Decoders and Encoders

ECGR2181

Reading: Chapter 5.4 and 5.5

Decoders

General decoder structure

Typically *n* inputs, 2^{*n*} outputs

- 2-to-4, 3-to-8, 4-to-16, etc.

Binary 2-to-4 decoder

2-to-4 decoder			Inputs				Outputs					
 10	Y0	_	EN	1	ю		Yз	Y2	Y1	Yo		
 1	Y1 -		0	х	х		0	0	0	0		
	Y2 -		1	0	0		0	0	0	1		
 EN	Y3 -		1	0	1		0	0	1	0		
			1	1	0		0	1	0	0		
			1	1	1		1	0	0	0		

Note "x" (don't care) notation.

2-to-4-decoder logic diagram

MSI 2-to-4 decoder

Input buffering (less load) NAND gates (faster)

Complete 74x139 Decoder

3-to-8 decoder

Decoder cascading

Logic System Design I

Decoder applications

Microprocessor memory systems

- selecting different banks of memory
- Microprocessor input/output systems
 - selecting different devices

Microprocessor instruction decoding

enabling different functional units

Memory chips

enabling different rows of memory depending on address

Binary encoders

Need priority in most applications

Priority-encoder logic equations

H7 = 17 $H6 = 16 \cdot 17'$ $H5 = 15 \cdot 16' \cdot 17'$. . . $H0 = |0 \cdot |1' \cdot |2' \cdot |3' \cdot |4' \cdot |5' \cdot |6' \cdot |7'$ A2 = H4 + H5 + H6 + H7A1 = H2 + H3 + H6 + H7A0 = H1 + H3 + H5 + H7IDLE = (I0 + I1 + I2 + I3 + I4 + I5 + I6 + I7)' $= 10' \cdot 11' \cdot 2' \cdot 3' \cdot 4' \cdot 5' \cdot 6' \cdot 7'$

74x148 8-input priority encoder

				Inputs	Outputs								
ELL	lo_L	1_L	l2_L	13_L	14_L	15_L	16_L	17_L	A2_L	A1_L	A0_L	GS_L	EO_L
1	х	х	х	х	х	х	х	х	1	1	1	1	1
0	х	х	х	х	х	х	х	0	0	0	0	0	1
0	х	х	х	х	х	х	0	1	0	0	1	0	1
0	х	х	х	х	х	0	1	1	0	1	0	0	1
0	х	х	х	х	0	1	1	1	0	1	1	0	1
0	x	х	x	0	1	1	1	1	1	0	0	0	1
0	х	х	0	1	1	1	1	1	1	0	1	0	1
0	х	0	1	1	1	1	1	1	1	1	0	0	1
0	0	1	1	1	1	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	1	1	0

Cascading priority

encoders

32-input priority encoder

Logic System Design I