	14	1	1	1	0	0
	15	1	1	1	1	0

Minterm list --> canonical sum

Algebraic simplification

Theorem T8,

$$X \cdot Y + X \cdot Y' = X$$

$$\mathsf{F} = \Sigma_{\mathsf{N}_3,\mathsf{N}_2,\mathsf{N}_1,\mathsf{N}_0}(1, 3, 5, 7, 2, 11, 13)$$

 $= \mathsf{N}_3' \cdot \mathsf{N}_2' \mathsf{N}_1' \mathsf{N}_0 + \mathsf{N}_3' \cdot \mathsf{N}_2' \cdot \mathsf{N}_1 \cdot \mathsf{N}_0 + \mathsf{N}_3' \cdot \mathsf{N}_2 \cdot \mathsf{N}_1' \cdot \mathsf{N}_0 + \mathsf{N}_3' \cdot \mathsf{N}_2 \cdot \mathsf{N}_1 \cdot \mathsf{N}_0 + \ldots$

 $= (\mathsf{N}_3' \cdot \mathsf{N}_2' \cdot \mathsf{N}_1' \cdot \mathsf{N}_0 + \mathsf{N}_3' \cdot \mathsf{N}_2' \cdot \mathsf{N}_1 \cdot \mathsf{N}_0) + (\cdot \mathsf{N}_3' \cdot \mathsf{N}_2 \cdot \mathsf{N}_1' \cdot \mathsf{N}_0 + \mathsf{N}_3' \cdot \mathsf{N}_2 \cdot \mathsf{N}_1 \cdot \mathsf{N}_0) + \dots$

$$= N_3' N_2' \cdot N_0 + N_3' \cdot N_2 \cdot N_0 + \dots$$

Reduce number of gates and gate inputs

Resulting circuit

3-variable Karnaugh map

3-variable Karnaugh map

Visualizing T10 -- Karnaugh maps

Visualizing T10 -- Karnaugh maps

Karnaugh-map usage

Plot 1s corresponding to minterms of function.

Circle largest possible rectangular sets of 1s.

- # of 1s in set must be power of 2
- OK to cross edges

Read off product terms, one per circled set.

- Variable is 1 ==> include variable
- Variable is 0 ==> include complement of variable
- Variable is both 0 and 1 = variable not included

Circled sets and corresponding product terms are called "prime implicants"

Minimum number of gates and gate inputs

Prime-number detector

Resulting Circuit.

Another example

Yet another example

Distinguished 1 cells Essential prime implicants

Another Example

 $F(W,X,Y,Z) = \Sigma m(0,1,2,3,6,8,9,10,11,14) - X' + Y Z'$

Another Example

Don't Cares

Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e

 $\mathsf{F} = \Sigma_{\mathsf{N3},\mathsf{N2},\mathsf{N1},\mathsf{N0}}(1,\!2,\!3,\!5,\!7) + \mathsf{d}(10,\!11,\!12,\!13,\!14,\!15)$

 $\mathsf{F}(\mathsf{W},\mathsf{X},\mathsf{Y},\mathsf{Z}) = \Sigma \mathsf{m}(0,1,2,3,6,8,9,10,11,14) + \mathsf{d}(7,15)$

Lots more than 6 inputs -- can't use Karnaugh maps Use software to synthesize logic expressions and minimize logic

Hardware Description Languages -- VHDL and Verilog

