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Documentation Standards

Block diagrams
– first step in hierarchical design

Schematic diagrams
HDL programs (ABEL, Verilog, VHDL)
Timing diagrams
Circuit descriptions
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Block Diagram
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Flat schematic structure
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Hierarchichal
schematic 
structure
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Other Documentation

Timing diagrams
– Output from simulator
– Specialized timing-diagram drawing tools

Circuit descriptions
– Text (word processing)
– Can be as big as a book
– Typically incorporate other elements (block diagrams, timing 

diagrams, etc.)
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Signal names and active levels

Signal names are chosen to be descriptive.
Active levels -- HIGH or LOW

– named condition or action occurs in either the HIGH or the 
LOW state, according to the active-level designation in the 
name.
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Example

Logic
Circuit

HIGH when error occurs

ERROR
OK_L

Logic
Circuit

LOW when error occurs

ERROR_L ERROR

ERROR1_L
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Microprocessor
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Example – Timing Diagram
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Programmable Logic Arrays (PLAs)

Any combinational logic function can be realized as a sum of 
products.

Idea: Build a large AND-OR array with lots of inputs and 
product terms, and programmable connections.
– n inputs

• AND gates have 2n inputs -- true and complement of each 
variable.

– m outputs, driven by large OR gates
• Each AND gate is programmably connected to each output’s 

OR gate.
– p AND gates (p<<2n)
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Example: 4x3 PLA, 6 product terms
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Programmable Array Logic (PALs)

How beneficial is product sharing?
– Not enough to justify the extra AND array

PALs ==> fixed OR array
– Each AND gate is permanently connected to a certain OR gate.

Example: PAL16L8
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10 primary inputs
8 outputs, with 7 ANDs per 

output
1 AND for 3-state enable
6 outputs available as inputs

– more inputs, at expense of 
outputs

– two-pass logic, helper terms

Note inversion on outputs
– output is complement of sum-of-

products
– newer PALs have selectable 

inversion
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Designing with PALs

Compare number of inputs and outputs of the problem with 
available resources in the PAL.

Write equations for each output using HDL.
Compile the HDL program, determine whether minimized 

equations fit in the available AND terms.
If no fit, try modifying equations.
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Decoders

General decoder structure

Typically n inputs, 2n outputs
– 2-to-4, 3-to-8, 4-to-16, etc.
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Binary 2-to-4 decoder

Note “x” (don’t care) notation.
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2-to-4-decoder logic diagram



Logic System Design I 7-21

Architecture

built-in library
components

positional
correspondence
with entity definition

Example: 2-to-4 decoder
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Decoder Symbol
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MSI 2-to-4 decoder

Input buffering (less load)
NAND gates (faster)
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Complete 74x139 Decoder
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3-to-8 decoder
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74x138 3-to-8-decoder symbol
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Dataflow-style program for 3-to-8 decoder



Logic System Design I 7-28

Dataflow-style program for 3-to-8 decoder
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Decoder cascading

4-to-16 decoder
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More cascading

5-to-32 decoder
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Decoder applications

Microprocessor memory systems
– selecting different banks of memory

Microprocessor input/output systems
– selecting different devices

Microprocessor instruction decoding
– enabling different functional units

Memory chips
– enabling different rows of memory depending on address
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Example – Microprocessor Application
Microprocessor
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Encoders vs. Decoders

Decoder Encoder
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Binary encoders
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Need priority in most applications
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8-input priority encoder
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Priority-encoder logic equations
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74x148 8-input priority encoder

– Active-low I/O
– Enable Input
– “Got Something”
– Enable Output
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74x148 circuit
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74x148 Truth Table
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Cascading priority 
encoders

32-input
priority encoder
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Multiplexers
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Multiplexer - Gate-Level Modeling - Verilog

2-to-1 Multiplexer

// 2-to-1 Multiplexer module
module mux_2 (out, i0, i1, sel); // header
input i0, i1, sel; // input & output ports
output out;
wire x1, x2, x3; // internal nets
or (out, x2, x3); // form output
and (x2, i0, x1); // i0 • sel’
and (x3, i1, sel); // i1 • sel
not (x1, sel); // invert sel
endmodule
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Multiplexer - Dataflow Modeling - Verilog

4-bit Multiplexer

// Four-bit 2-to-1 multiplexer
module mux_4bit (Out, A, B, sel);
input [3:0] A, B;
input sel;
output [3:0] Out;
assign Out = sel ? B, A;
endmodule
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Multiplexer - Behavioral Modeling - Verilog

Conditional Statements
module mux4_to_1 (A, B, C, D, OUT, select);
input [7:0] A, B, C, D;
input [1:0] select;
output [7:0] OUT;
reg [7:0] OUT;
always @ (A or B or C or D or select)
case (select)

2’d0: OUT = A;
2’d1: OUT = B;
2’d2: OUT = C;
2’d3: OUT = D;

endcase
end
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74x151
8-input 
multiplexer
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74x151 truth table



Logic System Design I 7-48

CMOS transmission gates

2-input multiplexer
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Other multiplexer varieties

2-input, 4-bit-wide
– 74x157

4-input, 2-bit-wide
– 74x153
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Barrel shifter design example

n data inputs, n data outputs
Control inputs specify number of positions to rotate or shift 

data inputs
Example: n = 16

– DIN[15:0], DOUT[15:0], S[3:0] (shift amount)

Many possible solutions, all based on multiplexers
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16 16-to-1 
muxes

16-to-1 mux = 
2 x 74x151 
8-to-1 mux
+ NAND gate
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4 16-bit 2-to-1 muxes

16-bit 2-to-1 mux = 4 x 74x157 4-bit 2-to-1 mux
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Properties of different approaches
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2-input XOR gates

Like an OR gate, but excludes the case where both inputs 
are 1. 

XNOR: complement of XOR
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XOR and XNOR symbols
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Gate-level XOR circuits

No direct realization with just a few transistors.
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Equality Comparators
1-bit comparator

4-bit comparator

EQ_L
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8-bit Magnitude 
Comparator
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Other 
conditions
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Adders

Basic building block is “full adder”
– 1-bit-wide adder, produces sum and carry outputs

Truth table:

X Y Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
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Full-adder circuit
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Ripple adder

Speed limited by carry chain
Faster adders eliminate or limit carry chain

– 2-level AND-OR logic ==> 2n product terms
– 3 or 4 levels of logic, carry lookahead
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74x283
4-bit adder

Uses carry 
lookahead
internally
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“generate”

“propagate”

“half sum”

carry-in from 
previous stage
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Ripple 
carry 
between 
groups
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Lookahead carry between 
groups
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Subtraction

Subtraction is the same as addition of the two’s complement.
The two’s complement is the bit-by-bit complement plus 1.
Therefore, X – Y = X + Y + 1 .

– Complement Y inputs to adder, set Cin to 1.
– For a borrow, set Cin to 0.
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Full subtractor = full adder, almost
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Multipliers

8x8 multiplier
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Full-adder 
array
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Faster carry 
chain


