UNC Charlotte - Spring 2005 - Exam 1 - February 15, 2005

Name: \qquad Student MOSAIC ID: \qquad

Question	$1-4$	5	6	7	8	9	10	11	Total
Score	$/ 25$	$/ 15$	$/ 20$	$/ 15$	$/ 15$	$/ 20$	$/ 20$	$/ 20$	$/ 150$

Short Answers

1) (10 points) Convert -265_{10} to hexadecimal (16 bits two's complement notation) by hand. Show your work below.

Solution:

$265=0000000100001001$ in binary $=0 \times 109$ (3 points)
Taking Two's complement:
1111111011110110
$+\quad 1$
\qquad
$1111111011110111=0 \times 5 E F 7$ (7 points)

Answer: 0xFEF7
2) (3 points) Translate the following ASCII codes into strings of characters by interpreting each group of eight bits as an ASCII character: 0x74696B3721

Answer: \quad tik7! (. 5 for trying, 5 for each correct character)
3) (2 points) Sign extend the 6 -bit 2's complement binary number 111000 to a 8 -bit 2 's complement binary number. Then express this number in hexadecimal.

Answer:
0xF8 (all or none)
4) (10 points) What is the range of numbers which can be represented by 9 bits if we are representing two's complement integers? (express as the formula and as decimal numbers)

Formula:	n-1 $\quad \mathrm{n}-1$	
	2 to 2	1 (5 points or none)
Decimal:	-256 to 255	(5 points or none)

5) (15 points) Perform the operation $x 3 E 8$ divided by $x 1 B$. Show your result in binary (hint: Perform the division in binary). Show your work below.

Answer:

$$
100101, R=1
$$

* Must shaw work for full credit

Long Answer
6) (20 points) Draw a Transistor-Level Schematic Diagram of a three-input NOR Gate, similar to what was done in the homework assignment (similar to Figure 3-16a in the book).

7) (15 pts.) Combinational Circuit Analysis. Write a logic expression for the output F of the circuit below as a function of the circuit inputs (W, X, Y, and Z). Derive the expression directly from the structure of the circuit; do not simplify.

8) (15 pts.) Complete the Truth Table for the following function: $\mathrm{F}=\Sigma \mathrm{A}, \mathrm{B}, \mathrm{C}(1,4,5,7)$ and give the Canonical Sum representation.

Row	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}	Minterm
0	0	0	0	0	
1	0	0	1	1	$A^{\prime} \cdot B^{\prime} \cdot C$
2	0	1	0	0	
3	0	1	1	0	
4	1	0	0	1	$A \cdot B^{\prime} \cdot C^{\prime}$
5	1	0	1	1	$A \cdot B^{\prime} \cdot C$
6	1	1	0	0	
7	1	1	1	1	$A \cdot B C$

$=12$ points. $F=\frac{\left(A^{\prime} \cdot B^{\prime} \cdot C\right)+\left(A \cdot B^{\prime} \cdot C^{\prime}\right)+\left(A \cdot B^{\prime} \cdot C\right)+(A \cdot B \cdot C)}{3 \text {-points. }}$
9) (20 pts.) Combinational Circuit Minimization. Using a Karnaugh map, find a minimal sum of products expression for the function from the previous question: $F=\Sigma A, B, C(1,4,5,7)$. Show all of your work.

10) (20 pts.) Combinational Circuit Minimization. Fill in the Karnaugh map and find a minimal sum of products expression for the function: $\mathrm{F}=\Sigma \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}(1,3,5,6,7,9,13)$.

11) (20 pts.) Draw the logic diagram (gate-level schematic) for the minimal sum of products expression derived in the question above.
points:

