Karnaugh-map usage

Plot 1s corresponding to minterms of function.
Circle largest possible rectangular sets of 1 s .

- \# of 1 s in set must be power of 2
- OK to cross edges

Read off product terms, one per circled set.

- Variable is 1 ==> include variable
- Variable is $0==>$ include complement of variable
- Variable is both 0 and 1 ==> variable not included

Circled sets and corresponding product terms are called "prime implicants"
Minimum number of gates and gate inputs

Prime-number detector

$\mathrm{F}=\mathrm{E}_{\mathrm{N} 3, \mathrm{~N} 2, \mathrm{~N} 1, \mathrm{No}(1,2,3,5,7,11,13)}$

$$
\mathrm{F}=\mathrm{N}_{3^{\prime}} \cdot \mathrm{N}_{0}+\mathrm{N}_{3^{\prime}} \cdot \mathrm{N}_{2}^{\prime} \cdot \mathrm{N}_{1}+\mathrm{N}_{2}^{\prime} \cdot \mathrm{N}_{1} \cdot \mathrm{~N}_{0}+\mathrm{N}_{2} \cdot \mathrm{~N}_{1^{\prime}} \cdot \mathrm{N}_{0}
$$

Resulting Circuit.

Another example

$$
F=\Sigma_{W, X, Y, Z}(5,7,12,13,14,15)
$$

$$
F=X \cdot Z+W \cdot X
$$

Yet another example

$F=\Sigma_{W, X, Y, Z(1,3,4,5,9,11,12,13,14,15)}$

$F=X \cdot Y^{\prime}+X^{\prime} \cdot Z+W \cdot X$

Distinguished 1 cells
Essential prime implicants

Another Example

$\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{\Sigma m}(0,1,2,4,5,6,8,9,12,13,14)$

Another Example

$F(W, X, Y, Z)=\Sigma m(0,1,2,3,6,8,9,10,11,14)$

Another Example

$\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}($

Don't Cares

Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e
(a)

$\mathrm{F}=\Sigma_{\mathrm{N} 3, \mathrm{~N} 2, \mathrm{~N} 1, \mathrm{NO} 0}(1,2,3,5,7)+\mathrm{d}(10,11,12,13,14,15)$
(b)

Another Example

$F(W, X, Y, Z)=\Sigma m(0,1,2,3,6,8,9,10,11,14)+d(7,15)$

Another Example

$$
\mathrm{F}(\mathrm{~W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(
$$

$$
)+d(
$$

)

Resulting Circuit

$F(W, X, Y, Z)=\Sigma m(\quad)+d(\quad)$

Another Example

$F(V, W, X, Y, Z)=\Sigma m(0,1,2,3,16,17,18,19,20,21,22)+d(23,30,31)$

Resulting Circuit

$F(V, W, X, Y, Z)=\Sigma m(0,1,2,3,16,17,18,19,20,21,22)+d(23,30,31)$

Another Example

$\mathrm{F}(\mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{Im}($

Current Logic Design

Lots more than 6 inputs -- can't use Karnaugh maps
Use software to synthesize logic expressions and minimize logic
Hardware Description Languages -- VHDL and Verilog

