UNC Charlotte, Department of Electrical and Computer Engineering ECGR 2181, Fall 2008, Homework #5 Due: 10/27/2008, at the beginning of class (100 points)

Show all of your work!!!!!

- 1. How long did this assignment take you? (Answer truthfully!) (5 points)
- 2. Consider the ripple carry adders we have discussed in class, but assume they are built with simple logic gates. Write an algebraic expression for s_3 , the fourth sum bit of a binary adders, as a function of inputs x_0 , x_1 , x_2 , x_3 , y_0 , y_1 , y_2 , and y_3 . Assume that $c_0 = 0$, and do not attempt to multiply out or minimize the expression. (Hint: write down expressions for c_1 , c_2 , and c_3 first.) (50 points)
- 3. Consider the model of a 4-bit comparator show in our notes, page 19, figure b. Design the additional circuitry inside the comparator (similar to the notes page 26) that will generate five more output signals: (45 points)
 - a) zero = 1 when both inputs are zero, 0 when either is non-zero
 - b) gt-eq = 1 when A is greater than or equal to B
 - c) lt-eq = 1 when A is less than or equal to B
 - d) neg = 1 when both A and B are negative twos-complement numbers
 - e) inv = 1 when A is the bit-wise inverse of B (i.e. A=0000 and B=1111 would result in inv=1).