
8-1Logic System Design I

More Digital Design

ECGR2181

�������� ��������	
�������������

Logic System Design I 8-2

Block Diagram

Logic System Design I 8-3

Flat schematic structure

Logic System Design I 8-4

Hierarchichal
schematic
structure

Logic System Design I 8-5

Other Documentation

Timing diagrams
– Output from simulator
– Specialized timing-diagram drawing tools

Circuit descriptions
– Text (word processing)
– Can be as big as a book
– Typically incorporate other elements (block diagrams, timing

diagrams, etc.)

Logic System Design I 8-6

Signal names and active levels

Signal names are chosen to be descriptive.
Active levels -- HIGH or LOW

– named condition or action occurs in either the HIGH or the
LOW state, according to the active-level designation in the
name.

Logic System Design I 8-7

Example

Logic
Circuit

HIGH when error occurs

ERROR
OK_L

Logic
Circuit

LOW when error occurs

ERROR_L ERROR

ERROR1_L

Logic System Design I 8-8

Microprocessor

A15
A14
A13
A12
A11
A10

A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

ALE

ADDR15

ADDR14

ADDR13

ADDR12

ADDR11

ADDR10

ADDR9

ADDR8

ADDR8

ADDR7

ADDR6

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

ADDR0

ALE

ALE

ADDR15 LA15

LA14

LA13

LA12

LA11

LA10

LA7

LA8

ADDR14

ADDR13

ADDR12

ADDR11

ADDR10

ADDR9

D7
DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

DATA0

D6
D5
D4
D3
D2
D1
D0

MIORDY
MEMIO

RD_L
READ

WR_L

RD_L

WR_L
WRITE

CONTROL

DATA[7:0]

ADDR[15:0]

LA[15:0]

DB[7:0]

DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

DATA0

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

READY

LA7

LA6

LA5

LA4

LA3

LA2

LA1

LA0

ADDR7

ADDR6

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

ADDR0

2,3

2

2

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Logic System Design I 8-9

GO

READY

DAT

(b)

GO

READY

DAT

(c)(a)

t

GO

ENB

READY

DAT

DAT

RDY

RDYmin

DATmax

DATmin

RDYmax

DAT

RDY

t

t

t

t

t t

t

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Logic System Design I 8-10

tOUTmax

WRITE_L

DATAIN

DATAOUT

(a)

STEP[7:0]

(b)

tOUTmin

must be stable

tsetup thold

new dataold

00FF 01 02 03

COUNT

CLEAR

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e

Logic System Design I 8-11

Programmable Logic Arrays (PLAs)

Any combinational logic function can be realized as a sum of
products.

Idea: Build a large AND-OR array with lots of inputs and
product terms, and programmable connections.
– n inputs

• AND gates have 2n inputs -- true and complement of each
variable.

– m outputs, driven by large OR gates
• Each AND gate is programmably connected to each output’s

OR gate.
– p AND gates (p<<2n)

Logic System Design I 8-12

Example: 4x3 PLA, 6 product terms

Logic System Design I 8-13

Programmable Array Logic (PALs)

How beneficial is product sharing?
– Not enough to justify the extra AND array

PALs ==> fixed OR array
– Each AND gate is permanently connected to a certain OR gate.

Example: PAL16L8

Logic System Design I 8-14

10 primary inputs
8 outputs, with 7 ANDs per

output
1 AND for 3-state enable
6 outputs available as inputs

– more inputs, at expense of
outputs

– two-pass logic, helper terms

Note inversion on outputs
– output is complement of sum-of-

products
– newer PALs have selectable

inversion

Logic System Design I 8-15

Designing with PALs

Compare number of inputs and outputs of the problem with
available resources in the PAL.

Write equations for each output using HDL.
Compile the HDL program, determine whether minimized

equations fit in the available AND terms.
If no fit, try modifying equations.

Logic System Design I 8-16

Documentation Standards

Block diagrams
– first step in hierarchical design

Schematic diagrams
HDL programs (ABEL, Verilog, VHDL)
Timing diagrams
Circuit descriptions

Logic System Design I 8-17

Multiplexers

Logic System Design I 8-18

74x151
8-input
multiplexer

Logic System Design I 8-19

74x151 truth table

Logic System Design I 8-20

CMOS transmission gates

2-input multiplexer

Logic System Design I 8-21

Other multiplexer varieties

2-input, 4-bit-wide
– 74x157

4-input, 2-bit-wide
– 74x153

Logic System Design I 8-22

Barrel shifter design example

n data inputs, n data outputs
Control inputs specify number of positions to rotate or shift

data inputs
Example: n = 16

– DIN[15:0], DOUT[15:0], S[3:0] (shift amount)

Many possible solutions, all based on multiplexers

Logic System Design I 8-23

16 16-to-1
muxes

16-to-1 mux =
2 x 74x151
8-to-1 mux
+ NAND gate

Logic System Design I 8-24

4 16-bit 2-to-1 muxes

16-bit 2-to-1 mux = 4 x 74x157 4-bit 2-to-1 mux

Logic System Design I 8-25

Properties of different approaches

Logic System Design I 8-26

2-input XOR gates

Like an OR gate, but excludes the case where both inputs
are 1.

XNOR: complement of XOR

Logic System Design I 8-27

XOR and XNOR symbols

Logic System Design I 8-28

Gate-level XOR circuits

No direct realization with just a few transistors.

Logic System Design I 8-29

Equality Comparators
1-bit comparator

4-bit comparator

EQ_L

Logic System Design I 8-30

8-bit Magnitude
Comparator

Logic System Design I 8-31

Other
conditions

Logic System Design I 8-32

Adders

Basic building block is “full adder”
– 1-bit-wide adder, produces sum and carry outputs

Truth table:

X Y Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Logic System Design I 8-33

Full-adder circuit

Logic System Design I 8-34

Ripple adder

Speed limited by carry chain
Faster adders eliminate or limit carry chain

– 2-level AND-OR logic ==> 2n product terms
– 3 or 4 levels of logic, carry lookahead

Logic System Design I 8-35

74x283
4-bit adder

Uses carry
lookahead
internally

Logic System Design I 8-36

“generate”

“propagate”

“half sum”

carry-in from
previous stage

Logic System Design I 8-37

Ripple
carry
between
groups

Logic System Design I 8-38

Lookahead carry between
groups

Logic System Design I 8-39

Subtraction

Subtraction is the same as addition of the two’s complement.
The two’s complement is the bit-by-bit complement plus 1.
Therefore, X – Y = X + Y + 1 .

– Complement Y inputs to adder, set Cin to 1.
– For a borrow, set Cin to 0.

Logic System Design I 8-40

Full subtractor = full adder, almost

Logic System Design I 8-41

Multipliers

8x8 multiplier

Logic System Design I 8-42

Full-adder
array

Logic System Design I 8-43

Faster carry
chain

Logic System Design I 8-44

Memory Hierarchy

���������

�����

���

����

�������

������

��������

� ��

���������

���!"#���

Logic System Design I 8-45

View of Computer System

���$����� %�

� ��&���

'������%�

�#���(

)���&���

���*�� ���*��

Logic System Design I 8-46

Memory

To build a memory -- a logical k × m array of stored bits.

++++
++++
++++

	,��

$ ���� %�

"���

�������������-�������������-�������������-�������������-

%.("��� ��$ ���� %�
�.�.�$$#���� &��� ���

��������"�$��#-��������"�$��#-��������"�$��#-��������"�$��#-

%.("��� ��"��������$ ���� %
��
�
��"#��!��������"$��

Logic System Design I 8-47

A1

WE

A0 D2 D1 D0

Q2 Q1 Q0

22 x 3 Memory

����������������������������

��� ������ ������ ������ ���

& �����$���& �����$���& �����$���& �����$��� & ���/0& ���/0& ���/0& ���/0
����������������������������

&����&����&����&����

�%�"$��%�"$��%�"$��%�"$�

�%�.��"����%�.��"����%�.��"����%�.��"���

 .��.��"��� .��.��"��� .��.��"��� .��.��"���

Logic System Design I 8-48

More Memory Details

This is a not the way actual memory is implemented.
– fewer transistors, much more dense, relies on electrical properties

But the logical structure is very similar.
– address decoder
– word select line
– word write enable

Two basic kinds of memory (RAM = Random Access
Memory)

Static RAM (SRAM)
– fast, maintains data without power refresh

Dynamic RAM (DRAM)
– slower but denser, bit storage must be periodically refreshed

Logic System Design I 8-49

Even More Memory Details

There are other types of “non-volatile” memory devices:
• ROM
• PROM
• EPROM
• EEPROM
• Flash

Can you think of other memory devices?

Logic System Design I 8-50

Electronics Packaging
– There are several packaging technologies available that an

engineer can use to create electronic devices.
– Some are suitable for inexpensive toys but not miniature consumer

products, and some are suitable for miniature consumer products
but not inexpensive toys.

– These packages have metal leads that are the conductive wire that
connect electricity from the outside world to the silicon inside the
package.

– Leads between packages are connected with small copper traces
on a printed circuit board (PCB), and the package leads are
soldered to the PCB.

Logic System Design I 8-51

Examples of Electronics Packages

Dual In-line Package (DIP) Older technology, requires the
metal leads to go through a hole in the printed circuit
board.

Dual Flat Pack (DFP) - A fairly recent technology, metal
leads solder to the surface of the printed circuit board.

Logic System Design I 8-52

Examples of Electronics Packages

Quad Flat Pack (QFP) - like the Dual Flat Pack, except here
are metal leads are on four sides.

Ball Grid Array (BGA) - The connections to the component
are on the bottom of the chip, and have balls of solder on
these connections.

Logic System Design I 8-53

Driving Force: The Clock

The clock is a signal that keeps the control unit moving.
– At each clock “tick,” control unit moves to the next

machine cycle -- may be next instruction or
next phase of current instruction.

Clock generator circuit:
– Based on crystal oscillator
– Generates regular sequence of “0” and “1” logic levels
– Clock cycle (or machine cycle) -- rising edge to rising edge

1�2

1�2

��
�→�����%�

�#�$�

Logic System Design I 8-54

Read-Only Memories

Logic System Design I 8-55

Why “ROM”?

Program storage
– Boot ROM for personal computers
– Complete application storage for embedded systems.

Actually, a ROM is a combinational circuit, basically a truth-
table lookup.
– Can perform any combinational logic function
– Address inputs = function inputs
– Data outputs = function outputs

Logic System Design I 8-56

Logic-in-ROM
example

Logic System Design I 8-57

4x4 multiplier
example

Logic System Design I 8-58

Internal
ROM
structure

PDP-11 boot ROM
(64 words, 1024 diodes)

Logic System Design I 8-59

Two-dimensional decoding

?

Logic System Design I 8-60

Larger example, 32Kx8 ROM

Logic System Design I 8-61

Today’s ROMs

256K bytes, 1M byte, or larger
Use MOS transistors

Logic System Design I 8-62

EEPROMs, Flash PROMs

Programmable
and erasable
using floating-gate
MOS transistors

Logic System Design I 8-63

Typical commercial EEPROMs

Logic System Design I 8-64

EEPROM programming

Apply a higher voltage to force bit change
– E.g., VPP = 12 V
– On-chip high-voltage “charge pump” in newer chips

Erase bits
– Byte-byte
– Entire chip (“flash”)
– One block (typically 32K - 66K bytes) at a time

Programming and erasing are a lot slower than reading
(milliseconds vs. 10’s of nanoseconds)

Logic System Design I 8-65

Microprocessor EPROM application

Logic System Design I 8-66

ROM
control
and I/O
signals

Logic System Design I 8-67

ROM timing

