UNC Charlotte - Spring 2005 - Exam 1 - February 15, 2005

Student MOSAIC ID:

Question	1-4	5	6	7	8	9	10	11	Total
Score	/25	/15	/20	/15	/15	/20	/20	/20	/150

Short Answers

1) (10 points) Convert -265_{10} to hexadecimal (16 bits two's complement notation) by hand. Show your work below.

Solution:

265= 00000010001001 in binary =0x109 (3 points) Taking Two's complement: 1111111011110110 + 1

11111110111101111= 0xFEF7 (7 points)

Answer: 0xFEF7

2) (3 points) Translate the following ASCII codes into strings of characters by interpreting each group of eight bits as an ASCII character: 0x74696B3721

Answer:

tik7! (.5 for trying, .5 for each correct character)

3) (2 points) Sign extend the 6-bit 2's complement binary number 111000 to a 8-bit 2's complement binary number. Then express this number in hexadecimal.

Answer:

0xF8 (all or none)

4) (10 points) What is the range of numbers which can be represented by 9 bits if we are representing two's complement integers? (express as the formula and as decimal numbers)

Formula:	n-1 n-1
	2 to 2 -1 (5 points or none)
Decimal:	-256 to 255 (5 points or none)

 (15 points) Perform the operation x3E8 divided by x1B. Show your result in binary (hint: Perform the division in binary). Show your work below.

Answer:
$$100101$$
, $R = 1$
 100101 (Result) (10 points)
 11011 1101000 (0x3EY)
 10011 1000 1000
 10011
 $0011x00$
 11011
 00001 (Remainder) (5 points)
X Must Shew work for full credit

2

2

Long Answer

6) (20 points) Draw a Transistor-Level Schematic Diagram of a three-input NOR Gate, similar to what was done in the homework assignment (similar to Figure 3-16a in the book).

Ser

7) (15 pts.) Combinational Circuit Analysis. Write a logic expression for the output F of the circuit below as a function of the circuit inputs (W, X, Y, and Z). Derive the expression directly from the structure of the circuit; do not simplify.

8) (15 pts.) Complete the Truth Table for the following function: $F = \Sigma A, B, C(1,4,5,7)$ and give the Canonical Sum representation.

Row	A	B	C	F	Minterm
0	0	0	0	0	
1	0	0	1	1	A'. B'. C
2	0	1	0	0	
3	0	1	1	0	_
4	1	0	0	1	A.B'.C'
5	1	0	1	1	A. B'. C
6	1	1	0	0	
7	1	1	1	1	A.BC

1-point for each correct entry. 2555 = 12 Points.

 $F = (A^{1} \cdot B^{1} \cdot C) + (A \cdot B^{1} \cdot C) + (A \cdot B^{1} \cdot C) + (A \cdot B \cdot C) + (A \cdot B \cdot C)$ 3-points.

9) (20 pts.) Combinational Circuit Minimization. Using a Karnaugh map, find a minimal sum of products expression for the function from the previous question: F = ΣA,B,C(1,4,5,7). Show all of your work.

2: box for map 00 01 2: Correct lubels 2 0 0 2: Correct coulmn 8 row values 1 4: correct entries 10: correct F. F =

10) (20 pts.) Combinational Circuit Minimization. Fill in the Karnaugh map and find a minimal sum of products expression for the function: $F = \Sigma W, X, Y, Z(1,3,5,6,7,9,13)$.

11) (20 pts.) Draw the logic diagram (gate-level schematic) for the minimal sum of products expression derived in the question above.

