Digital Design

Chapter 2:
Combinational Logic Design

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.
http://www.ddvahid.com

Introduction
Motion | & Petector b+ I A Detector
sensor Digital N/~ 2 e B
System | F PO ==
- Lamp Micro-
Light b processor
sensor 0| |___ b »

» Let’s learn to design digital circuits

« We'll start with a simple form of circuit:
— Combinational circuit

« A digital circuit whose outputs depend solely on
the present combination of the circuit inputs’
values

Digital Design
Copyright © 2006
Frank Vahid

Mote: Slides with animation are denoted with a small red "a" near the animated items

2.1

Detector

"D
>)

Digital circuit

1
° 0
b__p

Combinational

digital circuit

1
—p

0
—»

Sequential

digital circuit

[]

Switches

I—,

Electronic switches are the basis of
binary digital circuits
— Electrical terminology

s VWnltarma Niffaranca in a
i vu!tﬁyc. HNICIGCIHILVES 11T ©

between two points
— Analogous to water pressure
* Current. Flow of charged particles
— Analogous to water flow
* Resistance: Tendency of wire to resist
current flow
— Analogous to water pipe diameter
+ V=1*R (Ohm'’s Law)

Digital Design
Copyright © 2006
Frank Vahid

2.2

2 ohms
oV 9V
-
45A
3
I—

Switches

E——

A switch has three parts control
— Source input, and output input
= Current wants to flow from source input “off"
to output —_—
— Control inpUt source output
« \oitage that controis whether that inpit |
current can flow Cﬁ"‘;?
P “on”
The amazing shrinking switch J—
source output
— 1930s: Relays input
— 1940s: Vacuum tubes (b)
— 1950s: Discrete transistor
— 1960s: Integrated circuits (ICs) .
« Initially just a few transistors on IC
+ Then tens, hundreds, thousands... e
discrete
transistor

relay vacuum t
. . . quarter
Digital Design (to see the relative size) 4

Copyright © 2006
Frank Vahid

Moore’s Law

—]

» |C capacity doubling about every 18 months
for several decades

— Known as “Moore’s Law” after Gordon Moore,

co-founder of Intel
+ In 1965 predicted that components per IC

would double roughly every year or so

— Book cover depicts related phenomena
* For a particular number of transistors, the IC
shrinks by half every 18 months

— Notice how much shrinking occurs in just about
10 years

— Enables incredibly powerful computation in
incredibly tiny devices

— Today'’s ICs hold billions of transistors

+ The first Pentium processor (early 1990s)
needed only 3 million

Digital Design
Copyright © 2006
Frank Vahid

An Intel Pentium processor IC
having millions of transistors

5
—

- The CMOS Transistor

« CMOS transistor
— Basic switch in modern ICs

nMos |
A positive ..attracts electrons here,
voltage here... turning the channel gate _f
between source and drain
into aconductor.
IC papkagf
pMOS

/ (a) IC

Silicon -- not quite a conductor or insulator:
Semiconductor

Digital Design
Copyright © 2006
Frank Vahid

1_|

conducts

4

does not
conduct

23

(0
0_|

does not
conduct

oy

conducts

Boolean Logic Gates

Building Blocks for Digital Circuits

(Because Switches are Hard to Work With)

W S -
O Uoed
These blocks...

Transistors are
v bm ool asidla
Haid 1 Wuirs wiini

The right building blocks...

...enable greater designs.

The logic gates that we
soon introduce enable
greater designs

+ “Logic gates” are better digital circuit building blocks than switches (transistors)

~ Why?..

Digital Design
Copyright © 2006
Frank Vahid

2.4

Boolean Algebra and its Relation to Digital Circuits

* To understand the benefits of “logic gates” vs. switches, we
should first understand Boolean algebra

» “Traditional” algebra
— Variable represent real numbers
— Operators operate on variables, return real numbers

* Boolean Algebra
— Variables represent 0 or 1 only
— Operators return 0 or 1 only
— Basic operators
* AND: a AND b returns 1 only when both a=1 and b=1
= OR: a OR breturns 1 if either (or both) a=1 or b=1
*« NOT: NOT a returns the opposite of a (1 if a=0, 0 if a=1) ﬁT

Digital Design
Copyright © 2006
Frank Vahid

Boolean Algebra and its Relation to Digital Circuits

* Developed mid-1800's by George Boole to formalize human thought

— Ex: “I'll go to lunch if Mary goes OR John goes, AND Sally does not go.”
+ Let F represent my going to lunch (1 means | go, O | don't go)

+ Likewise, m for Mary going, j for John, and s for Sally % 3"9
« Then F =(m OR j) AND NOT(s) 010
100
111
— Nice features
+ Formally evaluate 5 8 %
- m=1,j=0,s=1-->F=(10R 0) AND NOT(1) = 1ANDO = 0 011
101
111
+ Formally transform
— F =(mand NOT(s)) OR (j and NOT(s)) a | NOT
» Looks different, but same function ? ;
» We'll show transformation technigues soon
Digital Design
Copyright © 2006 9
Frank Vahid —

Evaluating Boolean Equations

E—,

» Evaluate the Boolean equation
F =(a AND b) OR (c AND d)
for the given values of variables a, b, ¢, and d:

w
o
=

ND

— Q1: a=1, b=1, ¢=1, d=0.
« Answer: F = (1 AND 1) OR (1 AND0)=10OR 0 = 1.

e = = |
= O = C
- 0O O

ab|OR
00|0
01]|1
- Q2: a=0, b=1, c=0, d=1. 101
« Answer: F = (0 AND 1) OR (0 AND 1) =0 OR 0 = 0. —
a | NOT
0|1
- Q3: a=1, b=1, c=1, d=1. 1]o0
- Answer: F= (1 AND 1) OR (1AND 1)=10R 1= 1.
Digital Design
Copyright © 2006 10
Frank Vahid —

10

Converting to Boolean Equations

E——

Convert the following English statements to a Boolean
equation

Q1.ais1andbis 1.
 Answer: F=aANDD

Q2. eitherofaorbis 1.
« Answer:F=aORbD

Q3. both a and b are not 0.

* Answer:
— (a) Option 1: F = NOT(NOT(a) AND NOT(b))
- (b)Option2: F=a OR b

Q4.ais1and bis 0.
+ Answer: F =a AND NOT(b)

Digital Design
Copyright © 2006 11
Frank Vahid —

11

Converting to Boolean Equations

E——
ey

.» Q1. A fire sprinkler system should spray water if high heat
is sensed and the system is set to enabled.
— Answer: Let Boolean variable h represent “high heat is sensed,” e

represent “enabled,” and F represent “spraying water.” Then an
equationis: F=h AND e.

* Q2. A car alarm should sound if the alarm is enabled, and
either the car is shaken or the door is opened.

— Answer: Let a represent “alarm is enabled,” s represent “car is
shaken,” d represent “door is opened,” and F represent “alarm
sounds.” Then an equation is: F =a AND (s OR d).

— (a) Alternatively, assuming that our door sensor d represents “door
is closed” instead of open (meaning d=1 when the door is closed, 0

when open), we obtain the following equation: F =a AND (s OR
NOT(d)).

Digital Design
Copyright © 2006 12
Frank Vahid —

12

Relating Boolean Algebra to Digital Design

Boole's intent: formalize

NOT OR
x
human thought Symbol x —|>o— F yj>- E

Boolean
algebra
(mid-1800s)
Truth table
| Switches
(1930s)
Shannon (1938)
l Transistor
circuit

Digital design

+ Implement Boolean operators using transistors
— Call those implementations logic gates.

— Let’s us build circuits by doing math -- powerful

concept

Digital Design
Copyright © 2006
Frank Vahid

-
;
If l |z
o
o o|m
£

=]

X
0
0
il
1

-0 =0

Note: These OR/AND implementations are
inefficient; -per Vahid

not just inefficient ... these circuits do not work.
We'll examine how to produce AND and OR
gates with CMOS transistors later

13
—

13

NOT/OR/AND Logic Gate Timing Diagrams
— >

1
X

0

1

F
0

Digital Design
Copyright © 2006
Frank Vahid

—

time

X

1
0
1
y
0
1
0

-

[]

—_—

T

14

Building Circuits Using Gates

E——
ey

£
AAD
e Motion | 3
))J toneo
(GRS
Light | b
sensor [~

Detector

Digital
System

Detector
2 F
10
PO
Micro-
processor
b
I1

* Recall Chapter 1 motion-in-dark example
— Turn on lamp (F=1) when motion sensed (a=1) and no light (b=0)
— F=aAND NOT(b)
— Build using logic gates, AND and NOT, as shown
— We just built our first digital circuit!

Digital Design
Copyright © 2006
Frank Vahid

= F
’-—.-

Detector

15

Example: Converting a Boolean Equation to a
— Circuit of Logic Gates

« Q: Convert the following equation to logic gates:
F =aAND NOT(b OR NOT(c))

Sl

@

D

()

Digital Design
Copyright © 2006
Frank Vahid —

16

Example: Seat Belt Warning Light System

Design circuit for warning light

Sensors

— s=1: seat belt fastened
1: key inserted
4. i

k
p

Capture Boolean equation

— person in seat, and seat belt not fastened,
and key inserted

Convert equation to circuit

w = p AND NOT(s) AND k

. k BeltWarn
Notice ——
— Boolean algebra enables easy capture as P |— W
equation and conversion to circuit - e
+ How design with switches?
» Of course, logic gates are built from switches,
but we think at level of logic gates, not 5
switches]
Digital Design
Copyright © 2006 17
Frank Vahid —

17

—,
E—

Some Circuit Drawing Conventions

yes

:} 1 F

yes

J Q0

ita sign
opyright © 2006 18
k d

18

Boolean Algebra

By defining logic gates based on Boolean algebra, we can use algebraic methods to

manipulate circuits
— So let's learn some Boolean algebraic methods

Start with notation: Writing a AND b, a OR b, and NOT(a) is cumbersome
— Usesymbols:a*b,a+b,anda" (infact, a * b can be just ab).

« Original: w = (p AND NOT(s) AND k) OR t

* New:w=psk+t
— Spoken as “w equals pand s prime and k, or t”
— Oreven just “w equals p s prime k, or t”
— s’ known as “complement of 5"

+ While symbols come from regular algebra, don't say “times” or “plus”

Boolean algebra precedence, highest precedence first.

25

Symbol Name Description
() Parentheses Evaluate expressions nested in parentheses first
* NOT Evaluate from lefi to right
» AND Evaluate from left to right

N Digital Design)) i . i

4 g
Copyright © 2006 OR Evaluate from left to right 19
J| Frank Vahid —

19

Boolean Algebra Operator Precendence

Evaluate the following Boolean equations, assuming a=1, b=1, ¢=0, d=1.

- O1 F=a*b+c.
OAnS\{verO has precedence over +, so we evaluate the equationas F=(1*1)+0=(1) +

- Q2.F=ab+c.
+ Answer: the problem is identical to the previous problem, using the shorthand notation
or *.

— Q3. F=ab.
. A|(115\;v§r1 w?ofirstfvaluabe b’ because NOT has precedence over AND, resulting in F = 1

- Q4.F = (ac).
« Answer: we first evaluate what is inside the parentheses, then we NOT the result,
yielding (1*0) = (0)'=0"=1.

- Q5. F=(a+b)*c+d.
+ Answer: Inside left parentheses: (1 + (1)) = (1 +(0)) = (1 +0) =
recedence over + I;leldmg 51 Cé ())({ (Tgn) I\EOT hs)!s
R, giving (0) + (1= (0) =

1. Next, * has
precedence over the

Digital Design
Copyright © 2006 20
Frank Vahid —

20

Boolean Algebra Terminology

Example equation: F(a,b,c) =a’bc + abc’ + ab +c

Variable
— Represents a value (0 or 1)
— Three variables: a, b, and ¢

Literal
— Appearance of a variable, in true or complemented form
— Nine literals: a’, b, c,a,b,c¢’,a,b,and c

Product term
— Product of literals
— Four product terms: a’bc, abc’, ab, ¢

Sum-of-products
— Equation written as OR of product terms only

— Above equation is in sum-of-products form. “F = (a+b)c + d” is not.

Digital Design
Copyright © 2006
Frank Vahid

21

Boolean Algebra Properties

I—,

Commutative
- a+b=b+a
— a*b=b*a

Distributive

- a*(b+tc)=a*b+a*c

- a+{b*c)={(a+b)*(a+c)
+ (this one is tricky!)

Associative
— (a+b)+c=a+(b+c)
— (@a*b)*c=a*(b*c)

Identity
- O0+a=a+0=a
- 1*a=a*1=a

Complement
- a+a =1
- a*a =0

To prove, just evaluate all possibilities

Digital Design
Copyright © 2006
Frank Vahid

Example uses of the properties

Show abc’ equivalent to ¢’ba.

— Use commutative property:
+ a*b*c¢’'=a*c*b=c*a*b=c""b*a=c'ba

Show abc + abc’ = ab.
— Use first distributive property
* abc + abc’ = ab(c+c’).

— Complement property
* Replace c+c' by 1: ablc+c') = ab(1).

— |dentity property
+ ab(1)=ab*1 = ab.

Show x + x'z equivalent to x + z.
— Second distributive property
* Replace x+x'z by (x+x')*(x+z).

— Complement property
Replace (x+x’) by 1,

— |dentity property
» replace 1*(x+z) by x+z.

22

22

Example that Applies Boolean Algebra Properties

Want automatic door opener circuit

(e.g., for grocery store)

Qutput: f=1 opens door

—

Lts:
t P
h

Inpu
1
1

: person detected
. switch forcing hold open
« ¢c=1: key forcing closed

Want open door when
+« h=1andc=0, or

+ h=0and p=1 and c=0

Equation: f = hc’ + h'pc’

DoorQOpener

h
c

P>

i

Digital Design

Copyright © 2006

Frank Vahid

Found inexpensive chip that
computes:
« f=chp+chp' +chp

— Can we use it?

+ lsitthe same as f = hc'+h’pc’'?

Use Boolean algebra:

f=chp+chp' +chp
f=c’h(p + p’) + c’h’p (by the distributive property)

f=ch(1)+ch'’p (by the complement property)

f=ch+chp (by the identity property)
f=hc' + h'pc’ (by the commutative property)
Same!

23

Boolean Algebra: Additional Properties

Aircraft lavatory sign example

Null elements
- a+1=1
- a*0=0

+ Behavior

+ Three lavatories, each with

Alternative:
Instead of lighting “Available,”

sensor (a, b, c), equals 1 if door i i e
Idempotent Law locked light “Occupied I
Opposite of “Available
- ata=a . Iimbak GA milabla™ simem (O iF s Fiimmbimem O = At 4 k' i oAt
- _ = I_IHIII !'\\l'ﬂlld_u’ll: “.IIHII \\JJ’ L] ﬂlly IUinGLIil O = a T T L
- a‘a=a lavatory available
Involution Law « Equation and circuit SoS'=(@+b+c)
- (a@)=a + S=a+bi+c s S=(@)*(b)y* (e
(by DeMorgan’s Law)
DeMorgan's Law *+ Transform + S'=a*b’c
o + (abc) =a'+b'+c’ by Involution L
- (@ +Ib) =a bl %by eMorgan's Law) (by Involution Law)
- (ab)y=a"+b + S=(abc)
- Very useful! Makes intuitive sense
+ New equation and circuit + Occupied if all doors
To prove, just evaluate are locked
all possibilities
Circuit
a—™ Circuit
-
b S b= ——S
c
Digital Design ——
Copyright © 2006 24
Frank Vahid —

24

2.6

Representations of Boolean Functions

English 1: F outputs 1whenaisOandbis0, orwhenais0andbis 1.
English 2: F outputs 1 when ais 0, regardless of b's value

(@)
a
a b |F
B _ 001
Equation 1i: F(a,b) =a’d’ + a’b v = o 114
Equation 2: F(a,b) = a |H WDJU <ol
Circuit 1 T a8
Truth table
a—{Dr—r @
Circuit 2

» A function can be represented in different ways

— Above shows seven representations of the same functions F(a,b), using four different
methods: English, Equation, Circuit, and Truth Table

Digital Design
Copyright © 2006 25
Frank Vahid —

25

Truth Table Representation of Boolean Functions

. : ab|lF _abec|F _abcdlF
Defln_e value ofFf_or eac_h = = e
possible combination of input 0 1 00 1 0001
values 10 010 0010

) . 1 01 1 00 11
— 2-input function: 4 rows o 100 0100
— 3-input function: 8 rows EEC! 0 1 01
. _ 1810 0110
— 4-input function: 16 rows 11 1 001 11
1000
b
®) 10 0 1
1010
10 11
) ab c]|F 1100

* Q: Use truth table to define 00000 1101
function F(a,b,c) that is 1 g f ; g 1 } : 3
when abc is 5 or greater in 0110 ©
binary 10010

10 1|1

11 01

11 1|1
Digital Design
Copyright © 2006 26
Frank Vahid —

Converting among Representations

E——

. Ct?]n convert from any representation to any Inputs | Outputs | Term
Ll a b & F = sum of
+ Common conversions g ? 1 :,E
— Equation to circuit (we did this earlier) 10 0
— Truth tabie to equation (which we can convert = 0
to circuit) e ,
+ Easy —-‘Ijust OR each input term that should F=ab+ab
output
— Equation to truth table Q: Convert to equation
+ Easy -- just evaluate equation for each input
Eor inkiicn (row) Labc|F
= Creating intermediate columns helps 000|0
0 0 1 0
010 0
01 1 0
Q: Convert to truth table: F = a’'b’ + a’b 1000
Inputs Output 1.0 1|1 agt‘:
a bl ab | ab | F 1§?::bg
0 0 1 0 1
0 110 1 1 F =ab’c + abc’ + abc
.. . 1 0 0 0 0
Digital Design
Copyright@2006 1 1| 0 0 0 27
Frank Vahid —

27

Standard Representation: Truth Table

How can we determine if two functions
are the same?

Recall automatic door example
+ Sameasf=hc' +h'pc'?
+ Used algebraic methods
a Bk i vssm Emilmadl lmmm bl md sy som o b
- DuL I we laiieu, uues Uial pruve riue
equal? No.

Solution: Convert to truth tables

Only ONE truth table representation of a
given function
+ Standard representation -- for given
function, only one version in standard
form exists

Digital Design
Copyright © 2006
Frank Vahid

f=chp+chp +ch'
f=ch(p+p')+chp
f=ch(1)+ch’p
f=ch+chp

(what if we stopped here?)
f=hc’ +h'pc’

Q: Determine if F=ab+a’ is same
function as F=a'b'+a’b+ab, by
converting each to truth table first

F=ab+'a F=ab +
a'b+ ab
a b F a b F
0 0 1 eﬂ 0 1
0 1 1 0 1 1
1 0 %‘3(0 1 0 0
1 1 1 1 1
28
I—

28

Canonical Form -- Sum of Minterms
Truth tables too big for numerous inputs

Use standard form of equation instead
— Known as canonical form

— Regular aigebra: group terms of poiynomiai by power
« axZ+bx+c (B+4x+2x2+3+1-->5x2+4x+4)

— Boolean algebra: create sum of minterms

« Minterm: product term with every literal appearing exactly once, in true or
complemented form

» Just multiply-out equation until sum of product terms
« Then expand each term until all terms are minterms

Q: Determine if F(a,b)=ab+a’ is same function as F(a,b)=a’b’+a’b+ab, by
converting first equation to canonical form (second already in canonical form)

F = ab+a’ (already sum of products)
F = ab + a'(b+b’) (expanding term)

. . F =ab+ ab + a’b’ (SAME -- same three terms as other equation)
Digital Design
Copyright © 2006 29
Frank Vahid —

29

« Can give each a separate circuit, or can share gates

[]

Multiple-Output Circuits

Many circuits have more than one output

Ex: F=ab+c, G=ab+bc

——

N G ||

(b)

@

Option 1: Separate circuits Option 2: Shared gates

Digital Design
Copyright © 2006
Frank Vahid

30

30

1101101

0110000
(b)

s | —
o QL - -

— = -) T

111110

m
IV

d

0

1
abodefg

>
LLl
S
o
B
ﬁUv D OCNoNCooD
2) CoOrooTuo0D
@D
o
=
=
=

31
31

wxX'y'z' + wx'yz' + wx'yz + wxy'z +
WXY'Z + WXY'Z + WXYZ + WXyz +
WXY'Z' + Wxyz + wxX'y'z' + wx'y'z

WXYZ' + W'xyz + wx'y'z' + wx'y'z

a
b

TABLE2-4 &-bit bipary number to seven-segment display truth table

Copyright © 2006

Digital Design
Frank Vahid

Practice Problem

EE—

TABLE2-4 &-bit bipary number to seven-segment display truth table

W Xy z 2 b ¢ d e f [']
o o 0 of1 1 1 1 1 0
0 0 0 1 0 1 1 0 0 0 0
o 0 1 o1 1 0 1 1 0 1
o o 1 1]1 1 1 1 0 o 1
0 1 0] 0 1 1 0 0 1 1
o 1 0 1|1 0 1 1 0 1 1
o 1 1 o1 0 1 1 1 1 1
o 1 1 1|1 1 1 0 0 0 0
1 9o 0o of1 1 1 1 1 1 1
1 0 0o 1|1 1 1 1 0 1 1
1 0 1 0f1 1 1 0 1 1 1
1 ot 10 0 1 1 1 1 1
1 1 0 ofl1 o 0 1 1 1 0
1 1 0 10 1 1 1 1 0 1
1 1 1 o1 0o 0 1 1 1 1
1 1 1 1 1 0o 0 0 1 1 1

» Find the Canonical Sums expression for
output f

32

Practice Problem

Use Boolean Algebra to reduce this equation to smallest S.O.P.
expression:

H(a,b,c,d) = =m(0, 1, 5, 10, 11, 14, 15)

=m0 +ml +ms+mi0 + m1 + mi4 + mi5

Solution(highlight to see):
33

33

2.7

Combinational Logic Design Process

Step

Step 1 Capture the

function

Step 2 Convert to

equations

Step 3 Implement

as a gate-
based circuit

Digital Design
Copyright © 2006
Frank Vahid

Description

Create a truth table or equations, whichever is
most natural for the given problem, to describe

tha Aacirad hahaviar Af tha ~Aamhbinatinnal lasis

Ui Ucolicu uciiaviul Ul uic Lulliviiiatuviial ivyi.

This step is only necessary if you captured the
function using a truth table instead of equations.
Create an equation for each output by ORing all the
minterms for that output. Simplify the equations if
desired.

For each output, create a circuit corresponding
to the output’s equation. (Sharing gates among
multiple outputs is OK optionally.)

34

34

Example: Three 1s Detector

I—,

Problem: Detect three consecutive 1s
in 8-bit input: abcdefgh

+ 00011101 => 1
11110000 > 1

10101011 => 0

Step 1: Capture the function
« Truth table or equation?
— Truth table too big: 2*8=256 rows

— Equation: create terms for each
possible case of three consecutive 1s

+ y=abc + bcd + cde + def + efg + fgh

Step 2: Convert to equation -- already
done

Step 3: Implement as a gate-based
circuit

Digital Design
Copyright © 2006
Frank Vahid

def

efg

Seed

\fqh
L/

35

Example: Number of 1s Count

E——,

» Problem: Output in binary on

two outputs yz the number of 1s

on three inputs

+ 010> 01 101> 10 000 -> 00

— Step 1: Capture the function
» Truth table or equation?
— Truth table is straightforward

— Step 2: Convert to equation
« y=abc +ab’c +abc’ + abc
« z=ab'c+abc’ +ab’c’ +abc

— Step 3: Implement as a gate-
based circuit

Digital Design
Copyright © 2006
Frank Vahid

a—
b —
C —

g —

¢ —

Inputs

(# of 1s) Outputs

(0)
(1)
(1)
(2)
(1)

—_ - o = O o Oof|lw

36

2.8

More Gates
NAND NOR XOR XNOR
TS5 5 -
F vy

xy|F xy|F xyl|F xy|F x—]| F
0o0l1 0o0l1 0o0lo ool ; .
01|1 01|o 011 01|o - x—] =
10[1 10]0 10]1 100 y

110 110 11)0 111 0= 0=

+ NAND: Opposite of AND (“NOT AND") « NAND and NOR gates are most basic for

transistor point-of-view

» NOR: Opposite of OR (“NOT OR”) + Use controlled-switch model discussed
earlier to understand

+ XOR: Exactly 1 inputis 1, for 2-input . _
XOR. (For more inputs -- odd number of ~ + AND in CMOS: NAND with NOT

1s)
+ ORin CMOS: NOR with NOT

+ XNOR: Opposite of XOR (“NOT XOR")
+ So, NAND/NOR more common

N Digital Design

g £
Copyright © 2006 37
J| Frank Vahid T—

More Gates: Example Uses

—,
E—

Circuit

+ Aircraft lavatory sign example

~ S =(abcy == }_ﬂ
* Detecting all0s
— Use NOR SEDH .
 Detecting equality ajD)_)a:s
~ Use XNOR %
::jDJ

» Detecting odd # of 1s
— Use XOR

— Useful for generating “parity” bit
common for detecting errors

Digital Design
Copyright © 2006
Frank Vahid

38

38

Completeness of NAND

E—,

Any Boolean function can be implemented using just NAND
gates. Why?
— Need AND, OR, and NOT

N
— NOT: 2-input NAND with inputs tied together —i__)o—

— AND: NAND followed by NOT m

— OR: NAND preceded by NOTs on all inputs
Likewise for NOR »>] >

Bubbles same as
inverters,

Digital Design
Copyright © 2006 39
Frank Vahid —

39

Number of Possible Boolean Functions

How many possible functions of 2 variables?
— 22 rows in truth table, 2 choices for each

a b F
2 2 = 3
— 2@ =24 =16 possible functions 0 0 | Oor1 2choices
0 1 Oor1 2 choices
- e 1 0 Oor1 2 choices
N variables 1 1 | Oor1 2 choices
— 2N row
NO S . . 2¢=16
— 227 possible functions possible functions
a b | fo 1 f2 f3 f4 f5 6 ff f8 f9 f10 f11 f12 f13 f14 f15
0 0|0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 i 0 1 0 1
o o @© GO GG G B © a
: 5 E g & :
< S e o <
© © o X 7
] m
Digital Design
Copyright © 2006 40
Frank Vahid —

40

E——

Decoders and Muxes

Decoder: Popular combinational logic
building block, in addition to logic

29

gates . . do—1 do—0 do—o0 do—o0
— Converts input binary number to one . ! : ;
high output 0—i0 d1—0 1—i0 d1—1 0—i0 d1—0 1—i0 d1—0
0—i1 d2—0 0—i1 d2—0 1—i1 d2—1 1—i1 d2—0
2-input decoder: four possible input d3—o0 d3—0 d3—0 d3—1
binary numbers
— So has four outputs, one for each
possible input binary number
do—o
Internal design ‘10 1=1i0 d1[—0
— AND gate for each output to detect 1—i1 d2[—o0
input combination @—fﬁ a1
f
Decoder with enable e .,_@—fﬂ 1
— Outputs all 0 if e=0 0.
Regular behavior if e=1 @—ds domo
— Regular behavior if e= 1—io d1bo
: 1=l d2[—0
n-input decoder: 2" outputs é&é !
[[e d3™0
i1 0 (I,
Digital Design
Copyright © 2006 41
Frank Vahid —

41

Decoder Example

E——

New Year's Eve 3210 3210 Y
: L0 10 0001 -~
Countdown Display 5 i T 1
— Microprocessor § e R FN T 2
counts from59down 8 i ou - ®:
i I
to 0 in binary on 6-bit = § —00005;; *°°
output 2 | asgrl0-50
= ——e d59
deo— X)sa
" " ds1—
— Want illuminate one 6xB4 ds;_ \059
of 60 lights for each ded dé3r—

binary number

— Use 6x64 decoder
* 4 outputs unused

Digital Design
Copyright © 2006
Frank Vahid

Happy
New Year

42

Multiplexor (Mux)

E—

* Mux: Another popular combinational building block
— Routes one of its N data inputs to its one output, based on binary
value of select inputs
. 4 inpu‘g mux —> needs 2 select inputs to indicate which input to route
ihrougn
» 8 input mux - 3 select inputs
* Ninputs - log,(N) selects

— Like a railyard switch

i -
i II I / - - e
SO Il &=
Digital Design
Copyright © 2006 43
Frank Vahid —

43

|

Mux Internal Design

0 . *in=i
21 2x1 2x1 ' o e 'Od 10)
—i0 = -0 | i1 o
y ¢ _::}\d__—_ 1T - (0+i0=i0)
s0 s0 s0 |A
! o I
2x1 mux 0s0
i0
41 —
- i1
i = d
—i2 i2
i3 ~—
s1s0 i3
[
4x1 mux ' ’4' é&.
s1 s0
Digital Design
Copyright © 2006 44
Frank Vahid —

44

Mux Example

City mayor can set four switches up or down, representing
his/her vote on each of four proposals, numbered 0, 1, 2, 3

City manager can display any such vote on large green/red LED
flhimld) by cattizm~ hiasm crasidmablhan $4 ramracamt Rimam: N 4) A D
HUTIL) DY Selllly Lwu SwilLlico W icpicoelit vilidaly v, 1, £, Ul 9

Use 4x1 mux Mayor's switches

¥
\ 4x1 on/off
i0
2 E— i1
I d
/— i2
i3
3 g Green/

s1s0 Red
LED

4
H D D manager's
switches

Digital Design
Copyright © 2006 45
Frank Vahid I—

45

Muxes Commonly Together -- N-bit Mux

21

a3—i0 db— Simplifying
b3 —i1 0 notation:
I — : 4
4-bit
21 4 —=C
a2—ji0 “ | Ay |,
b2 —i1 . : Nl s lic arinis
suU 4 urr o 15 SNui
! B for
at—iio 21 s0
b1—i1 — 3
—
s0 —_2
a0—i0 2'J]
— I —c
b0 i1 0
s0———r———-—I —0c0

« Ex: Two 4-bit inputs, A (a3 a2 a1 a0), and B (b3 b2 b1 b0)

— 4-bit 2x1 mux (just four 2x1 muxes sharing a select line) can select
between A or B

Digital Design
Copyright © 2006 46
Frank Vahid —

46

From the car's

Digital Design
Copyright © 2006
Frank Vahid —

N-bit Mux Example

= T 8 8-bit
E A8l 8 D33
S |__8 D" 2 o
™ | | 2 o o
s o O
@ | e |3 <
= 3
1Vn
We'll design
this later

button

Four possible display items
— Temperature (T), Average miles-per-gallon (A), Instantaneous mpg (1), and Miles
remaining (M) -- each is 8-bits wide
— Choose which to display using two inputs x and y

— Use 8-bit 4x1 mux

47

47

s

W
i1 1y &o,

Additional Considerations

Schematic Capture and Simulation

_D&—;,,—:-Dma- a1 Inputs
iO_[_l_
—DFH ' |
’7 —the Outputs w
mp d3 >
d2
:):59*\— »
do

+ Schematic capture
— Computer tool for user to capture logic circuit graphically

« Simulator

— Computer tool to show what circuit outputs would be for given inputs
« Outputs commonly displayed as waveforms

1

Digital Design
Copyright © 2006
Frank Vahid

Inputs

o

| g
o Simulate
utputs M

di— il

e
T)

] -

2.10

48

48

Additional Considerations
Non-ldeal Gate Behavior -- De!ay

|

1 — 1 —
X | X |

oI L] o L

i |

1 — 1 i —
y y 1

0 0

1 1 [r—
F F

0— _ 0 -

time time

* Real gates have some delay (called Propagation Delay)
— OQutputs don’t change immediately after inputs change

I Digital Design
Copyright © 2006
J| Frank Vahid

Chapter Summary

I—,

Combinational circuits

— Circuit whose outputs are function of present inputs
+ No “state”

Switches: Basic component in digital circuits

Boolean logic gates: AND, OR, NOT -- Better building block than switches
— Enables use of Boolean algebra to design circuits

Boolean algebra: uses true/false variables/operators
Representations of Boolean functions: Can translate among

Combinational design process: Translate from equation (or table) to circuit through well-
defined steps

More gates: NAND, NOR, XOR, XNOR also useful

Muxes and decoders: Additional useful combinational building blocks

Digital Design
Copyright © 2006 50
Frank Vahid I—

50

