
4-1Logic System Design I

Combinatorial Logic
Design Principles

ECGR2181
Chapter 4 Notes

�������� ��������	

Logic System Design I 4-2

Boolean algebra

a.k.a. “switching algebra”
– deals with boolean values -- 0, 1

Positive-logic convention
– analog voltages LOW, HIGH --> 0, 1

Negative logic -- seldom used
Signal values denoted by variables

(X, Y, FRED, etc.)

Logic System Design I 4-3

Boolean operators

Complement:X′ (opposite of X)
AND: X ⋅ Y
OR: X + Y

Axiomatic definition: A1-A5, A1′-A5′

binary operators, described
functionally by truth table.

Logic System Design I 4-4

More definitions

Literal: a variable or its complement
– X, X′, FRED′, CS_L

Expression: literals combined by
AND, OR, parentheses, complementation
– X+Y
– P ⋅ Q ⋅ R
– A + B ⋅ C
– ((FRED ⋅ Z′) + CS_L ⋅ A ⋅ B′ ⋅ C + Q5) ⋅ RESET′

Equation: Variable = expression
– P = ((FRED ⋅ Z′) + CS_L ⋅ A ⋅ B′ ⋅ C + Q5) ⋅ RESET′

Logic System Design I 4-5

Logic symbols

Logic System Design I 4-6

Theorems

Proofs by perfect induction

Logic System Design I 4-7

More Theorems

Logic System Design I 4-8

N-variable Theorems

Prove using finite induction

Logic System Design I 4-9

DeMorgan Symbol Equivalence

Logic System Design I 4-10

Likewise for OR

Logic System Design I 4-11

DeMorgan Symbols

Logic System Design I 4-12

Even more definitions (Sec. 4.1.6)

Product term
Sum-of-products expression
Sum term
Product-of-sums expression
Normal term
Minterm (n variables)
Maxterm (n variables)

Logic System Design I 4-13

Truth table vs. minterms & maxterms

Logic System Design I 4-14

Combinational analysis

Logic System Design I 4-15

Signal expressions

Multiply out:

F = ((X + Y′) ⋅ Z) + (X′ ⋅ Y ⋅ Z′)
= (X ⋅ Z) + (Y′ ⋅ Z) + (X′ ⋅ Y ⋅ Z′)

Logic System Design I 4-16

New circuit, same function

Logic System Design I 4-17

“Add out” logic function

Circuit:

Logic System Design I 4-18

Shortcut: Symbol substitution

Logic System Design I 4-19

Different circuit, same function

Logic System Design I 4-20

Another example

Logic System Design I 4-21

Combinational-Circuit Analysis

Combinational circuits -- outputs depend only on current
inputs (not on history).

Kinds of combinational analysis:
– exhaustive (truth table)
– algebraic (expressions)
– simulation / test bench

• Write functional description in HDL
• Define test conditions / test vecors
• Compare circuit output with functional description (or known-

good realization)

Logic System Design I 4-22

Combinational-Circuit Design

Sometimes you can write an equation or equations directly .
Example (alarm circuit):

Corresponding circuit:

Logic System Design I 4-23

Alarm-circuit transformation

Sum-of-products form
– Useful for programmable logic devices

“Multiply out”:

Logic System Design I 4-24

Sum-of-products form

AND-OR

NAND-NAND

Logic System Design I 4-25

Product-of-sums form

OR-AND

NOR-NOR

Logic System Design I 4-26

Brute-force design

Truth table -->
canonical sum
(sum of minterms)

Example:
prime-number detector
– 4-bit input, N3N2N1N0

row N3 N2 N1 N0 F
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 0
7 0 1 1 1 1
8 1 0 0 0 0
9 1 0 0 1 0

10 1 0 1 0 0
11 0 0 1 1 1
12 1 1 0 0 0
13 1 1 0 1 1
14 1 1 1 0 0
15 1 1 1 1 0

F = ΣΝ3Ν2Ν1Ν0(1,2,3,5,7,11,13)

Logic System Design I 4-27

Minterm list --> canonical sum

Logic System Design I 4-28

Algebraic simplification

Theorem T8,

Reduce number of gates and gate inputs

Logic System Design I 4-29

Resulting circuit

Logic System Design I 4-30

3-variable Karnaugh map

Logic System Design I 4-31

3-variable Karnaugh map

X’Y’Z’ X’YZ’

X’Y’Z X’YZ

XYZ’

XYZ

XY’Z’

XY’Z

Logic System Design I 4-32

Visualizing T10 -- Karnaugh maps

Logic System Design I 4-33

Visualizing T10 -- Karnaugh maps

Logic System Design I 4-34

Example: F = ΣΣΣΣ(1,2,5,7)

Logic System Design I 4-35

Karnaugh-map usage

Plot 1s corresponding to minterms of function.
Circle largest possible rectangular sets of 1s.

– # of 1s in set must be power of 2
– OK to cross edges

Read off product terms, one per circled set.
– Variable is 1 ==> include variable
– Variable is 0 ==> include complement of variable
– Variable is both 0 and 1 ==> variable not included

Circled sets and corresponding product terms are called
“prime implicants”

Minimum number of gates and gate inputs

Logic System Design I 4-36

Prime-number detector

Logic System Design I 4-37

Resulting Circuit.

Logic System Design I 4-38

Another example

Logic System Design I 4-39

Yet another example

Distinguished 1 cells
Essential prime implicants

Logic System Design I 4-40

Another Example

F(W,X,Y,Z) = Σm(0,1,2,4,5,6,8,9,12,13,14)

Logic System Design I 4-41

Another Example

F(W,X,Y,Z) = Σm(0,1,2,3,6,8,9,10,11,14)

Logic System Design I 4-42

Another Example

Logic System Design I 4-43

Don’t Cares

0

1

3

2

4

5

7

6

12

13

15

14

8

9

11

10

00 01 11 10
N3 N2

N1 N0

00

1 1 d

d

d

d

d

d

11

1

01

11

10

N3

N2

N1

N0

N3 N2

N1 N0

N3

N2

N1

N0

(a)
00 01 11 10

00

1 1 d

d

d

d

d

d

11

1

01

(b)

F = N3′ • N0 + N2′ • N1

11

10

N3′ • N0

N2′ • N1

N2 • N0

F = ΣN3,N2,N1,N0(1,2,3,5,7) + d(10,11,12,13,14,15)

Copyright © 2000 by Prentice Hall, Inc.

Digital Design Principles and Practices, 3/e

Logic System Design I 4-44

Another Example

F(W,X,Y,Z) = Σm(0,1,2,3,6,8,9,10,11,14) + d(7,15)

Logic System Design I 4-45

Current Logic Design

Lots more than 6 inputs -- can’t use Karnaugh maps
Use software to synthesize logic expressions and

minimize logic
Hardware Description Languages -- VHDL and Verilog

