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Boolean algebra

a.k.a. “switching algebra”
– deals with boolean values -- 0, 1

Positive-logic convention
– analog voltages LOW, HIGH --> 0, 1

Negative logic -- seldom used
Signal values denoted by variables

(X, Y, FRED, etc.)
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Boolean operators

Complement:X′ (opposite of X)
AND: X ⋅ Y
OR: X + Y

Axiomatic definition: A1-A5, A1′-A5′

binary operators, described
functionally by truth table.



Logic System Design I 4-4

More definitions

Literal: a variable or its complement
– X, X′, FRED′, CS_L

Expression: literals combined by 
AND, OR, parentheses, complementation
– X+Y
– P ⋅ Q ⋅ R
– A + B ⋅ C
– ((FRED ⋅ Z′) + CS_L ⋅ A ⋅ B′ ⋅ C + Q5) ⋅ RESET′

Equation: Variable = expression
– P = ((FRED ⋅ Z′) + CS_L ⋅ A ⋅ B′ ⋅ C + Q5) ⋅ RESET′
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Logic symbols
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Theorems

Proofs by perfect induction
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More Theorems
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N-variable Theorems

Prove using finite induction
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DeMorgan Symbol Equivalence
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Likewise for OR
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DeMorgan Symbols
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Even more definitions (Sec. 4.1.6)

Product term 
Sum-of-products expression
Sum term
Product-of-sums expression
Normal term
Minterm (n variables)
Maxterm (n variables)
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Truth table vs. minterms & maxterms
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Combinational analysis
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Signal expressions

Multiply out:

F = ((X + Y′) ⋅ Z) + (X′ ⋅ Y ⋅ Z′)
= (X ⋅ Z) + (Y′ ⋅ Z) + (X′ ⋅ Y ⋅ Z′)
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New circuit, same function
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“Add out” logic function

Circuit:
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Shortcut: Symbol substitution
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Different circuit, same function
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Another example
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Combinational-Circuit Analysis

Combinational circuits -- outputs depend only on current 
inputs (not on history).

Kinds of combinational analysis:
– exhaustive (truth table)
– algebraic (expressions)
– simulation / test bench

• Write functional description in HDL
• Define test conditions / test vecors
• Compare circuit output with functional description (or known-

good realization)
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Combinational-Circuit Design

Sometimes you can write an equation or equations directly .
Example (alarm circuit):

Corresponding circuit:
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Alarm-circuit transformation

Sum-of-products form
– Useful for programmable logic devices

“Multiply out”:
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Sum-of-products form

AND-OR

NAND-NAND
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Product-of-sums form

OR-AND

NOR-NOR
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Brute-force design

Truth table --> 
canonical sum 
(sum of minterms)

Example:
prime-number detector
– 4-bit input, N3N2N1N0

row N3 N2 N1 N0     F
0     0   0   0   0     0
1     0   0   0   1     1
2     0   0   1   0     1
3     0   0   1   1     1
4     0   1   0   0     0
5     0   1   0   1     1
6     0   1   1   0     0
7     0   1   1   1     1
8     1   0   0   0     0
9     1   0   0   1     0

10    1   0   1   0     0
11    0   0   1   1     1
12    1   1   0   0     0
13    1   1   0   1     1
14    1   1   1   0     0
15    1   1   1   1     0

F = ΣΝ3Ν2Ν1Ν0(1,2,3,5,7,11,13)
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Minterm list --> canonical sum
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Algebraic simplification

Theorem T8, 

Reduce number of gates and gate inputs
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Resulting circuit
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3-variable Karnaugh map
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3-variable Karnaugh map

X’Y’Z’ X’YZ’

X’Y’Z X’YZ

XYZ’

XYZ

XY’Z’

XY’Z
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Visualizing T10 -- Karnaugh maps
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Visualizing T10 -- Karnaugh maps
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Example: F = ΣΣΣΣ(1,2,5,7)
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Karnaugh-map usage

Plot 1s corresponding to minterms of function.
Circle largest possible rectangular sets of 1s.

– # of 1s in set must be power of 2
– OK to cross edges

Read off product terms, one per circled set.
– Variable is 1 ==> include variable
– Variable is 0 ==> include complement of variable
– Variable is both 0 and 1 ==> variable not included

Circled sets and corresponding product terms are called 
“prime implicants”

Minimum number of gates and gate inputs
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Prime-number detector
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Resulting Circuit.
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Another example
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Yet another example

Distinguished 1 cells
Essential prime implicants
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Another Example

F(W,X,Y,Z) = Σm(0,1,2,4,5,6,8,9,12,13,14) 
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Another Example

F(W,X,Y,Z) = Σm(0,1,2,3,6,8,9,10,11,14) 
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Another Example
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Don’t Cares
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F = N3′ • N0 + N2′ • N1
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F = ΣN3,N2,N1,N0(1,2,3,5,7) + d(10,11,12,13,14,15)
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Another Example

F(W,X,Y,Z) = Σm(0,1,2,3,6,8,9,10,11,14) + d(7,15) 
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Current Logic Design

Lots more than 6 inputs -- can’t use Karnaugh maps
Use software to synthesize logic expressions and 

minimize logic
Hardware Description Languages -- VHDL and Verilog


