
6-1Logic System Design I

VHDL Design
Principles

ECGR2181
Extra Notes

�������� ��������	
�

port (
I: in STD_LOGIC_VECTOR (1 to 9);
EVEN, ODD: out STD_LOGIC

);

Logic System Design I 6-2

HDL-based design flow

– For ASICs, verification and fitting phases are usually much
longer (as a fraction of overall project time) than what you’ve
experienced in class.

Logic System Design I 6-3

VHDL

Developed in the mid-1980s under DoD sponsorship
– Mandated for federally-sponsored VLSI designs

Used for design description, simulation, and synthesis
– Synthesis became practical in the early 90s and use of VHDL (and

Verilog) has taken off since then

Only a subset of the language can be synthesized

Logic System Design I 6-4

VHDL entity and architecture concept

System is a collection of modules.
Architecture: detailed description of the internal structure

or behavior of a module.
Entity: a “wrapper” for the architecture that exposes only

its external interfaces, hiding the internal details.

Logic System Design I 6-5

VHDL Hierarchy

Logic System Design I 6-6

VHDL program file structure

Entity and architecture definitions for different modules
can be in different files.
– Compiler maintains “work” library and keeps track of

definitions using entity and architecture names.

Logic System Design I 6-7

VHDL -- designed by committee

Tries to be all things to all people.
– Result -- very general, but also very complex.

Standard logic values and elements are not
built-in.

Standard logic defined by a “package”, IEEE 1164
STD_LOGIC.
– Must be explicitly “used” by program.

library name package name

Use all
definitions
in package

Compiler knows where to find
this (system-dependent)

Logic System Design I 6-8

Standard logic values -- not just 0,1

Need additional values for simulation, three-state logic, pull-
ups, etc.
– Defined in IEEE 1164 STD_LOGIC package.

Logic System Design I 6-9

Logic functions defined by table lookup

Logic System Design I 6-10

VHDL strong typing

Every signal, variable, function parameter, and function result
has a “type”.
– A few built-in types, plus user defined types.

In assignment statements, comparisons, and function calls,
types must match.

Commonly used IEEE-1164 types:
– STD_LOGIC (one bit)

– STD_LOGIC_VECTOR(range) (multibit vector)
– INTEGER (built-in integer type)

Pain in the neck: Must explicitly convert between INTEGER
and STD_LOGIC_VECTOR.

Logic System Design I 6-11

library IEEE;
use IEEE.std_logic_1164.all;

entity parity9 is
port (

I: in STD_LOGIC_VECTOR
(1 to 9);

EVEN, ODD: out
STD_LOGIC
);

end parity9;

architecture parity9p of parity9 is
begin
process (I)
variable p : STD_LOGIC;
variable j : INTEGER;
begin
p := I(1);
for j in 2 to 9 loop
if I(j) = '1' then p := not p; end if;

end loop;
ODD <= p;
EVEN <= not p;

end process;
end parity9p;

Logic System Design I 6-12

VHDL programming styles

Structural
– Define explicit components and the connections

between them.
– Textual equivalent of drawing a schematic

Dataflow
– Assign expressions to signals
– Includes “when” and “select” (case) statements

Behavioral
– Write an algorithm that describes the circuit’s output
– May not be synthesizable or may lead to a very large

circuit
– Primarily used for simulation

Logic System Design I 6-13

Example: 2-to-4 decoder

Entity

Logic System Design I 6-14

Architecture

built-in library
components

positional
correspondence
with entity definition

Example: 2-to-4 decoder

Logic System Design I 6-15

Dataflow-style program for 3-to-8 decoder

Logic System Design I 6-16

Dataflow-style program for 3-to-8 decoder

Note: All assignment statements operate concurrently
(combinational circuit).

Logic System Design I 6-17

Behavioral program style

Normally uses VHDL “processes”
Each VHDL process executes in parallel with other VHDL

processes and concurrent statements
“Concurrent” statements include assignment and select

statements in dataflow-style programs
Concurrency is needed to model the behavior of parallel,

interconnected hardware elements
But “sequential” statements can be used within a process

Logic System Design I 6-18

VHDL process

A sequence of “sequential
statements”.

Activated when any signal in the
“sensitivity list” changes.

Primarily a simulation concept, but can
be synthesized

Logic System Design I 6-19

Behavioral version of 74x138

Except for different
syntax, approach
is not all that
different from the
dataflow version

Logic System Design I 6-20

Truly behavioral version

May not be synthesizable, or may have a slow
or inefficient realization. But just fine for
simulation and verification.

type conversion

Logic System Design I 6-21

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

--Declaration of the module's inputs and outputs
entity fewgates is port (

A: in std_logic;
B: in std_logic;
C: in std_logic;
Y: out std_logic);

end fewgates;

--Defining the modules behavior
Architecture behavioral of fewgates is
begin
process (A, B, C) begin

Y <= C OR ((NOT A) AND (NOT B));
end process;
end behavioral;

Logic System Design I 6-22

More VHDL

Powerful facilities for generating iterative circuit descriptions
(e.g., multiplier array)

Facilities for modeling timing behavior of known components
Program I/O facilities for use in simulation
Design-management facilities for selecting alternative

components and architectures
And more...

