Digital Design

Chapter 3:
Sequentiai Logic Design -- Controliers

Slides to accompany the textbook Digital Design, First Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2007.
http://www.ddvahid.com




Introduction

EE—

Sequential circuit

— Output depends not just on present inputs (as in
combinational circuit), but on past sequence of inputs
+ Stores bits, also known as having “state”

— Simple example: a circuit that counts up in binary

In this chapter, we will:
Design a new building block, a flip-flop, that stores one bit

— Describe the sequential behavior using a finite state
machine

— Convert a finite state machine to a controller — a
sequential circuit having a register and combinational logic

Digital Design
Copyright © 2006

Frank Vahid Note: Slides with animation are denoted with a small red "a” near the animated items

a

5]
—

Combinational

by digital circuit

- F

Sequential

b__p. digital circuit

Must know
sequence of

past inputs to

know output

(]




Example Needing Bit Storage

Flight attendant call button
— Press call: light turns on

« Stays on after button released

— Press cancel: light turns off

— Logic gate circuit to impiement

(o]

Doesn’t work. Q=1 when Call=1, but
doesn’t stay 1 when Call returns to 0

Need some form of “feedback” in the circuit

l Digital Design
Copyright © 2006
Frank Vahid

A

Ca%_ lue light
button

Bit

Cancel ‘:]_ Storage

button

1. Call button pressed — light turns on

Call 1--| I‘g’lue Iighi
button — Bit
Cancel Storage !
button I:"_

2. Call button released — light stays on

Call Blue light
butte: = Bit =
Cancel ™ Storage

button

3. Cancel button pressed — light turns off’




e ——

First attempt at Bit Storage

We need some sort of feedback
— Does circuit on the right do what we want?

» No: Once Q becomes 1 (when S=1), Q stays 1
forever — no value of S can bring Q back to 0

l Digital Design
Copyright © 2006
dl Frank Vahid




Bit Storage Using an SR Latch

e —

Does the circuit to the right, with cross-coupled NOR gates,
do what we want?

— Yes! How did someone come up with that circuit? Maybe just trial
and error, a bit of insight...

S (set) ? SR latch
Q —
i R (reset)

1
s I
0
R 1
0 Recall
|
! S o
. L] 2
Q T
0 1 =¥ e
x-,-"_.) ’
F Digital Design !
*f Copyright © 2006 5
Frank Vahid




B

SR latch can serve as bit storage in

previous example of flight-attendant
call button

— Call=1:setsQto1
+ Q stays 1 even after Call=0

— Cancel=1:resetsQto 0

But, there’s a problem...

| Digital Design
Copyright © 2006
Frank Vahid

Example Using SR Latch for Bit Storage

Call
button I:-\_ Bit
Cancel 1 Sorage
button |:—

Blue lignt

Call

pation L —2—— ™\

Cancel
button

w
g

s




Problem with SR Latch

E—

* Problem
— 1If S=1 and R=1 simultaneously, we don’t know what value Q will take

Q may oscillate. Then, because one path will be t
slightly longer than the other, Q will eventually

1
0

settle to 1 or 0 — but we don’t know which. 5 g Rl
0

l Digital Design
Copyright © 2006
Frank Vahid —




Problem with SR Latch

B

Problem not just one of a user pressing two buttons at same time

Can also occur even if SR inputs come from a circuit that supposedly never sets S=1 and
R=1 at same time

— But does, due to different delays of different paths

1
T K
? 1
1
1
1 f
Y i
0
¥ (.
1 1=
S :.rf \\I
¥
The longer path from X to R than to § causes SR=11 for short 0 \
time — could be long enough to cause oscillation j R=11
I
R 1 k r“
| Digital Design 0 ‘\\ )
Copyright © 2006 P 8

Frank Vahid




Solution: Level-Sensitive SR Latch

e —

* Add enable input “C" as shown
— Only let S and R change when C=0

+ Ensure circuit in front of SR never sets SR=11,

except briefly due to path delays

— Change C to 1 only after sufficient time for S and R to

be stable

— When C becomes 1, the stable S and R value passes R
through the two AND gates to the SR latch’'s S1 R1

inmite
HipuLs.

Level-sensitive SR latch
X
Y
|
1 Digital Design
Copyright © 2006
Frank Vahid

Level-sensitive SR latch

S1

R1

Though SR=11 briefly ...
=

w

2 o =
O_lo_;o#_lo_.ko

2

... S1R1 never = 11

18
—C

ar—

a

—R

Level-sensitive
SR latch symbol




Clock Signals for a Latch

1 safe to XY
change must not
X, ¥  change
9 1,’\\\ N -
Clk AN g ]
O— . .
Time: 0 ns 10 ns 20 ns 30 ns 40 ns

How do we know when it's safe to set C=1?

— Most common solution —make C pulse up/down
C=0: Safe to change X, Y

+ C=1: Must not change X, Y

We'll see how to ensure that later

Clock signal -- Pulsing signal used to enable latches
» Because it ticks like a clock

Sequential circuit whose storage components all use clock
signals: synchronous circuit

*  Most commeon type
Digital Design

Copyright © 2006
Frank Vahid

V/ Ck =

50 ns 60 ns

Level-sensitive SR latch

T?DEDJ

R

™y
y—__ /1

R1

Asynchronous circuits — important topic, but left for advanced course

10



Clocks

x safeto X, Y
change must not
X,Y change
1 ,"’\\ /', h -
Clk / NV pV
Time: OI0 ns 10ns 20ns 130ns '40ns 150ns 160ns
/| o | 1+ | o | 1 | o | 1 | ©
* Clock period: time interval between pulses Freq Period
— Above signal: period = 20 ns
anave 100 GHz| 0.01ns
* Clock cycle: one such time interval 10/GHz 0.-1'ns
— Above signal shows 3.5 clock cycles 1 GHz 1ns
100 MHz 10 ns
10 MHz 100 ns

« Clock frequency: 1/period
— Above signal: frequency = 1/20 ns = 50 MHz
« 1Hz=1/s

| Digital Design
Copyright © 2006 11
Frank Vahid




Level-Sensitive D Latch

B |
* SR latch requires careful design to ensure SR=11 b D latch
never occurs ’
« D latch relieves designer of that burden _lc
— Inserted inverter ensures R always opposite of S (
Q

. R
1 L

D
o—l i l \:
1

=

o Y 1 AW —0  gb—
1 —C a—

So

D latch symbol

, X y

R
0
1

Q
0

| '
1 Digital Design
Copyright © 2006
Frank Vahid

12



Problem with Level-Sensitive D Latch

EE—
D latch still has problem (as does SR latch)
— When C=1, through how many latches will a signal travel?

— Depends on for how long C=1
+ CIk_A -- signal may travel through multiple latches

Clk_B -- signal may travel through fewer latches

— Hard to pick C that is just the right length

+ Can we design bit storage that only stores a value on the rising edge of a clock signal?

Y—D1 Q—D2 Q@2—D3 Q3—D4 Q44—
l—C1 fC2 I—CB |—C4

Ck —e

aa | LI T aks_JL ]l

l Digital Design
Copyright © 2006
dl Frank Vahid

Clk

' rising edges

N

13



D Flip-Flop

—

*  Flip-flop: Bit storage that stores on clock edge, not level rising edges

*  One design -- master-servant Clk
— Two latches, output of first goes to input of second, master latch has inverted clock signal
Note:
- So, master loaded when C=0, then servant when C=1 Hundreds of
different flip-
— When C changes from 0 to 1, master disabled, servant loaded with value that was at D just flop designs
before C changed -- i.e., value at D during rising edge of C exist
D flip-flop
Clk 1 A
1
D latch D latch - D/Dm | |
D i
Dm Qm—Ds QspP—
om | I
om Cs QsFd-
Qm/Ds !
master servant Cs >
s : d |
Clk Qs :l—'—:
| 1
Digital Design ' !
Copyright © 2006 14
Frank Vahid I—

14



D Flip-Flop

—D Qb —D Qb
The triangle means —> Qr— —C> Qr— Internal design: Just invert
clock input, edge servant clock rather than
triggered master
Symbol for rising-edge Symbol for falling-edge
triggered D flip-flop triggered D flip-flop
rising edges falling edges
Clk | Clk
Digital Design
Copyright © 2006 15
—

Frank Vahid

15



D Flip-Flop

e —

Solves problem of not knowing through how many latches a signal travels when C=1

— In figure below, signal travels through exactly one flip-flop, for Clk_A or Clk_B

— Why? Because on rising edge of CIk, all four flip-flops are loaded simultaneously -- then all four
no longer pay attention to their input, until the next rising edge. Doesn’t matter how long Clk is 1.

Y—D Qr—D QM—/D Qpr—D Q—

Two latches inside

y _1—> I—> l_> |—> \ \_/each flip-flop

ckal LI T cxsJL1l

l Digital Design
Copyright © 2006 16
M Frank Vahid —

16



L]

Ll

-

D Latch vs. D Flip-Flop

S

Latch is level-sensitive: Stores D when C=1

Flip-flop is edge triggered: Stores D when C changes from 0 to 1
— Saying “level-sensitive latch,” or “edge-triggered flip-flop,” is redundant

— Two types of flip-flops -- rising or falling edge triggered.

Comparing behavior of latch and flip-flop:

Q(Dlatch) . 7|

Trrr

Digital Design
Copyright © 2006
dl Frank Vahid : —

1
Q(DAlip-flop) i9 10

17



Flight-Attendant Call Button Using D Flip-Flop

e —

+ D flip-flop will store bit call

button m thht

attendant

Cancel call-button
button [ f— system

* Inputs are Call, Cancel, and present value of D flip-flop, Q

+  Truth table shown below

Blue
light

Call Cancel Q D
0 0 0 0 Preserve value: if Q=0, Circuit derived from truth table,
o o 1 1 ’[‘;_3'1‘5 D=0; if Q=1, make using Chapter 2 combinational
{ B logic design process
0 1 0 0 S——
Cancel -- make D=0 om
0 1 1 0 SRR But ten o L ﬁ;brl:
Cancel
1 0 0 1 but ton
Call -- make D=1 Clle > Qe O
1 0 1 1 T
1 1 0 1 Let's give priority to Call
- make D=1
1 1 1 1
Digital Design Remember: the value on D will be
Copyright © 2006 transferred to the output Q on the next 18
Frank Vahid rising edge. I —

18



|

SR latch;
S (set)

R (reset)

Feature: $=1 sets
Qto 1, R=1resets
Qto 0.

Pre n: SR=11
yield undefined Q.

Bit Storage Summary

Level-sensitive SR latch

D latch

Feature: S and R only

have effect when C=1.
We can design outside
circuit so SR=11 never
happens when C=1.

Problem: avoiding SR=11
can be a burden.

ure: SR can't be 11 if

D is stable before and
while C=1, and will be 11
for only a brief glitch even
if D changes while C=1.

Problem: C=1 too long
propagates new values
through too many latches:
too short may not enable a
store.

D flip-flop
D latch
Ds Qs

—1

| = =
present at rising clock edge, so
values can't propagate to other
flip-flops during same clock
cycle.

Tradeoff: uses more gates
internally than D latch, and
requires more external gates
than SR - but gate count is
less of an issue today.

We considered increasingly better bit storage until we arrived at the robust D flip-flop bit

storage

Digital Design
Copyright © 2006
Frank Vahid

19



e —

Basic Register
+ Typically, we store multi-bit items
— e.g., storing a 4-bit binary number

Register: multiple flip-flops sharing clock signal

From this point, we'll use registers for bit storage
* No need to think of latches or flip-flops

.

But, now you know what's inside a register

1

13 2 10
| | | |
| | | | P i 1 1 i
|_ |_ |_ |:‘U|l| ] I l I I
D D D b 1312 110
Qr QF Q- Q > reg@4)
ok l_> [ C B C [ —I Q3 Q2 Q1 Q0
I 11
|
Q3 Q2 o) Qo

l Digital Design
Copyright © 2006
§ Frank Vahid




Example Using Registers: Temperature Display

e ——

+ Temperature history display
— Sensor outputs temperature as 5-bit binary number

— Timer pulses C every hour

— Record temperature on each pulse, display last three recorded values

Present 1 hour ago 2 hours ago
| Display || Display | | Display |
! | el | I | et ) I I == I
| x4 a4al3a2alal bdb3b2b1b0 c4c3c2clcd
£ x3
=
£ s Temperature History Storage
[_.
= x0
timer
i 5 >

(In practice, we would actually avoid connecting the timer
output C to a clock input, instead only connecting an

- ;

Digital Design oscillator output to a clock input.)

Copyright © 2006 21
A Frank Vahid PE—

21



e —

Example Using Registers: Temperature Display

+ Use three 5-bit registers

Ah A Lh 4 4 A
A A AL A A AL A A A A
a4|a3|a2|a1|a0 b4 |b3|b2|b1 b0 cd|c3|c2|c1|cO

=4 Q4 4 Q4 4 Q4

e as 3 Q3 3 Q3

o2 Q2 2 Q2 2 Q2

i LB eY noQt n o Qt

oo Qo 0 Qo 0 Qo

> Ra > Rb > Re
ANE [# E

TemperatureHistoryStorage

xa.. x0<_ 15]18|20]| 21| 21| 22| 24| 24| 24| 25| 25] 26| 26| 26| 27| 27| 27| 27

S| W | E——
Re 00 X "8 X 21 X B4 X 28 X =8 X
B0 X 0 X e 91 & 9 X 55 4

e X o X o X 98 X 2 K 24 X 25

! Digital Design Re
*f Copyright © 2006
Frank Vahid

22



Finite-State Machines (FSMs) and Controllers

B

« Want sequential circuit with particular
behavior over time

+ Example: Laser timer
— Push button: x=1 for 3 clock cycles

g trv three flin-flons
s lry three tp-1l

i Vo

+ b=1 gets stored in first D flip-flop

* OR the three flip-flop outputs, so x should be
1 for three cycles

| Digital Design
Copyright © 2006
Frank Vahid

Controller

!

laser

clk——>

patient

23



Need a Better Way to Design Sequential Circuits

E—

Trial and error is not a good design method
— Will we be able to “guess” a circuit that works for other desired behavior?

» How about counting up from 1 to 9? Pulsing an output for 1 cycle every 10
cycles? Detecting the sequence 1 3 5 in binary on a 3-bit input?

— And, a circuit built by guessing may have undesired behavior
« Laser timer: What if press button again while x=1? x then stays one another 3

Aunlac 1o that ot s wanmd P
LyLiTo. 1o Uial wilal we walil !’

Combinational circuit design process had two important things
1. A formal way to describe desired circuit behavior

« Boolean equation, or truth table

2. A well-defined process to convert that behavior to a circuit

We need those things for sequence circuit design

Digital Design
Copyright © 2006 24
Frank Vahid I—

24



Describing Behavior of Sequential Circuit: FSM

E—

Finite-State Machine (FSM)

— A way to describe desired behavior of
sequential circuit

+ Akin to Boolean equations for
combinational behavior

— List states, and transitions among

states
« Example: Make x change toggle (O to
1, or 1 to 0) every clock cycle

« Two states: “Off' (x=0), and “"On” (x=1)

* Transition from Off to On, or On to Off,
on rising clock edge

+ Arrow with no starting state points to
initial state (when circuit first starts)

Digital Design
Copyright © 2006
Frank Vahid

Outputs: x
x=0 CK'  x=1

| |
cycle 1 h cyce2 h cycle 3 h cycle4
ok Il Il Il
1 1 1
i i i
sate( Of N on X of X on
Outputs | i i
|
X |
1

(o]
h

25



FSM Example

B

« Want0,1,1,1,0,1,1,1, ...
— Each value for one clock cycle

+« Can describe as FSM
— Four states

— Transition on rising clock edge
to next state

| Digital Design
Copyright © 2006
Frank Vahid

:0,1,1,1,repeat

Outputs: x
x=0 clk* x=1 clk* x=1 clk* *x=1

ae UL
State | Off |On10n20n3 O |On{0On20n3 Of |

Outputs: I
x —

26

26



Extend FSM to Three-Cycles High Laser Timer

B |
» Four states

+  Wait in “Off” state while b is 0 (b")

*+ When b is 1 (and rising clock edge),
transition to On1
— Sets x=1

— On next two clock edges, transition to
On2, then On3, which also set x=1

+ So x=1 for three cycles after button
pressed

| Digital Design
Copyright © 2006
Frank Vahid

clk®
)b
b*clk”
x=1 x=1 clk" x=1
On2 On3
i i

S A |

—_— e e

State | Off | OFf | Off | Off | OFf |On1/On2|On3

Qutputs:

X

27



FSM Simplification: Rising Clock Edges Implicit

I

* Showing rising clock on every
transition: cluttered and
unnecessary

— Make implicit -- assume every edge
has rising clock, even if not shown.

+ Eg., itis understood that a transition
out of a state is on a clock edge.

— What if we wanted a transition
without a rising edge
= We don't consider such

asynchronous FSMs -- less common, -
and advanced topic :
*’ Cor e

* Only consider synchronous FSMs -- b
rising edge on every transition

Note: Transition with no associated condition thus

Digital Design transistions to next state on next clock cycle
Copyright © 2006 28
| p—

dl Frank Vahid

28



FSM Definition

S

FSM consists of

Set of states
= Ex: {Off, On1, On2, On3}

Set of inputs, set of outputs
= Ex: Inputs: {x}, Outputs: {b}

Initial state
« Ex: *Off"

Set of transitions
* Describes next states

» Eg: Has 5 transitions

Set of actions
= Sets outputs while in states

+ Eg: x=0, x=1, x=1, and x=1

Digital Design
Copyright © 2006
Frank Vahid

Inputs: b; Outputs: x

We often draw FSM graphically,
known as state diagram

Can also use table (state table), or
textual languages

29



FSM Example: Secure Car Key

S

Many new car keys include .=__
tiny computer chip .’ —
— When car starts, car’'s

computer (under engine hood)
requests identifier from key

— Key transmits identifier \ Inputs: a; Outputs: T
« If not, computer shuts off car @f_
™M~ A r=0 a a‘ \
FSM

Y
— Wait until computer requests o
ID (a=1)
r=1 r=1 r=0 r=1

— Transmit ID (in this case,
1101)

a.k.a., A Sequencer

Digital Design
Copyright © 2006
Frank Vahid

30




FSM Example: Secure Car Key (cont.)

e —

* Nice feature of FSM

— Can evaluate output behavior
for different input sequence

— Timing diagrams show states
and output values for different
input waveforms

FIA i I e R e P e I s (A 3 O
I R A T [ 1S S ) R [, ) 38T 957 A
Inputs

a1 1

Sate | |wait|wait| K1 | K2 | K3 | K4 |wait|wait]

Cutputs

SR s B e B

| 1
i Digital Design
*f Copyright © 2006
Frank Vahid

\ Inputs: & Outputs: r
Wait )=

r=0 a
r=1 r=1 r=0 r=1

Q: Determine states and r vaiue
input waveform:

) O Ly o e e ] OO [ |
ool = I e R i ] S et S R S

Inputs

a__ |

state | |wait| wait| k1 | k2 | k3 | ka [wait] |

LI

Qutput

S

31

31



FSM Example: Code Detector

B

Unlock door (u=1) only when
buttons pressed in sequence:
— start, then red, blue, green, red

Input from each button: s, r, g, b

— Also, output a indicates that some
colored button pressed

_ A ait fAr
ait 107

— Once started (“Start”)
+ If seered, go to “Red1”

» Then, if see blue, go to “Blue”
* Then, if see green, go to “Green”

* Then, if see red, go to “Red2”
- In that state, open the door (u=1)

+ Wrong button at any step, return
to “Wait", without opening door

| Digital Design
Copyright © 2006
Frank Vahid

Start @2
U
Red L Code ?O‘;r
+ Green g detector oc
Blue L
A

\,@ Inpu >

DI

Red2
u=0 d u=0 d u=1

Q: Can you trick this FSM to open the door, without
knowing the code?

A: Yes, hold all buttons simultaneously

32
—

32



Improve FSM for Code Detector

Inputs: s,r,g,b,a;
Outputs: u

Note: small problem still

remains; we 'll discuss later

« New transition conditions detect if wrong button pressed, returns to “Wait”

+ FSM provides formal, concrete means to accurately define desired behavior

Digital Design
Copyright © 2006 33
dl Frank Vahid —

33



Standard Controller Architecture

e —

How implement FSM as sequential circuit?

— Use standard architecture
» State register -- to store the present state

« Combinational logic -- to compute outputs,
and next state

+ For laser timer FSM

— 2-bit state register, can represent four
states

— Input b, output x

— Known as controiier

FSM
inputs

Combinational

10
FSM
outputs

logic
S
m
m-bit
ik—-- state register
Digital Design N
Copyright © 2006

|l Frank Vahid General version

Inputs: b; Outputs: x
x=0

—
Co v

FSM

Combinational

logic

=3
—s

s1 ?so

State register

_-.>

FSM
outputs

34



State Diagram Example

Modify the laser pulse generator state diagram (below left), so that the new
FSM will only produce one pulse (3 clk cycles wide) for each actuation of ‘b’
... or stated another way, one pulse out for one pulse in.

Inputs: b; Outputs: x Inputs: b; Outputs: x

= ~ ——
off )b @
b

35



e —

L]

Controller Design

Five step controller design process

Step

Description

Step 1

Capture the FSM

Creale an FSM that describes the desired behavior of the controller.

Step 2

Create the
architecture

Create the standard architecture by using a state register of
appropriate width, and combinational logic with inputs being the state
register bits and the FSM inputs and outputs being the next state bits
and the FSM outputs.

Step 3

Encode the states

Assign a unique binary number to each state. Each binary number
representing a state is known as an encoding. Any encoding will do
as long as each state has a unique encoding,

Step 4

Create the state
table

Create a truth table for the combinational logic such that the logic
will generate the correct FSM outputs and next state signals. Ordering
the inputs with state bits first makes this truth table describe the state
behavior, so the table is a stale able.

w

2
7]

Implement the

combinational logic

Implement the combinational logic using any method.

Digital Design

Copyright © 2006

Frank Vahid

34

36

36



Controller Design: Laser Timer Example

« Step 1: Capture the FSM Inputs: b; Outputs: x
— Already done X0 o
<o B

« Step 2: Create architecture
— 2-bit state register (for 4 states)

— Input b, output x

2 2

=y el e 0o - F o AR g ] | - mn o
1. N0 i c Combinationat |, s

o

logic

n0
» Step 3: Encode the states 51” s0
— Any encoding with each state clk | State register
unique will work (in blue) g

Digital Design
Copyright © 2006 37
§ Frank Vahid —

37



Controller Design: Laser Timer Example (cont)

e —

« Step 4: Create state table Inputs: b; Outputs: x
Inputs Outputs—
sl sQ b1 x _n "
— JZ;-:-_. —
0 1 0f1 1 o0
== 9 1 912 1 o
1 0 0 1 1 1
9.
02 5 v 1|1 1 1
1 1 0 1 0 0
o 1 1 a2l @ o

Digital Design
Copyright © 2006 38
Frank Vahid —

38



Controller Design: Laser Timer Example (cont)

« Step 5: Implement
combinational logic

Combinational

logic
Inputs OutpuLs 51”.!{'
] clk Sate register
sl sO b fJxx [ i 0 i
s \,\\J"n '| n
off 0 0 0 r' O | 0 \
7 o o 1 |of] \\f_ Sy
0 1 0 1 |I 1 O \\3{_: s1+ SD (note from the table that x=1 if s1 =1 TE_—D
Onl T
SR T TR |
1 | n1=s1's0b’ + s1'sOb + s1s0'b’ + s1s0’b
1 0 0 1 1
2 n1 =s1's0 +s1s
On?2 1 0 1 1 |‘ 1 |‘ )
T
1 1 0 ]l1 J' |0/ |0 n0 = s1's0’b + s1s0’b’ + s1s0’b
On3 H . -
1 1 1 ]1Y 19] 10/°<n0=s1's0b + s1s0

L
Digital Design
Copyright © 2006 39
Frank Vahid —

39



Controller Design: Laser Timer Example (cont)

e —

« Step 5: Implement

combinational logic (cont)

Inputs Qutputs
sl s0 b X nl  n0
o 4 o 1]o 0 1
o g 1 1|1 1 o
oz 1 o 1|1 1 1
s 2 8 0|8 B &

| 1
i Digital Design
*f Copyright © 2006
Frank Vahid

Combinational Logic
i 3
—

s14  As0

clk State register
—-

A

x=s1+s0
n1=s1's0 + s1s0’
n0 =s1's0’b + s1s0’

40

40



Understanding the Controller's Behavior

x=0

O Db
b

_<l3

$1
Inputs: | })
° '
|

Qutputs:
X

Digital Design
Copyright © 2006 4
Frank Vahid —

41

41



L

bi

Controller Example:

Button Press Synchronizer

Button press
synchronizer
controller

ok cycle1 h cycle2 h cycle3 I cycle4
Inputs: l l
bi i | ey
Outputs: ——
bo \‘“.L'-————— o

Want simple sequential circuit that converts button press to single
cycle duration, regardless of length of time that button actually
pressed

— We assumed such an ideal button press signal in earlier example,
like the button in the laser timer controller

Digital

Design

Copyright © 2006
Frank Vahid

42



Controller Example:
Button Press Synchronizer (cont)

inputs
* =

FSM

FSM inputs: bi; FSM outputs: bo

Combinational

logic

bo
-

ni

Inputs
s1 50 bi

i 0@

Combinational logic

Cutputs
n1 n0bo

- o

o
oo
(=]

Step 3: Encode states

Step 4: State table

Digital Design
Copyright © 2006
Frank Vahid

2 .
& 2 Step 2: Create architecture
-3
n1=s1's0bi + s1s0bi
n0 = s1's0'bi
bo = 51's0bi’ + s1's0bi = s1s0
Combinational logic
—d ™ bo
——
bi L/
’_JQDJLL
[
{
n0
[
sid 4 so
k= )Stale register

Step 5: Create
combinational circuit

43
—

43



Controller Example: Sequence Generator

e —
.................... a

+  Want generate sequence 0001, 00
— Each value for one clock cycle

P 5§

000, (repeat)

— Common, e.g., to create pattern in 4 lights, or control magnets of a “stepper motor”
— 0

Inputs: none; Outputs: w,x.y,z = Inputs: none; Outputs: w,x.y,z
- - " . — y
wxyz=0001 wxyz=1000 Combinational | . 7 Wxyz=0001 wxyz=1000

—

1

0

logic
ﬁl
e 1o
(o

clk— IEState register | | ( 2 Q
wxyz=0011 wxyz=1100 | | wxyz=0011 wxyz=1100

?
§

Step 1: Create FSM Step 2: Create architecture Step 3: Encode states
w
Inputs Outputs -:j:)——"'x
w=s1 |
sl sOlw x ¥y z nlnld x=g1s0 ,_DT--Y
A 0 0flo o o0 1 0 1 ’; - :: 20 Tt z
B 0 1{0 0o 1 1 1 0 nl=slxors0 ) Lr\
p 5 n0 =s0’ b
1 0|1 1 0 0 1 1 . L nd| |n1
D 1 1|11 0 0 0 0 O ol - State registel
Digital Design Step 4: Create state table  — _
Copyright © 2006 Step 5: Create combinational circuit 44
Frank Vahid P—

44



Controller Example: Secure Car Key

I * (from earlier example)
N\ Inputs: a; Outputs: r
_FO Inputs Outputs
5 ’ s2 s1 sO0 a|r n2nlno
e 00 0 0|0 0 0 O
a,| | ¢ YW o5 0 0 1|0 0 0 1
c(dlil}_I |
o : n2 ” 0. 0 1. 012 8 1 0
- I sl 001 1|1 0 1 0
in n0
@ 5 o 3. 0 o2 O = 1
= g 1 0 3% 0 3 1
clk—n->State registe == 0 1 1 0lo 1 0 0O
"—'T i || : 011 1|/0 1 0 O
Inputs: a Cutputs: r K4 l1 0 0 0|1 0 0O O
1 0 0 1]1 0 O O
R 1 0 1 0Jlo 0 0 O
& 1 01 1/l0 0o 0 o
.1 1 0 0|0 0 0 ©
E Unused 1 1 0 1/lo0 o o0 o
7 @ 1 1 1 0|0 0 0 O
r=1 r=1 r=0 r=1 1 1 1 1]0 0 0 O
Digital Design Step 4
Copyright © 2006 45
Frank Vahid We'll omit Step 5 ... circuits from equations is old hat by now. —

45



Example: Seq. Circuit to FSM (Reverse Engineering)
... a.k.a. Circuit Analysis

I |
V_Vha?tddoe?s this y=s1’ @
CIrcuit ao« - ' o
z= ?1 s0 ) states
E n1=(s1 xor s0)x
Kl ; Yy - 1k ) @
n0=(s1"*s0’)x
,—D ., |
IS Qutputsy, z
[ Inputs Outputs @ stitis
T — n1 s1 s0 x|nl n0 y 2z yz=10 VED with
“‘:L)_l-‘»\ 0 0 0|0 0 1 0O @ @ outputs
\
| no 0 0 1 0 1 1 0 y2=00 y2=01
< 1s0 g 0 1 010 0 1 0
| -_State register 0 1 1 1 0 1 0 Inputs:x; Outputs:y, 2
e i c 1 0 0ofo 0o o1
f 1 0 1 1 0 0 1
Work backwards p 1 1 0f0 0 0 0
N 1 1 1 0 0 0 0

Pick any state names you want

X
states with
outputs and

Digital Design transitions
Copyright © 2006 46
Frank Vahid P—




Common Pitfalls Regarding Transition Properties

— ]
da
* Only one condition should be v
true - L
— For all transitions leaving a next state?
state
— Else, which one? " ~ a ()
a
Orr Y0
" ab what if
* One condition must be true e ab=007?
— For all transitions leaving a
state ab’ ‘
a

— Else, where go?
a'b

Digital Design
Copyright © 2006 47
§ Frank Vahid —




Verifying Correct Transition Properties

B

» Can verify using Boolean algebra

— Only one condition true: AND of each condition pair (for
transitions leaving a state) should equal 0 = proves pair can
never simultaneously be true

— One condition true: OR of all conditions of transitions leaving a
state) should equal 1 - proves at least one condition must be
true

— Example

ab

Q: For shown transitions, prove whether:

Answer:
a*ab
=(a*a)*b
=0*b
=0
OK!

a+ab
=a*(1+b) +a'b
=a+ab+ab
=a+ (ata’)b
=a+b

Fails! Might not
be 1 (i.e., a=0,
b=0)

* Only one condition true (AND of each pair is always 0)
* One condition true (OR of all transitions is always 1)

| Digital Design
Copyright © 2006
Frank Vahid

48
—

48



e —

+ Recall code detector FSM

— We “fixed” a problem with the
transition conditions

— Do the transitions obey the two
required transition properties?
= Consider transitions of state
Start, and the “only one true”
property

* ot

ar*a a'* a(r+b+g)
=(a*a’)r =0
=0 =0

l Digital Design
Copyright © 2006
§ Frank Vahid

Evidence that Pitfall is Common

ar * a(r'+b+g)

u=0

T S [ TR ST

& (a'*a)*(r'+b+g) = 0*(r‘+b+g} Intuitively: press red and biue butions

at same time: conditions ar, and

= (a*a)*r*(r'+b+g) = a*r*(r'+b+g) a(r'+b+g) will both be true. Which one

= arr'+arb+arg
=0 + arb+arg
=arb + arg

= ar(b+g)

Fails! Means that two of Start's
transitions could be true

should be taken?

Q: How to solve?
A: ar should be arb’'g’
(likewise for ab, ag, ar)

Note: As evidence the pitfall is common,
we admit the mistake was not intentional.
A reviewer of the book caught it.

49



Simplifying Notations

i

c

© FSMs =D

— Assume unassigned output c=0 c=1
implicitly assigned 0 ‘

* Sequential circuits ’

b=1 c=1

— Assume unconnected clock
inputs connected to same

avtarnal ~lacl
CALCIIAl LIUUR

l Digital Design
Copyright © 2006
dl Frank Vahid




Solving this pitfall ... a different point of view

I

= The ruies mentioned by the textbook author can be simpiified to one statement ...

— “There must be one and only one path leaving a state for each input combination (that's inputs &

current state)”

+  Best way to check the paths is to find the minterms for each path ... each minterm should be present
once and only once for all paths leaving the state ... think about how to do the state transition table.

:

Inputs: arbg

Start ) 4

u=

o
w
£l

ar->m(12, 13, 14, 15)
a' ->m0-7)
ar'->m(8, 9, 10, 11)

No problem with transitions
here ... problem with FSM
ration per spec

Ll

Inputs: arbg‘\

a(r'+b+g)
Start a
u=0 a

ar->m(12, 13, 14, 15)
a'->m(0-7)
a(r'+b+g)->m(8, 9, 10, 11,

13, 14, 15)

Appears to solve spec problem ...
however, there are more than one
path out of ‘Start’ for inputs m13,
m14 and m15

Inputs: arbg‘\

o a(r+b+g)
Start ) 5
arb’g’
arb’'g’ -> m(12)
a->m(0-7)
a(r'+b+g) -> m(8, 9, 10, 11,
13, 14, 15)

Best solution makes sense ... a
AND r but NOT b AND NOT g
move the FSM forward.

51
—

51



Ll

Defining the FSM using VHDL

B

Using the model put forth by the author ... there will be two process
statements

— Combinational logic (next state logic and output logic combined)

— State register

Modeling the state registe

— Assume cs (current state) and
process (clk)
begin

if (clk'event and clk='1’") then
cs <= ns;
end if;

end process;

— This register is built with rising edge triggered D-FF's.

52



e —

For a falling-edge triggered
register ...
process (clk)
begin
if (clk'event and
clk='0") then
cs <= ns;
end if;
end process;

process
begin

FSM w/ VHDL (cont.)

- Earar
rJiail

async. reset ...

process (clk, reset)
begin
if (reset = ‘1'} then
cs <= “000";
elsif (clk’event and clk=‘1") then

cs <= ns;

(clk, reset)

if (clk’event and clk='0") then

if

(reset = '0') then
cs <= “000%;

else
cs <= ns;
end if;
end if; 53

end process;

53



FSM w/ VHDL (cont.)

S
If you define enumerate a new type, life will be easier
— Example:
architecture Behavioral of dualEdgeDetect is

type stateType is (init, rising, wait4falling, falling);

signal ns, cs: stateType;

begin -
Note the state names in
™ wave - defaul Modelsim ... very handy ...
s no decoding required.

Another benefit for using enumerated types for naming states is when designing the
combinatorial logic block

54



FSM w/ VHDL (cont.)

e —

+  Setup combinatorial logic block in a
process statement and a case
statement:

nit

if i="0" then

else

end if;

zr <= ‘0/; zf <= '0f;
Inputs: i; Outputs: z = zr,zf when rising =>

if i="0" then ns <

ns <

when waitdfalling

i="0" then

Al 0 r zf Al 4] ’
when falling =>
ns <= init;
\Ct. Zf < V.
when others
ns <= init;
Zr <= ‘0; zf <= '0';
| en
Digital Design
Copyright © 2006 55
Frank Vahid

4falling;

55



More on Flip-Flops and Controllers

Other flip-flop types
SR flip-flop: like SR latch, but edge triggered

- JK flip-flop: like SR (S>J, R>K)
* But when JK=11, toggles

e« 130N NDA
1AV, U

T flip-flop: JK with inputs tied together
» Toggles on every rising clock edge

Previously utilized to minimize logic outside flip-flop
+ Today, minimizing logic to such extent is not as important

* D flip-flops are thus by far the most common

Digital Design
Copyright © 2006
Frank Vahid

56



Non-ldeal Flip-Flop Behavior

|
+ Can't change flip-flop input too close to clock edge —|
— Setup time: time that D must be stable before edge
= Else, stable value not present at internal latch D |
— Hold time: time that D must be held stable after edge set:pti;e

« Else, new value doesn't have time to loop around and
stabilize in internal latch clk

D
Setup time violation J

= [—
G i~ g

o7,/

s /
QE

l Digital Design
Copyright © 2006
Frank Vahid

T
hold time

; 7
@ Leads to oscillation!
Q 5 (5]

57

57



Flip-Flop Set and Reset Inputs

e —

» Some flip-flops have additional
inputs
— Synchronous reset: clears Q to 0
on next clock edge

— Synchronous set: sets Q to 1 on
next clock edge

— Asynchronous reset: clear Q to 0
immediately (not dependent on
clock edge)

+ Example timing diagram shown

— Asynchronous set: set Q to 1
immediately

| 1
i Digital Design
*f Copyright © 2006
Frank Vahid

AR
—{D Qp- —D Q- —D Qp—
-~ R Q— ARQ_ & ASQ_
1 —
cwded1 N e? N cyded N cuded
Cyie [ 23R g] SRS ] SRR
clk
o I I
AR—r |
\
| H i i
Q | e
I I

58

58



Initial State of a Controller

« All our FSMs had initial state Inputs: x; Outputs: b

1

But our sequential circuit designs did not

Can accomplish using flip-flops with
reset/set inputs
« Shown circuit initializes flip-flops to 01

Designer must ensure reset input is 1 Combinational
during power up of circuit logic

= By electronic circuit design ¥ 0 n0
s1 S

State register
Most common method is to encode the = _ _
initial state with all zeros and connect ® S|P S
the resets of the D-FF’s to the clear or > a— | > aq
reset input. rese

l

Digital Design
Copyright © 2006 59
Frank Vahid —

59



Glitching

SR

Glitch: Temporary values on outputs that appear soon after
input changes, before stable new output values

Designer must determine whether glitching outputs may
pose a problem

— If so, may consider adding flip-flops to outputs
« Delays output by one clock cycle, but may be OK

+ Referred to as “pipelining the outputs”.

Digital Design
Copyright © 2006 60
Frank Vahid I—

60



Active Low Inputs

« We've assumed input action
occur when input is 1

— Some inputs are instead active
when input is 0 -- “active low”

— Shown with inversion bubble

— So to reset the shown flip-flop,
set R=0. Else, keep R=1.

Digital Design
Copyright © 2006
Frank Vahid

61

61



Chapter Summary

SR

Sequential circuits
— Have state

Created robust bit-storage device: D flip-flop
— Put several together to build register, which we used to hold state

Defined FSM formal maodel to describe seauen _t_a! behavior

SIS ol ..__ ==

— Using solid mathematical models -- Boolean equations for combinational circuit,

and FSMs for sequential circuits -- is very |mporta

Defined 5-step process to convert FSM to sequential circuit
— Controller

So now we know how to build the class of sequential circuits known as

controllers

Digital Design
Copyright © 2006
Frank Vahid

62



