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Block Diagram
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Flat schematic structure
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Hierarchichal
schematic 
structure
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Other Documentation

Timing diagrams
– Output from simulator
– Specialized timing-diagram drawing tools

Circuit descriptions
– Text (word processing)
– Can be as big as a book
– Typically incorporate other elements (block diagrams, timing 

diagrams, etc.)



Logic System Design I 8-6

Signal names and active levels

Signal names are chosen to be descriptive.
Active levels -- HIGH or LOW

– named condition or action occurs in either the HIGH or the 
LOW state, according to the active-level designation in the 
name.
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Example

Logic
Circuit

HIGH when error occurs

ERROR
OK_L

Logic
Circuit

LOW when error occurs

ERROR_L ERROR

ERROR1_L
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Programmable Logic Arrays (PLAs)

Any combinational logic function can be realized as a sum of 
products.

Idea: Build a large AND-OR array with lots of inputs and 
product terms, and programmable connections.
– n inputs

• AND gates have 2n inputs -- true and complement of each 
variable.

– m outputs, driven by large OR gates
• Each AND gate is programmably connected to each output’s 

OR gate.
– p AND gates (p<<2n)
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Example: 4x3 PLA, 6 product terms



Logic System Design I 8-13

Programmable Array Logic (PALs)

How beneficial is product sharing?
– Not enough to justify the extra AND array

PALs ==> fixed OR array
– Each AND gate is permanently connected to a certain OR gate.

Example: PAL16L8
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10 primary inputs
8 outputs, with 7 ANDs per 

output
1 AND for 3-state enable
6 outputs available as inputs

– more inputs, at expense of 
outputs

– two-pass logic, helper terms

Note inversion on outputs
– output is complement of sum-of-

products
– newer PALs have selectable 

inversion
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Designing with PALs

Compare number of inputs and outputs of the problem with 
available resources in the PAL.

Write equations for each output using HDL.
Compile the HDL program, determine whether minimized 

equations fit in the available AND terms.
If no fit, try modifying equations.
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Documentation Standards

Block diagrams
– first step in hierarchical design

Schematic diagrams
HDL programs (ABEL, Verilog, VHDL)
Timing diagrams
Circuit descriptions
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Multiplexers
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74x151
8-input 
multiplexer
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74x151 truth table
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CMOS transmission gates

2-input multiplexer
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Other multiplexer varieties

2-input, 4-bit-wide
– 74x157

4-input, 2-bit-wide
– 74x153
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Barrel shifter design example

n data inputs, n data outputs
Control inputs specify number of positions to rotate or shift 

data inputs
Example: n = 16

– DIN[15:0], DOUT[15:0], S[3:0] (shift amount)

Many possible solutions, all based on multiplexers
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16 16-to-1 
muxes

16-to-1 mux = 
2 x 74x151 
8-to-1 mux
+ NAND gate
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4 16-bit 2-to-1 muxes

16-bit 2-to-1 mux = 4 x 74x157 4-bit 2-to-1 mux
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Properties of different approaches
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2-input XOR gates

Like an OR gate, but excludes the case where both inputs 
are 1. 

XNOR: complement of XOR
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XOR and XNOR symbols
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Gate-level XOR circuits

No direct realization with just a few transistors.
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Equality Comparators
1-bit comparator

4-bit comparator

EQ_L
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8-bit Magnitude 
Comparator
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Other 
conditions
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Adders

Basic building block is “full adder”
– 1-bit-wide adder, produces sum and carry outputs

Truth table:

X Y Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
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Full-adder circuit



Logic System Design I 8-34

Ripple adder

Speed limited by carry chain
Faster adders eliminate or limit carry chain

– 2-level AND-OR logic ==> 2n product terms
– 3 or 4 levels of logic, carry lookahead
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74x283
4-bit adder

Uses carry 
lookahead
internally
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“generate”

“propagate”

“half sum”

carry-in from 
previous stage



Logic System Design I 8-37

Ripple 
carry 
between 
groups
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Lookahead carry between 
groups
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Subtraction

Subtraction is the same as addition of the two’s complement.
The two’s complement is the bit-by-bit complement plus 1.
Therefore, X – Y = X + Y + 1 .

– Complement Y inputs to adder, set Cin to 1.
– For a borrow, set Cin to 0.
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Full subtractor = full adder, almost
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Multipliers

8x8 multiplier
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Full-adder 
array
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Faster carry 
chain
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Memory Hierarchy
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View of Computer System
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Memory

To build a memory -- a logical k × m array of stored bits.
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More Memory Details

This is a not the way actual memory is implemented.
– fewer transistors, much more dense, relies on electrical properties

But the logical structure is very similar.
– address decoder
– word select line
– word write enable

Two basic kinds of memory (RAM = Random Access 
Memory)

Static RAM (SRAM)
– fast, maintains data without power refresh

Dynamic RAM (DRAM)
– slower but denser, bit storage must be periodically refreshed
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Even More Memory Details

There are other types of “non-volatile” memory devices:
• ROM
• PROM
• EPROM
• EEPROM
• Flash

Can you think of other memory devices?
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Electronics Packaging
– There are several packaging technologies available that an 

engineer can use to create electronic devices.  
– Some are suitable for inexpensive toys but not miniature consumer 

products, and some are suitable for miniature consumer products 
but not inexpensive toys.

– These packages have metal leads that are the conductive wire that 
connect electricity from the outside world to the silicon inside the 
package.  

– Leads between packages are connected with small copper traces 
on a printed circuit board (PCB), and the package leads are 
soldered to the PCB.
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Examples of Electronics Packages

Dual In-line Package (DIP) Older technology, requires the 
metal leads to go through a hole in the printed circuit 
board.

Dual Flat Pack (DFP) - A fairly recent technology, metal 
leads solder to the surface of the printed circuit board.
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Examples of Electronics Packages

Quad Flat Pack (QFP) - like the Dual Flat Pack, except here 
are metal leads are on four sides.

Ball Grid Array (BGA) - The connections to the component 
are on the bottom of the chip, and have balls of solder on 
these connections.



Logic System Design I 8-53

Driving Force: The Clock

The clock is a signal that keeps the control unit moving.
– At each clock “tick,” control unit moves to the next

machine cycle -- may be next instruction or
next phase of current instruction.

Clock generator circuit:
– Based on crystal oscillator
– Generates regular sequence of “0” and “1” logic levels
– Clock cycle (or machine cycle) -- rising edge to rising edge
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Read-Only Memories
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Why “ROM”?

Program storage
– Boot ROM for personal computers
– Complete application storage for embedded systems.

Actually, a ROM is a combinational circuit, basically a truth-
table lookup.
– Can perform any combinational logic function
– Address inputs = function inputs
– Data outputs = function outputs
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Logic-in-ROM 
example
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4x4 multiplier 
example
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Internal 
ROM 
structure

PDP-11 boot ROM
(64 words, 1024 diodes)
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Two-dimensional decoding

?
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Larger example, 32Kx8 ROM
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Today’s ROMs

256K bytes, 1M byte, or larger
Use MOS transistors
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EEPROMs, Flash PROMs

Programmable 
and erasable
using floating-gate 
MOS transistors
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Typical commercial EEPROMs
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EEPROM programming

Apply a higher voltage to force bit change
– E.g., VPP = 12 V
– On-chip high-voltage “charge pump” in newer chips

Erase bits
– Byte-byte
– Entire chip (“flash”)
– One block (typically 32K - 66K bytes) at a time

Programming and erasing are a lot slower than reading 
(milliseconds vs. 10’s of nanoseconds)
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Microprocessor EPROM application
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ROM 
control 
and I/O 
signals
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ROM timing


