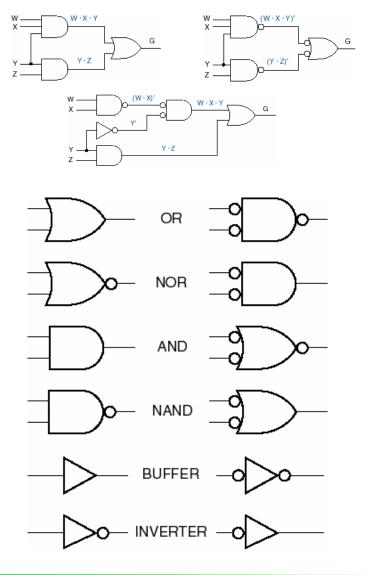
Combinatorial Logic Design Principles

ECGR2181 Chapter 4 Notes

Reading: Chapter 4



Boolean algebra

a.k.a. "switching algebra"

- deals with boolean values -- 0, 1

Positive-logic convention

analog voltages LOW, HIGH --> 0, 1

Negative logic -- seldom used

Signal values denoted by variables (X, Y, FRED, etc.)

Boolean operators

Complement:X' (opposite of X)

AND: X · Y

OR: X + Y

X + Y binary operators, described functionally by truth table.

Χ	Υ	X AND Y	Х	Υ	X OR Y	'	Χ	NOT X
0	0	0	0	0	0		0	1
0	1	0	0	1	1		1	0
1	0	0	1	0	1			
, 1	1	1	1	1	1			

More definitions

Literal: a variable or its complement

- X, X', FRED', CS_L

Expression: literals combined by

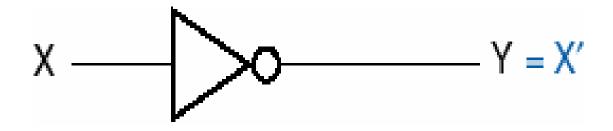
AND, OR, parentheses, complementation

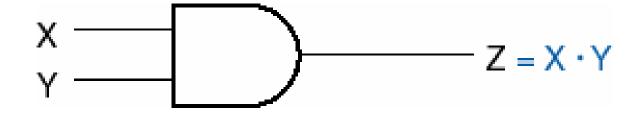
- -X+Y
- $-P\cdot Q\cdot R$
- $-A+B\cdot C$
- $((FRED \cdot Z') + CS_L \cdot A \cdot B' \cdot C + Q5) \cdot RESET'$

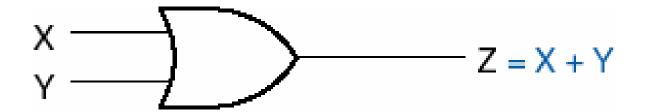
Equation: Variable = expression

 $- P = ((FRED \cdot Z') + CS_L \cdot A \cdot B' \cdot C + Q5) \cdot RESET'$

Logic symbols







Theorems

(T1)

$$X + 0 = X$$
 (T1')
 $X \cdot 1 = X$
 (Identities)

 (T2)
 $X + 1 = 1$
 (T2')
 $X \cdot 0 = 0$
 (Null elements)

 (T3)
 $X + X = X$
 (T3')
 $X \cdot X = X$
 (Idempotency)

 (T4)
 (X')' = X
 (Involution)

 (T5)
 $X + X' = 1$
 (T5')
 $X \cdot X' = 0$
 (Complements)

Proofs by perfect induction

More Theorems

$$(T6) X + Y = Y + X$$

$$(T6')$$
 $X \cdot Y = Y \cdot X$

(Commutativity)

(T7)
$$(X + Y) + Z = X + (Y + Z)$$

$$(T7') \qquad (X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$$

(Associativity)

(T8)
$$X \cdot Y + X \cdot Z = X \cdot (Y + Z)$$

$$(X + Y) \cdot (X + Z) = X + Y \cdot Z$$
 (Distributivity)

$$(T9) X + X \cdot Y = X$$

$$(T9')$$
 $X \cdot (X + Y) = X$

(Covering)

(T10)
$$X \cdot Y + X \cdot Y' = X$$

$$(T10') \quad (X+Y) \cdot (X+Y') = X$$

(Combining)

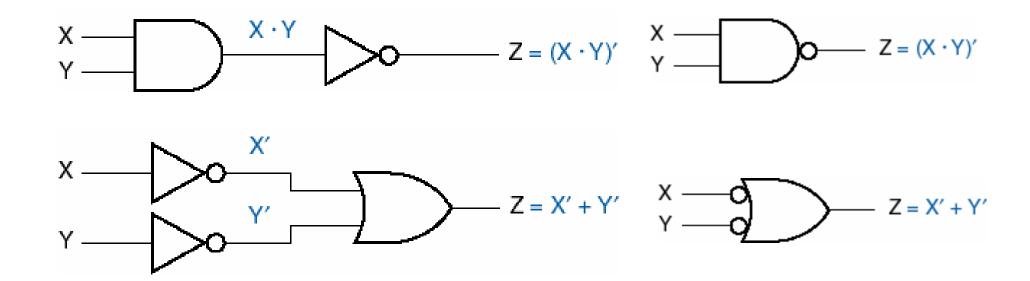
(T11)
$$X \cdot Y + X' \cdot Z + Y \cdot Z = X \cdot Y + X' \cdot Z$$

(Consensus)

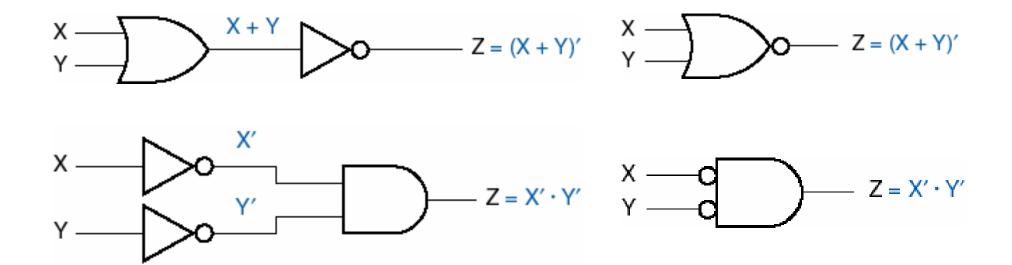
(T11')
$$(X + Y) \cdot (X' + Z) \cdot (Y + Z) = (X + Y) \cdot (X' + Z)$$

N-variable Theorems

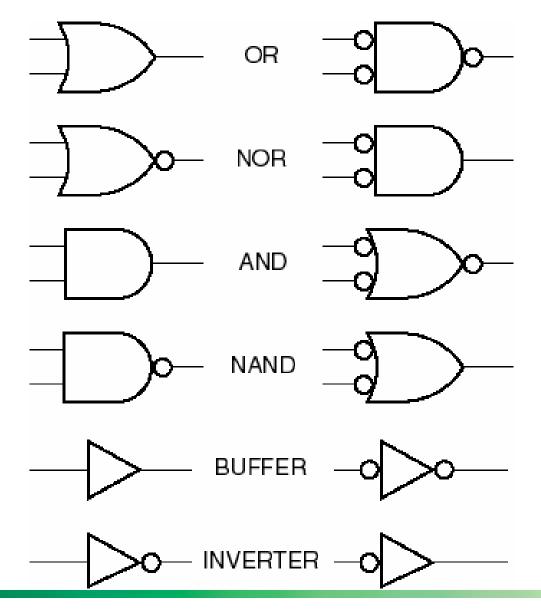
DeMorgan Symbol Equivalence



Likewise for OR



DeMorgan Symbols



Even more definitions (Sec. 4.1.6)

Product term

Sum-of-products expression

Sum term

Product-of-sums expression

Normal term

Minterm (n variables)

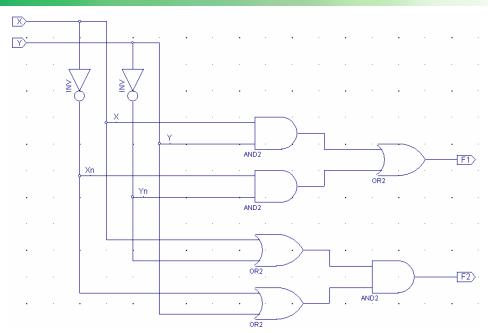
Maxterm (n variables)

Example Using 5 forms of a Logic Expression

1) The Truth Table:

X	Υ	F	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

- 2) **Sum-of-Products**: algebraic sum of minterms. $F = X' \cdot Y' + X \cdot Y$
- 3) **Minterm List**: using Σ notation. $F = \Sigma_{XY}(0,3)$
- 4) **Product-of-Sums**: algebraic product of maxterms. $F = (X + Y') \cdot (X' + Y)$
- 5) **Maxterm List**: using \prod notation. $F = \prod_{XY} (1,2)$

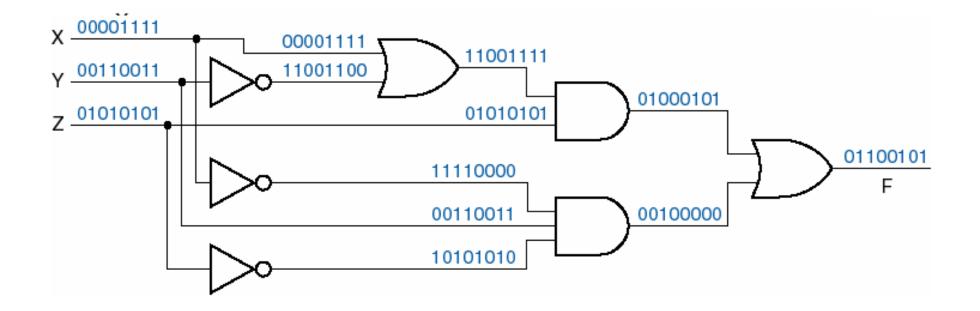


- Circuit is an Exclusive-NOR gate. A.K.A. an equivalence gate.
- F1 = F2

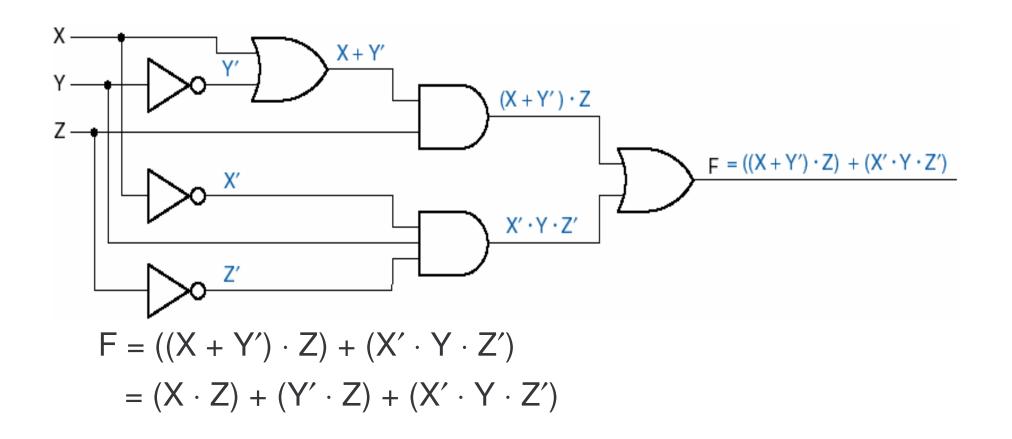
Truth table vs. minterms & maxterms

Row	Χ	Υ	Z	F	Minterm	Maxterm
0	0	0	0	F(0,0,0)	$X' \cdot Y' \cdot Z'$	X + Y + Z
1	0	0	1	F(0,0,1)	$X' \cdot Y' \cdot Z$	X + Y + Z'
2	0	1	0	F(0,1,0)	$X^{\prime}\!\cdot Y\cdot Z^{\prime}$	X + Y' + Z
3	0	1	1	F(0,1,1)	$X' \cdot Y \cdot Z$	X + Y' + Z'
4	1	0	0	F(1,0,0)	$X \cdot Y' \cdot Z'$	X' + Y + Z
5	1	0	1	F(1,0,1)	$X \cdot Y' \cdot Z$	X'+Y+Z'
6	1	1	0	F(1,1,0)	$X \cdot Y \cdot Z'$	X'+Y'+Z
7	1	1	1	F(1,1,1)	$X\cdot Y\cdot Z$	X'+Y'+Z'

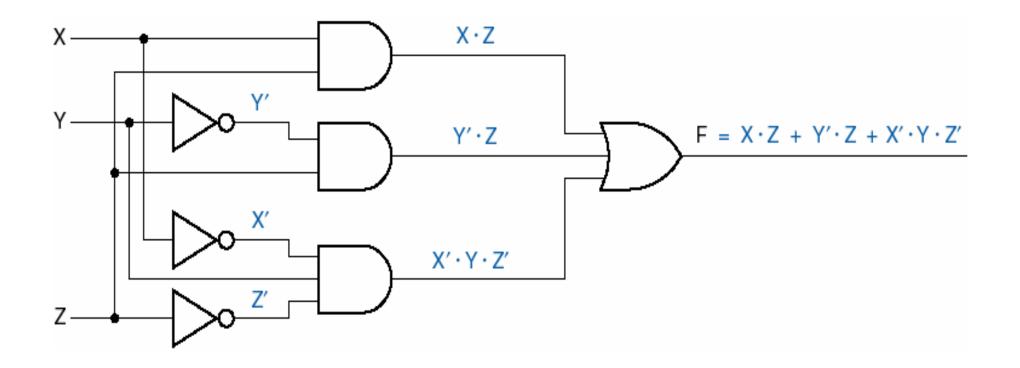
Combinational analysis



Signal expressions



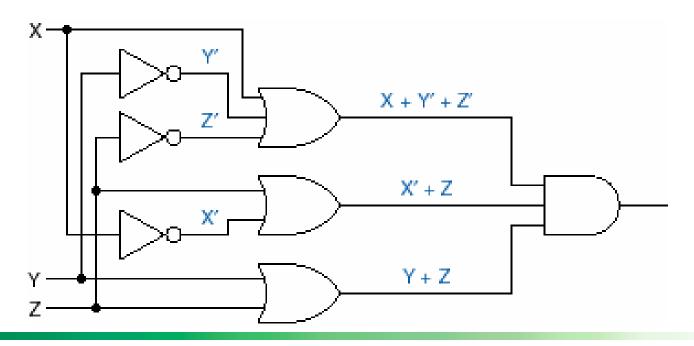
New circuit, same function



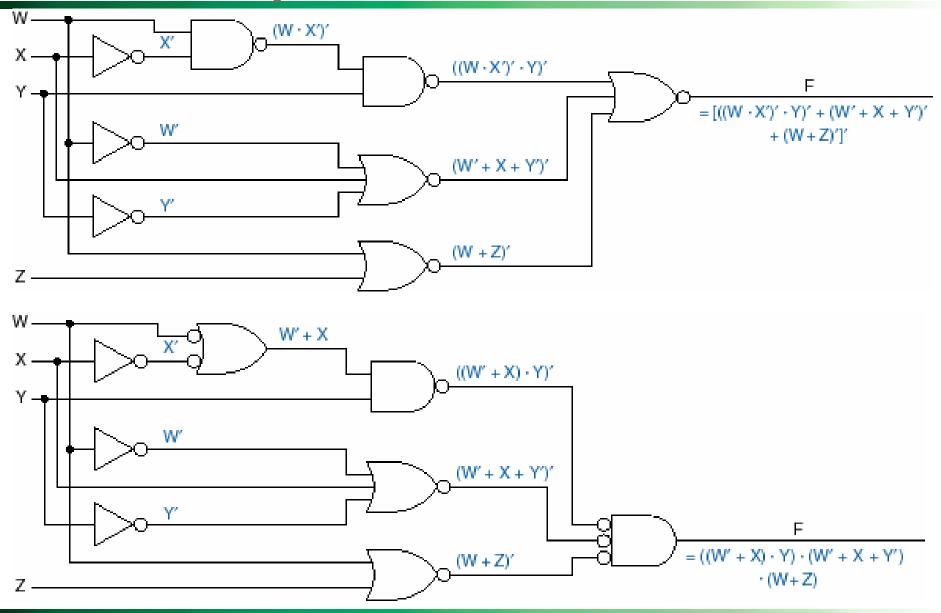
"Add out" logic function

$$\begin{aligned} F &= ((X + Y') \cdot Z) + (X' \cdot Y \cdot Z') \\ &= (X + Y' + X') \cdot (X + Y' + Y) \cdot (X + Y' + Z') \cdot (Z + X') \cdot (Z + Y) \cdot (Z + Z') \\ &= 1 \cdot 1 \cdot (X + Y' + Z') \cdot (X' + Z) \cdot (Y + Z) \cdot 1 \\ &= (X + Y' + Z') \cdot (X' + Z) \cdot (Y + Z) \end{aligned}$$

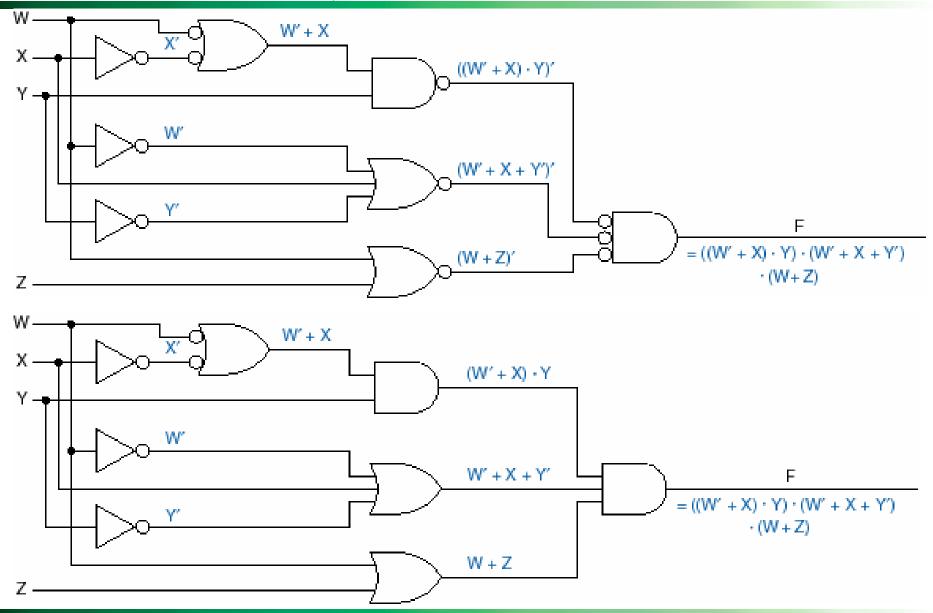
Circuit:



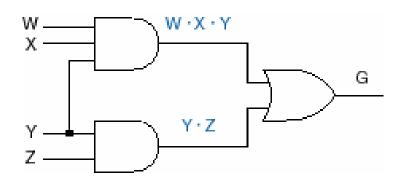
Shortcut: Symbol substitution

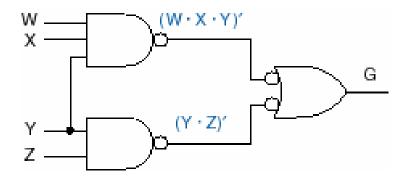


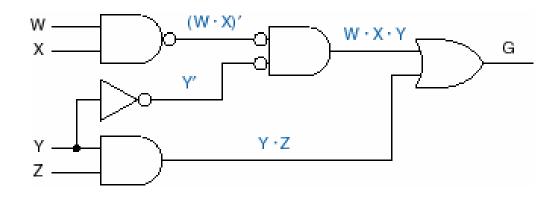
Different circuit, same function



$$G(W, X, Y, Z) = W \cdot X \cdot Y + Y \cdot Z$$







Combinational-Circuit Analysis

Combinational circuits -- outputs depend only on current inputs (not on history).

Kinds of combinational analysis:

- exhaustive (truth table)
- algebraic (expressions)
- simulation / test bench
 - Write functional description in HDL
 - Define test conditions / test vecors
 - Compare circuit output with functional description (or knowngood realization)

Combinational-Circuit Design

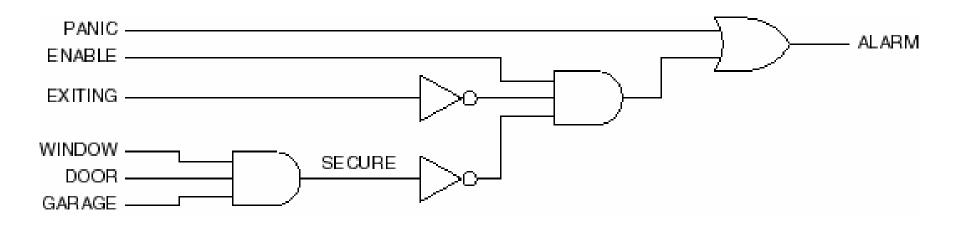
Sometimes you can write an equation or equations directly. Example (alarm circuit):

```
ALARM = PANIC + ENABLE · EXITING' · SECURE'

SECURE = WINDOW · DOOR · GARAGE

ALARM = PANIC + ENABLE · EXITING' · (WINDOW · DOOR · GARAGE)'
```

Corresponding circuit:

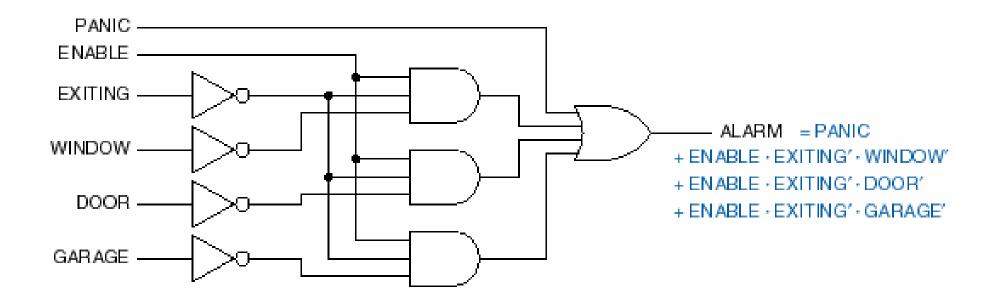


Alarm-circuit transformation

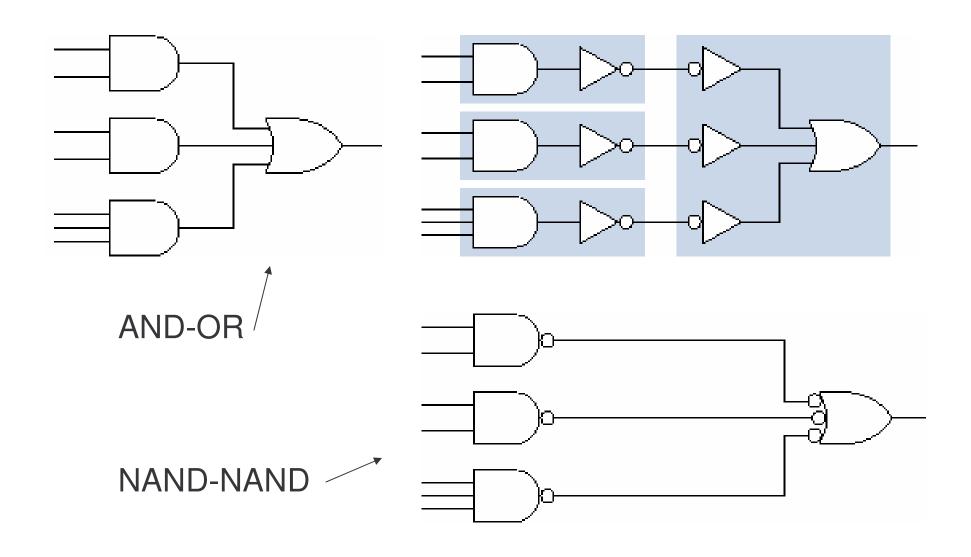
Sum-of-products form

Useful for programmable logic devices

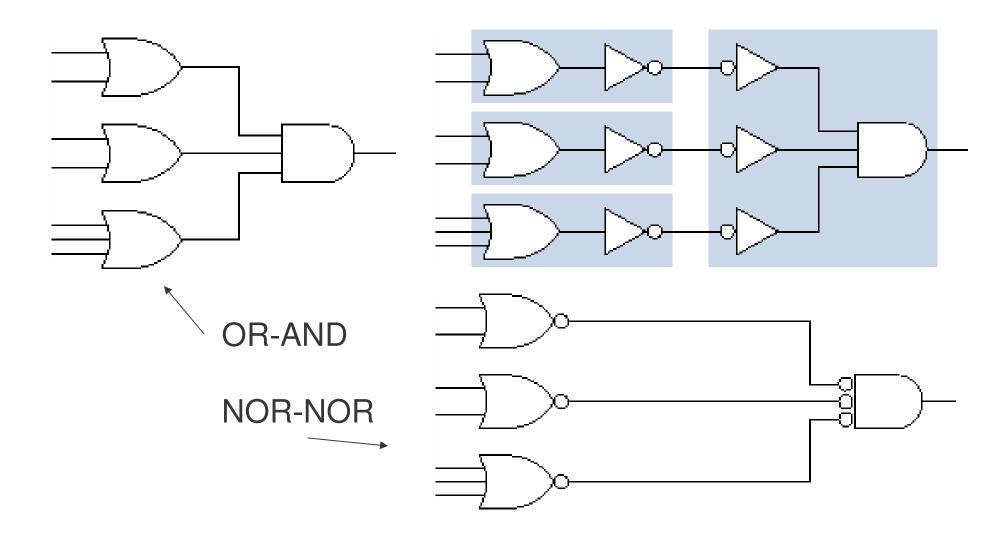
"Multiply out":



Sum-of-products form



Product-of-sums form



Brute-force design row $N_3 N_2 N_1 N_0$ () Truth table --> 0 canonical sum (sum of minterms) Example: prime-number detector - 4-bit input, $N_3N_2N_1N_0$ 0 9 0 10 0 $F = \Sigma_{N3N2N1N0}(1,2,3,5,7,11,13)$ 12 13

Minterm list --> canonical sum

 $F = \Sigma_{N_*N_2,N_1,N_0}(1,2,3,5,7,11,13)$ $= N_3' \cdot N_2' \cdot N_1' \cdot N_0 + N_3' \cdot N_2' \cdot N_1 \cdot N_0' + N_3' \cdot N_2' \cdot N_1 \cdot N_0 + N_3' \cdot N_2 \cdot N_1' \cdot N_0$ $+ N_3' \cdot N_2 \cdot N_1 \cdot N_0 + N_3 \cdot N_2' \cdot N_1 \cdot N_0 + N_3 \cdot N_2 \cdot N_1' \cdot N_0$ $N_3' \cdot N_2' \cdot N_4' \cdot N_0$ N_3 $N_3' \cdot N_2' \cdot N_1 \cdot N_0'$ N_2 $N_3' \cdot N_2' \cdot N_4 \cdot N_0$ N_2 $N_3' \cdot N_2 \cdot N_1' \cdot N_0$ F $N_{\rm d}$ $N_3' \cdot N_2 \cdot N_1 \cdot N_0$ N_1' $N_3 \cdot N_2' \cdot N_1 \cdot N_0$ N_0 $N_3 \cdot N_2 \cdot N_4' \cdot N_0$ N_0

Algebraic simplification

Theorem T8,

$$X \cdot Y + X \cdot Y' = X$$

$$F = \Sigma_{N_3,N_2,N_1,N_0}(1, 3, 5, 7, 2, 11, 13)$$

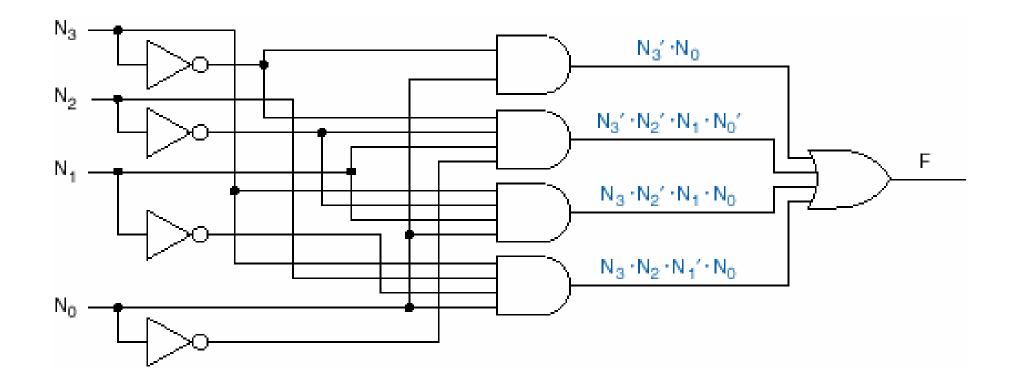
$$= \ N_3' \cdot N_2' N_1' N_0 + N_3' \cdot N_2' \cdot N_1 \cdot N_0 + N_3' \cdot N_2 \cdot N_1' \cdot N_0 + N_3' \cdot N_2 \cdot N_1 \cdot N_0 + \dots$$

$$= (N_3' \cdot N_2' \cdot N_1' \cdot N_0 + N_3' \cdot N_2' \cdot N_1 \cdot N_0) + (\cdot N_3' \cdot N_2 \cdot N_1' \cdot N_0 + N_3' \cdot N_2 \cdot N_1 \cdot N_0) + \dots$$

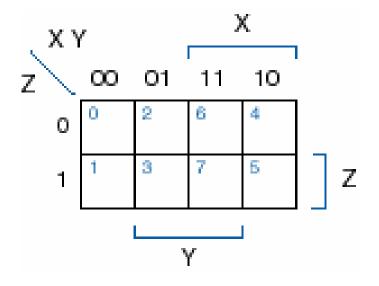
$$= N_3'N_2' \cdot N_0 + N_3' \cdot N_2 \cdot N_0 + \dots$$

Reduce number of gates and gate inputs

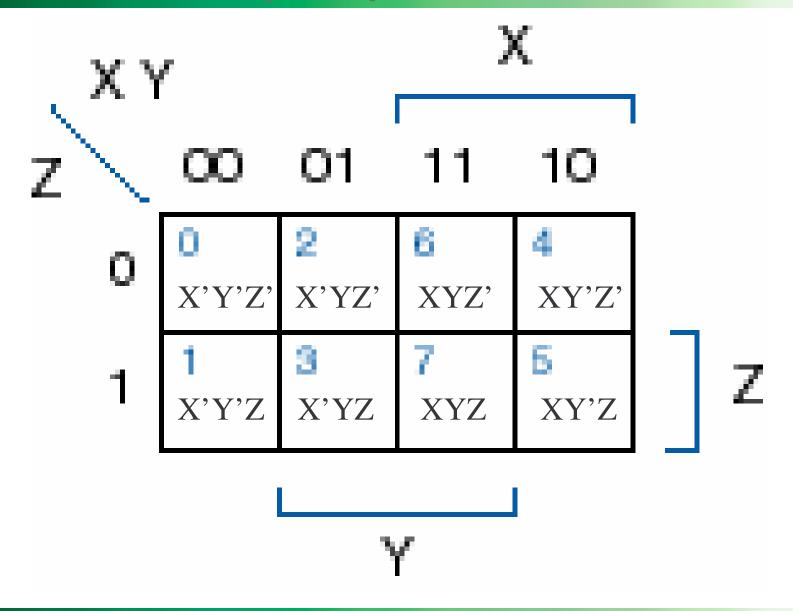
Resulting circuit



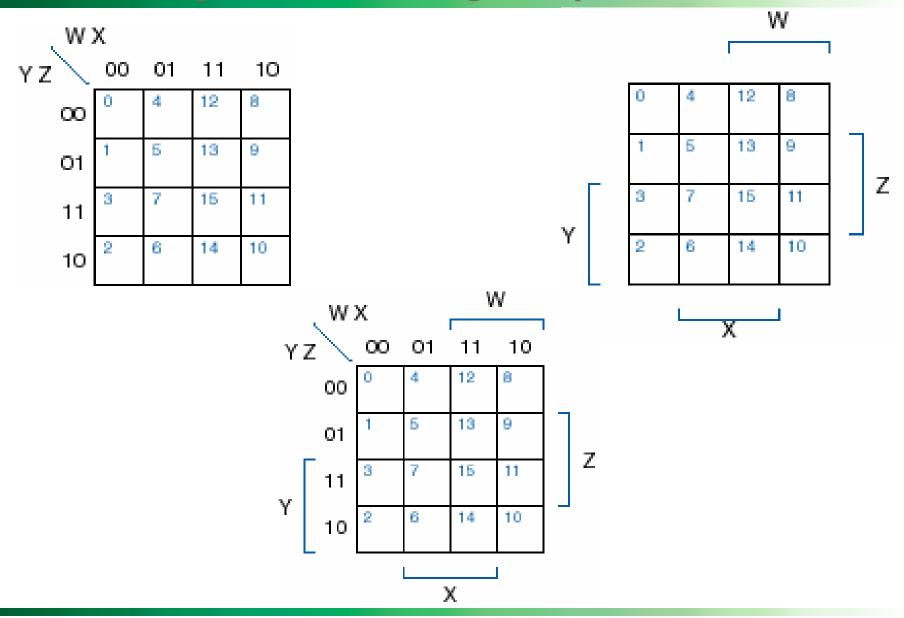
3-variable Karnaugh map



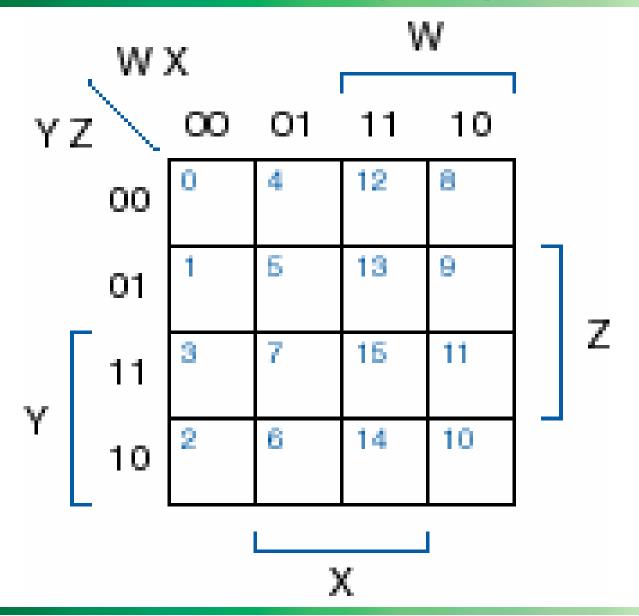
3-variable Karnaugh map



Visualizing T10 -- Karnaugh maps

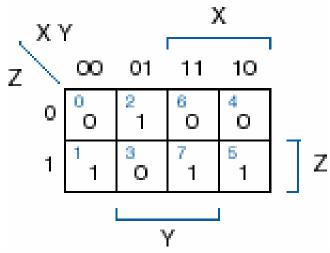


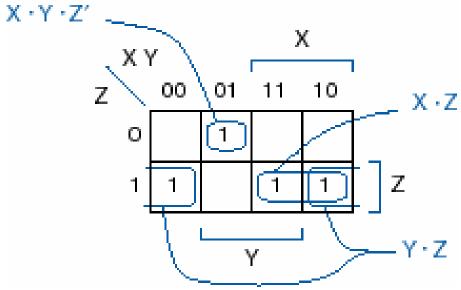
Visualizing T10 -- Karnaugh maps



Example: $F = \Sigma(1,2,5,7)$

Х	Υ	Z	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1





Karnaugh-map usage

Plot 1s corresponding to minterms of function.

Circle largest possible rectangular sets of 1s.

- # of 1s in set must be power of 2
- OK to cross edges

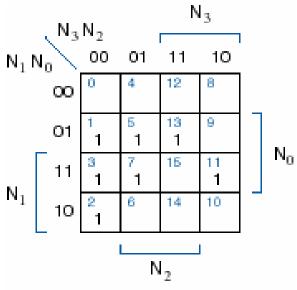
Read off product terms, one per circled set.

- Variable is 1 ==> include variable
- Variable is 0 ==> include complement of variable
- Variable is both 0 and 1 ==> variable not included

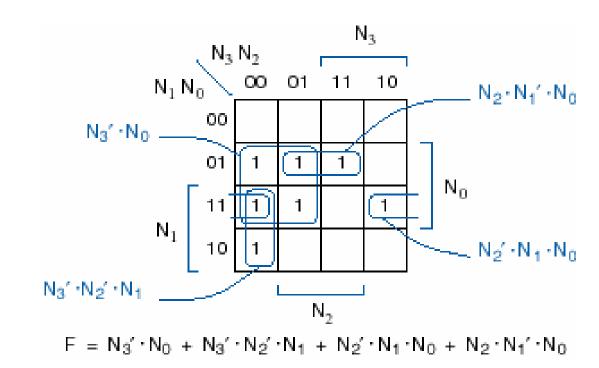
Circled sets and corresponding product terms are called "prime implicants"

Minimum number of gates and gate inputs

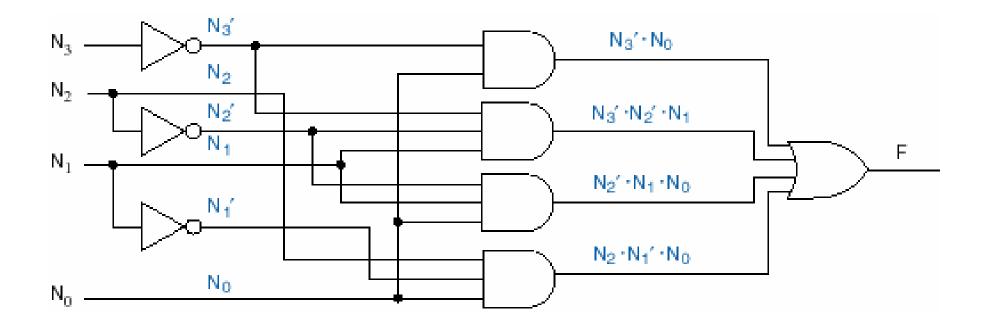
Prime-number detector

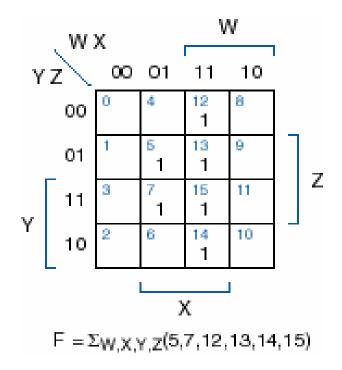


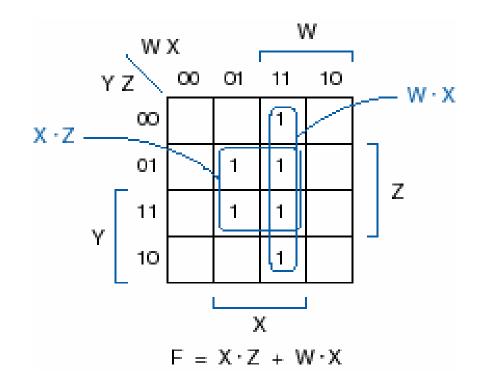
 $F = \Sigma_{N3,N2,N1,N0}(1,2,3,5,7,11,13)$



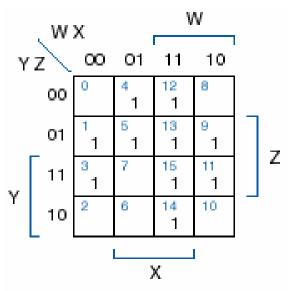
Resulting Circuit.



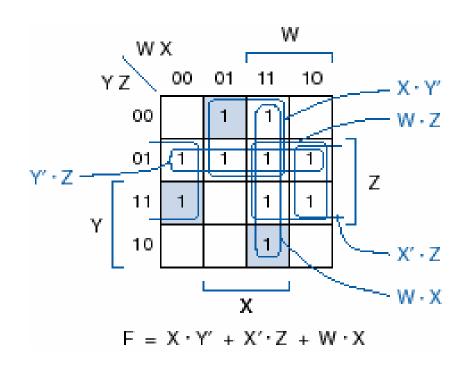




Yet another example

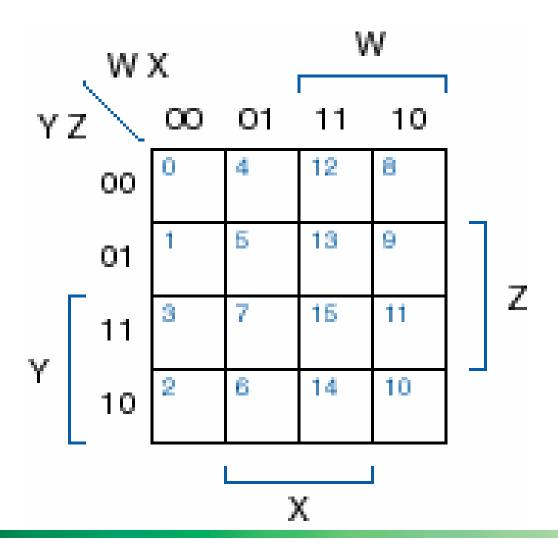


 $F = \Sigma_{W,X,Y,Z}(1,3,4,5,9,11,12,13,14,15)$

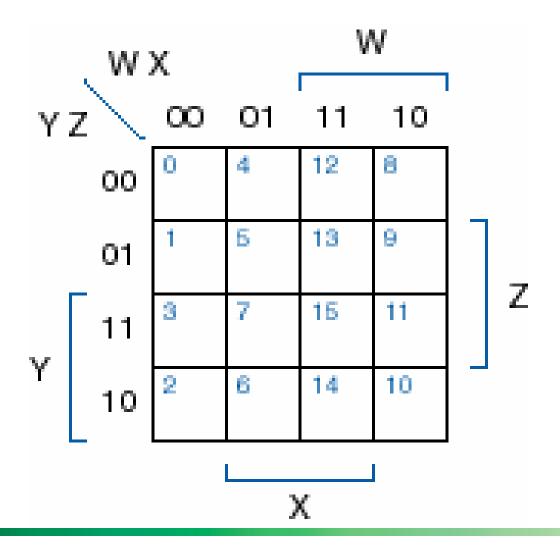


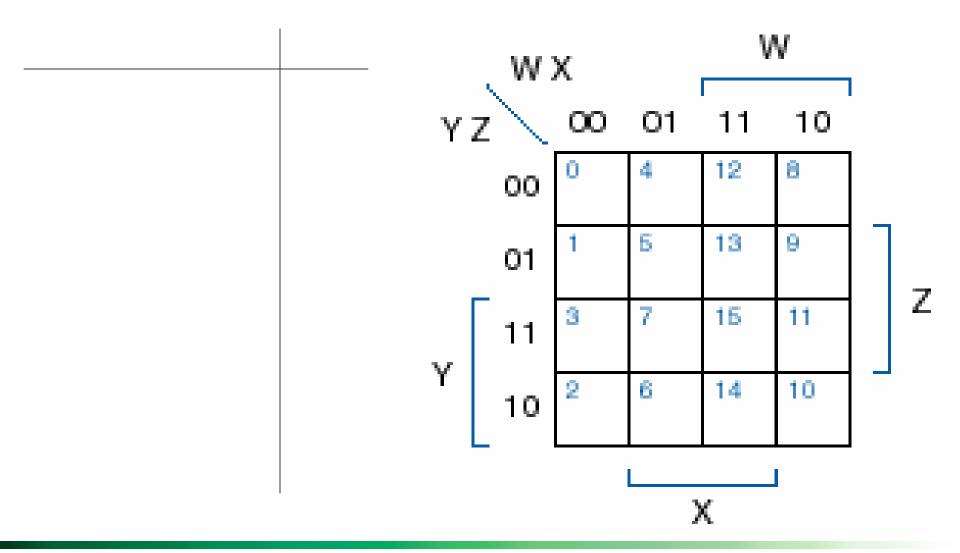
Distinguished 1 cells
Essential prime implicants

 $F(W,X,Y,Z) = \Sigma m(0,1,2,4,5,6,8,9,12,13,14)$



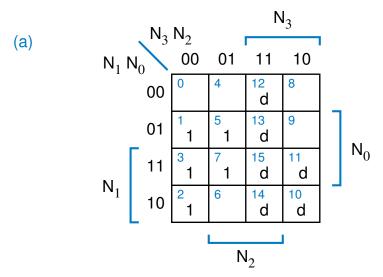
 $F(W,X,Y,Z) = \Sigma m(0,1,2,3,6,8,9,10,11,14)$



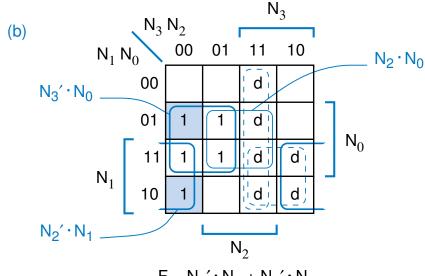


Don't Cares

Copyright © 2000 by Prentice Hall, Inc. Digital Design Principles and Practices, 3/e

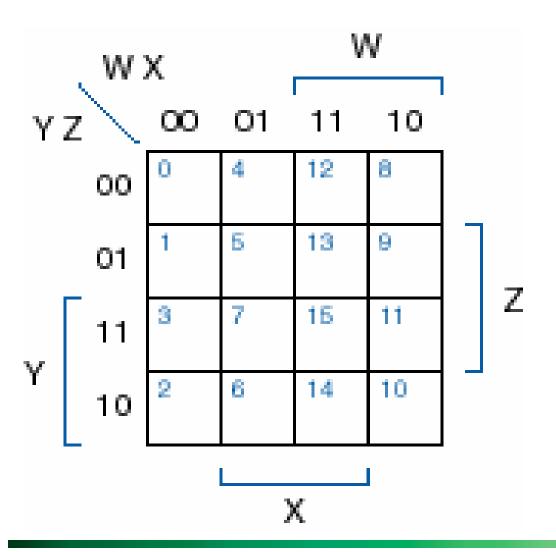


 $\mathsf{F} = \Sigma_{\mathsf{N3},\mathsf{N2},\mathsf{N1},\mathsf{N0}}(1,\!2,\!3,\!5,\!7) + \mathsf{d}(10,\!11,\!12,\!13,\!14,\!15)$



$$F = N_3' \cdot N_0 + N_2' \cdot N_1$$

 $F(W,X,Y,Z) = \sum m(0,1,2,3,6,8,9,10,11,14) + d(7,15)$



Current Logic Design

Lots more than 6 inputs -- can't use Karnaugh maps
Use software to synthesize logic expressions and
minimize logic

Hardware Description Languages -- VHDL and Verilog