UNC Charlotte - ECGR2181 - Homework \#5 - Due 2/21/06

1) Convert -500_{10} to hexadecimal (16 bits two's complement notation) by hand. Show your work. 1 pt.
2) Show the binary bit steam if I send the eight-bit data $0 x 45$ via RS-232c communications with the appropriate start bits, one stop bit, and even parity. 1 pt
3) What is the range of numbers that can be represented by 12 bits if we are representing two's complement integers? (Express as the formula and as decimal numbers) 1 pt
4) Perform the operation 0x5F2 divided by 0x24. Show your result in binary (hint: Perform the division in binary). Show your work. 2 pt
5) Draw a Transistor-Level Schematic Diagram of a three-input OR Gate, similar to what was done in the homework assignment. 3pts.
6) Combinational Circuit Analysis. Write a logic expression for the output F of the circuit below as a function of the circuit inputs (W, X, Y, and Z). Derive the expression directly from the structure of the circuit; do not simplify.2pts.

7) Complete the Truth Table for the following function: $\mathrm{F}=\Sigma \mathrm{A}, \mathrm{B}, \mathrm{C}(0,1,5,7)$ and give the Canonical Sum representation. 2pts.

Row	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}	Minterm
0	0	0	0		
1	0	0	1		
2	0	1	0		
3	0	1	1		
4	1	0	0		
5	1	0	1		
6	1	1	0		
7	1	1	1		

8) Combinational Circuit Minimization. Using a Karnaugh map, find a minimal sum of products expression for the function from the previous question: $\mathrm{F}=\Sigma \mathrm{A}, \mathrm{B}, \mathrm{C}(0,1,5,7)$. Show all of your work (draw and label the entire table).3pts.
9) Combinational Circuit Minimization. Fill in the Karnaugh map and find a minimal sum of products expression for the function: 5 pts.
$\mathrm{F}=\Sigma \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}(0,2,8,9,10,12,16,22,24,25,26,28,29)+\mathrm{d}(4,5,6,7,13,18,20)$.

Name: \qquad
\#7 Answer

Row	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}	Minterm
0	0	0	0		
1	0	0	1		
2	0	1	0		
3	0	1	1		
4	1	0	0		
5	1	0	1		
6	1	1	0		
7	1	1	1		

$\mathrm{F}=$ \qquad
\#9 Answer

$\mathrm{F}=$

