UNC Charlotte - ECGR2181 - Homework #5 - Due 2/21/06

- 1) Convert -500_{10} to hexadecimal (16 bits two's complement notation) by hand. Show your work. 1pt.
- 2) Show the binary bit steam if I send the eight-bit data 0x45via RS-232c communications with the appropriate start bits, one stop bit, and even parity. 1pt
- 3) What is the range of numbers that can be represented by 12 bits if we are representing two's complement integers? (Express as the formula and as decimal numbers) 1pt
- 4) Perform the operation 0x5F2 divided by 0x24. Show your result in binary (hint: Perform the division in binary). Show your work. 2pt
- 5) Draw a Transistor-Level Schematic Diagram of a three-input OR Gate, similar to what was done in the homework assignment. 3pts.
- 6) Combinational Circuit Analysis. Write a logic expression for the output F of the circuit below as a function of the circuit inputs (W, X, Y, and Z). Derive the expression directly from the structure of the circuit; do not simplify.2pts.

7) Complete the Truth Table for the following function: $F = \Sigma A, B, C(0,1,5,7)$ and give the Canonical Sum representation. 2pts.

Row	Α	B	C	F	Minterm
0	0	0	0		
1	0	0	1		
2	0	1	0		
3	0	1	1		
4	1	0	0		
5	1	0	1		
6	1	1	0		
7	1	1	1		

- 8) Combinational Circuit Minimization. Using a Karnaugh map, find a minimal sum of products expression for the function from the previous question: $F = \Sigma A, B, C(0, 1, 5, 7)$. Show all of your work (draw and label the entire table).3pts.
- 9) Combinational Circuit Minimization. Fill in the Karnaugh map and find a minimal sum of products expression for the function: 5pts.

 $F = \Sigma W, X, Y, Z(0, 2, 8, 9, 10, 12, 16, 22, 24, 25, 26, 28, 29) + d(4, 5, 6, 7, 13, 18, 20).$

Name:

#7 Answer

Row	Α	B	С	F	Minterm
0	0	0	0		
1	0	0	1		
2	0	1	0		
3	0	1	1		
4	1	0	0		
5	1	0	1		
6	1	1	0		
7	1	1	1		

F = _____

F = _____