
7-1Logic System Design I

Combinatorial Logic 
Design Practices

ECGR2181

�������� ��������	



Logic System Design I 7-2

Documentation Standards

Block diagrams
– first step in hierarchical design

Schematic diagrams
HDL programs (ABEL, Verilog, VHDL)
Timing diagrams
Circuit descriptions



Logic System Design I 7-3

Block Diagram



Logic System Design I 7-4

Flat schematic structure



Logic System Design I 7-5

Hierarchichal
schematic 
structure



Logic System Design I 7-6

Other Documentation

Timing diagrams
– Output from simulator
– Specialized timing-diagram drawing tools

Circuit descriptions
– Text (word processing)
– Can be as big as a book
– Typically incorporate other elements (block diagrams, timing 

diagrams, etc.)



Logic System Design I 7-7

Signal names and active levels

Signal names are chosen to be descriptive.
Active levels -- HIGH or LOW

– named condition or action occurs in either the HIGH or the 
LOW state, according to the active-level designation in the 
name.



Logic System Design I 7-8

Example

Logic
Circuit

HIGH when error occurs

ERROR
OK_L

Logic
Circuit

LOW when error occurs

ERROR_L ERROR

ERROR1_L



Logic System Design I 7-9

Microprocessor

A15
A14
A13
A12
A11
A10

A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

ALE

ADDR15

ADDR14

ADDR13

ADDR12

ADDR11

ADDR10

ADDR9

ADDR8

ADDR8

ADDR7

ADDR6

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

ADDR0

ALE

ALE

ADDR15 LA15

LA14

LA13

LA12

LA11

LA10

LA7

LA8

ADDR14

ADDR13

ADDR12

ADDR11

ADDR10

ADDR9

D7
DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

DATA0

D6
D5
D4
D3
D2
D1
D0

MIORDY
MEMIO

RD_L
READ

WR_L

RD_L

WR_L
WRITE

CONTROL

DATA[7:0]

ADDR[15:0]

LA[15:0]

DB[7:0]

DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

DATA0

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

READY

LA7

LA6

LA5

LA4

LA3

LA2

LA1

LA0

ADDR7

ADDR6

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

ADDR0

2,3

2

2

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e



Logic System Design I 7-10

GO

READY

DAT

(b)

GO

READY

DAT

(c)(a)

t

GO

ENB

READY

DAT

DAT

RDY

RDYmin

DATmax

DATmin

RDYmax

DAT

RDY

t

t

t

t

t t

t

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e



Logic System Design I 7-11

tOUTmax

WRITE_L

DATAIN

DATAOUT

(a)

STEP[7:0]

(b)

tOUTmin

must be stable

tsetup thold

new dataold

00FF 01 02 03

COUNT

CLEAR

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e



Logic System Design I 7-12

Example – Timing Diagram



Logic System Design I 7-13

Programmable Logic Arrays (PLAs)

Any combinational logic function can be realized as a sum of 
products.

Idea: Build a large AND-OR array with lots of inputs and 
product terms, and programmable connections.
– n inputs

• AND gates have 2n inputs -- true and complement of each 
variable.

– m outputs, driven by large OR gates
• Each AND gate is programmably connected to each output’s 

OR gate.
– p AND gates (p<<2n)



Logic System Design I 7-14

Example: 4x3 PLA, 6 product terms



Logic System Design I 7-15

Programmable Array Logic (PALs)

How beneficial is product sharing?
– Not enough to justify the extra AND array

PALs ==> fixed OR array
– Each AND gate is permanently connected to a certain OR gate.

Example: PAL16L8



Logic System Design I 7-16

10 primary inputs
8 outputs, with 7 ANDs per 

output
1 AND for 3-state enable
6 outputs available as inputs

– more inputs, at expense of 
outputs

– two-pass logic, helper terms

Note inversion on outputs
– output is complement of sum-of-

products
– newer PALs have selectable 

inversion



Logic System Design I 7-17

Designing with PALs

Compare number of inputs and outputs of the problem with 
available resources in the PAL.

Write equations for each output using HDL.
Compile the HDL program, determine whether minimized 

equations fit in the available AND terms.
If no fit, try modifying equations.



Logic System Design I 7-18

Decoders

General decoder structure

Typically n inputs, 2n outputs
– 2-to-4, 3-to-8, 4-to-16, etc.



Logic System Design I 7-19

Binary 2-to-4 decoder

Note “x” (don’t care) notation.



Logic System Design I 7-20

2-to-4-decoder logic diagram



Logic System Design I 7-21

Architecture

built-in library
components

positional
correspondence
with entity definition

Example: 2-to-4 decoder



Logic System Design I 7-22

Decoder Symbol



Logic System Design I 7-23

MSI 2-to-4 decoder

Input buffering (less load)
NAND gates (faster)



Logic System Design I 7-24

Complete 74x139 Decoder



Logic System Design I 7-25

3-to-8 decoder



Logic System Design I 7-26

74x138 3-to-8-decoder symbol



Logic System Design I 7-27

Dataflow-style program for 3-to-8 decoder



Logic System Design I 7-28

Dataflow-style program for 3-to-8 decoder



Logic System Design I 7-29

Decoder cascading

4-to-16 decoder



Logic System Design I 7-30

More cascading

5-to-32 decoder



Logic System Design I 7-31

Decoder applications

Microprocessor memory systems
– selecting different banks of memory

Microprocessor input/output systems
– selecting different devices

Microprocessor instruction decoding
– enabling different functional units

Memory chips
– enabling different rows of memory depending on address



Logic System Design I 7-32

Example – Microprocessor Application
Microprocessor

A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0

ALE

ADDR15

ADDR14

ADDR13

ADDR12

ADDR11

ADDR10

ADDR9

ADDR8

ADDR8

ADDR7

ADDR6

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

ADDR0

ALE

ALE

ADDR15 LA15

LA14

LA13

LA12

LA11

LA10

LA7

LA8

ADDR14

ADDR13

ADDR12

ADDR11

ADDR10

ADDR9

D7
DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

DATA0

D6
D5
D4
D3
D2
D1
D0

MIORDY
MEMIO

RD_L
READ

WR_L

RD_L

WR_L
WRITE

CONTROL

DATA[7:0]

ADDR[15:0]

LA[15:0]

DB[7:0]

DATA7

DATA6

DATA5

DATA4

DATA3

DATA2

DATA1

DATA0

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

READY

LA7

LA6

LA5

LA4

LA3

LA2

LA1

LA0

ADDR7

ADDR6

ADDR5

ADDR4

ADDR3

ADDR2

ADDR1

ADDR0

2,3

2

2

Copyright © 2000 by Prentice Hall, Inc.
Digital Design Principles and Practices, 3/e



Logic System Design I 7-33

Encoders vs. Decoders

Decoder Encoder



Logic System Design I 7-34

Binary encoders



Logic System Design I 7-35

Need priority in most applications



Logic System Design I 7-36

8-input priority encoder



Logic System Design I 7-37

Priority-encoder logic equations



Logic System Design I 7-38

74x148 8-input priority encoder

– Active-low I/O
– Enable Input
– “Got Something”
– Enable Output



Logic System Design I 7-39

74x148 circuit



Logic System Design I 7-40

74x148 Truth Table



Logic System Design I 7-41

Cascading priority 
encoders

32-input
priority encoder



Logic System Design I 7-42

Multiplexers



Logic System Design I 7-43

Multiplexer - Gate-Level Modeling - Verilog

2-to-1 Multiplexer

// 2-to-1 Multiplexer module
module mux_2 (out, i0, i1, sel); // header
input i0, i1, sel; // input & output ports
output out;
wire x1, x2, x3; // internal nets
or (out, x2, x3); // form output
and (x2, i0, x1); // i0 • sel’
and (x3, i1, sel); // i1 • sel
not (x1, sel); // invert sel
endmodule



Logic System Design I 7-44

Multiplexer - Dataflow Modeling - Verilog

4-bit Multiplexer

// Four-bit 2-to-1 multiplexer
module mux_4bit (Out, A, B, sel);
input [3:0] A, B;
input sel;
output [3:0] Out;
assign Out = sel ? B, A;
endmodule



Logic System Design I 7-45

Multiplexer - Behavioral Modeling - Verilog

Conditional Statements
module mux4_to_1 (A, B, C, D, OUT, select);
input [7:0] A, B, C, D;
input [1:0] select;
output [7:0] OUT;
reg [7:0] OUT;
always @ (A or B or C or D or select)
case (select)

2’d0: OUT = A;
2’d1: OUT = B;
2’d2: OUT = C;
2’d3: OUT = D;

endcase
end



Logic System Design I 7-46

74x151
8-input 
multiplexer



Logic System Design I 7-47

74x151 truth table



Logic System Design I 7-48

CMOS transmission gates

2-input multiplexer



Logic System Design I 7-49

Other multiplexer varieties

2-input, 4-bit-wide
– 74x157

4-input, 2-bit-wide
– 74x153



Logic System Design I 7-50

Barrel shifter design example

n data inputs, n data outputs
Control inputs specify number of positions to rotate or shift 

data inputs
Example: n = 16

– DIN[15:0], DOUT[15:0], S[3:0] (shift amount)

Many possible solutions, all based on multiplexers



Logic System Design I 7-51

16 16-to-1 
muxes

16-to-1 mux = 
2 x 74x151 
8-to-1 mux
+ NAND gate



Logic System Design I 7-52

4 16-bit 2-to-1 muxes

16-bit 2-to-1 mux = 4 x 74x157 4-bit 2-to-1 mux



Logic System Design I 7-53

Properties of different approaches



Logic System Design I 7-54

2-input XOR gates

Like an OR gate, but excludes the case where both inputs 
are 1. 

XNOR: complement of XOR



Logic System Design I 7-55

XOR and XNOR symbols



Logic System Design I 7-56

Gate-level XOR circuits

No direct realization with just a few transistors.



Logic System Design I 7-57

Equality Comparators
1-bit comparator

4-bit comparator

EQ_L



Logic System Design I 7-58

8-bit Magnitude 
Comparator



Logic System Design I 7-59

Other 
conditions



Logic System Design I 7-60

Adders

Basic building block is “full adder”
– 1-bit-wide adder, produces sum and carry outputs

Truth table:

X Y Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1



Logic System Design I 7-61

Full-adder circuit



Logic System Design I 7-62

Ripple adder

Speed limited by carry chain
Faster adders eliminate or limit carry chain

– 2-level AND-OR logic ==> 2n product terms
– 3 or 4 levels of logic, carry lookahead



Logic System Design I 7-63

74x283
4-bit adder

Uses carry 
lookahead
internally



Logic System Design I 7-64

“generate”

“propagate”

“half sum”

carry-in from 
previous stage



Logic System Design I 7-65

Ripple 
carry 
between 
groups



Logic System Design I 7-66

Lookahead carry between 
groups



Logic System Design I 7-67

Subtraction

Subtraction is the same as addition of the two’s complement.
The two’s complement is the bit-by-bit complement plus 1.
Therefore, X – Y = X + Y + 1 .

– Complement Y inputs to adder, set Cin to 1.
– For a borrow, set Cin to 0.



Logic System Design I 7-68

Full subtractor = full adder, almost



Logic System Design I 7-69

Multipliers

8x8 multiplier



Logic System Design I 7-70

Full-adder 
array



Logic System Design I 7-71

Faster carry 
chain


