ECGR 2181 - Vivado Walkthrough 1

Vivado Walkthrough
ECGR 2181 - Fall 2015

Intro

In this walkthrough we’re going to go through the process of creating a project, adding sources,
writing vhdl, simulating the design, and creating a bitsteam (as if you were going to put it on an
FPGA) of a prime number detector. Vivado can be pretty complex if you just stick with the
basics, it's pretty simple.

Creating a Project
First open Vivado. You should have something like this in front of you.
- :

ViwadE 20154 =@ x|

Search cormmands |

XILINX

ALL PROGRAMMABLE.

Eile Flow Tools window Help

V|VADO‘ Productivity. Multiplied.

Recent Projects

Quick Start
project_1
/ ‘ Y L Jhomeflarksfecor218lfcomputer_assignment_af..
= ':_\ \ _/_|? > project_1
L \ shome/larks/project_1
Create MNew Project Cpen Project Open Example Project ecgr218l_test
shornedlarks/ecarz1al_test
Tasks
o ¥
Manage IP Open Hardware Manager Yilinx Tel Store

Information Center

29 [

Documentation and Tutorials Quick Take Videos Release Motes Guide

B Tel Console

Select the “Create New Project” button.

The first window just says that it's a wizard etc and you can press next. The next window you
want to input your project name and the path to the project directory.

ECGR 2181 - Vivado Walkthrough

- W= Prefest =lo]x|
Project Name

Enter a name for your project and specify a directory where the project data files will be stored. ‘
Froject name: |prime_mumber_detector |

Project location: |fhome!|ark5fecgr2181)1 ||:|

¥ Create project subdirectory

Project will be created at: /homeylarksfecgr2181/prime_number_detectar

‘ = Back ” Mext = Cancel

I have Linux directory paths but your's should look something like this. Name your project
“prime_number_detector” and make sure you’ve enable “Create project subdirectory.”
Remember to always give your projects clear meaningful names and make sure that they're
placed somewhere meaningful. As a side note, it's generally best to not have white space in
directory or file names. In the past spaces in file names or directories has caused errors with
Xilinx tools. It's a good idea to have a ecgr2181 directory and then subdirectories in it for each
project/lab/etc like:

ecgr2181\cadl\

ecgr2181\cad2\

ecgr2181\project1\

etc...
Once you've filled out your project name and clicked next, you'll see a screen asking you about
about Project Type. You’'ll want to select “RTL Project.”

ECGR 2181 - Vivado Walkthrough 3

e Niew Project =efx
Project Type
Specify the type of project to create. '

@ RTL Project
You will be able to add sources, create block designs in IP Integrater, generate IP, run RTL analysis, synthesis, implementation,
design planning and analysis,

[Do not specify sources at this time
() Post-synthesis Project: You will be able to add sources, view device resources, run design analysis, planning and implementation,
[J Do not specify sources at this time

() K0 Planning Project
Do not specify design sources. You will be able to view part/package resources.

() Imported Project
Create a Vivado project from a Synplify, XST or ISE Project File,

() Example Project
Create a new Vivado project from a predefined template.

| = Back H Newt =]| Finish H Cancel I

After clicking selecting “RTL Project” and then next, you'll be at the “Adding Sources” screen. At
this point in time, we won't be adding sources, but you need to make sure that “ Target
language” and “ Simulator language” are both “VHDL.”

P New Praject =/a =
Add Sources

Specify HDL and netlist files, or directories containing HOL and netlist files, to add to your project. Create a new source '

file on disk and add it to your project. You can also add and create sources later,

+

Fress the = button to Add Files, Add Directories or Create File

[Scan and add RTL include files into project
[Copy sources into project

Add sources from subdirectories

Target language: |WvHDL - Simulator language: |wHDL e

< Back H Ment = “ Einish || Cancel

ECGR 2181 - Vivado Walkthrough

The next screen should be the “Adding Existing IP (optional)” screen which we can just

click next.

The screen after this this is important if you're going to be putting the design on an FPGA (which

we assume we will in this example).

For this, you'll need to go to Digilent’s website and

get the xdc file for the Basys3. It'll be in a zip file and you'll need to unzip it. | suggest
putting it in the project directory or you can also use the “Copy constraints files into project”

checkbox, either one works.

B

NEwibrejess

=" e]

Add Constraints {optional}

Constraint File | Location

“ Basys3_Masterude jhome/larksiecgr2181

[] Copy constraints files into project

Specify or create constraint files for physical and timing constraints.

= Back H Mext = “ Einish H cancel

Next you need to select the (FPGA) part the tools will be targeting. The Basys3 uses a

XC7A35T-1CPG236C FPGA.

https://www.digilentinc.com/Products/Detail.cfm?NavPath=2,400,1288&Prod=BASYS3

ECGR 2181 - Vivado Walkthrough 5

I New Broject =ex
Default Part
Choose a default Xilink part or board for your project. This can be changed later, ‘
Selact: @ Eoards
4 Filter
Product category: |General Purpose ~ Package: cpg23s ~
Earmnily: Artis-7 - Speed grade:
Sub-Farmily: Arti-7 - Temp grade:
Si Revision: All Remaining ~2
| Reset All Filters
Search: | |
Y0 Pin Available | LUT . Block GTPE2
Part | Count | I0Bs | Elements FlipFlops ‘ Rébs ‘ DSPs Transceivers | Transceivers FCle |
& 1eT7alS5tepg236-1 235 106 10400 20800 25 45 2 2 1 5
@ HeFa35tepg236-1 2328 108 20800 41800 50 a0 2 2 1 S
@ 1cT7a50tcpg236-1 238 108 32600 65200 73 120 2 2 1 3
[41 [l
| <Back || met= || Enish | [cancel |

After selecting the right part, click next and that should bring you to a summary window.

£ New Project BB

MNew Project Summary

P
V|VADO (@ A new RTL project named 'prime_number_detector' will be crested.

A Mo source files or directories will be added, Use Add Sources to add them later.
M Mo Configurahble IF files will be added. Use Add Sources to add them later.
@ 1 constraints file will be added.

@ The default part and product family for the new project:
Default Part: xc7535tcpg238-1
Product: Artix-7
Farnily: Artix-7
Package: cpg236
Speed Grade: -1

XILINX

S L To create the project, click Finish

=< Back “ Mext = |[Einish || Cancel

Then you're done setting up your new project! Now for the fun stuff.
Vivado Interface Overview

ECGR 2181 - Vivado Walkthrough 6

So now that the project is set up, let’'s look at the Vivado interface some.

i e A T e e L e L T T B T e T =Ex]
File Edit Flow Tools Window Layout View Help Search commands]
] PR SH&X LS g Default Layout . | D Ready
Flow Navigat ol « Project Manager - prime_number_detector X
Q== —Ow = Z Project Summary x [mERY

Q, =8 e | my ok | B P =]

4 Project Manager N L ‘:4 Project Settings —

Design Sources = . .
3 Project Settings Constraints (1) Project name: prime_number_detector
04?’, Add Sources = Simulation Sources Project location: fhorneflarks/ecgr2181/prime_nurnber_detector
¥ Language Templates —sim_1 Praduct family: Artin-7
iF IP Catalog Froject part: He7a35tepg2as-1
Top module name: Mot defined
4 |P Integrator
= N H
Create Block Design Synthesis A2 Implementation
- y Status: Mot started Status:
Hierarchy Libraries Compile Order Messages: No errors or warnings Messages:
o o | Fart: xc7a35tcpg23s-1 Part:
A S & Sources ¥ Templates -)
Strategy: Vivado Synthesis Defaults Strategy:
" : s ~
{?‘; Simulation Settings Properties - o= Incremental compile:
() Run Simulation
4 RTL Analysis
5 Elaboration Settings DRC Violations 4 Timing
2
© [% Open Elaborated Design Bun Implementation to see DRC results Eun Implement]
Select an object to see properties
4 Synthesis
Utilization % Power -

% Synthesis Settings

Run synthesis rﬁmmmm_mmgmm_] Fun Imn\emeﬁg

4 Implementation s gnIRhnG =0 =
G)) =} Hame | constraints | Status | Progress | whS | TMS [wHS | THS | TPWS | Failed Ruol
5 Implementation Settings = §-= synith_1 constrs_1 Mat started %
[» Run Implementation :j L= impl 1 constrs_1 Mot started 0%
] =]

4 Program and Debug
&% Bitstreamn Settings
oﬂ Generate Bitstream
@® Open Hardware Manager .:$

K] 0|

N 2 Tel Console . © Messagesfj B Log 2 Reports 3 Design Runs

There’s a couple of key things we need to note:
e Flow Navigator
e Sources
e Tcl Console and Messages
[J

In the Flow Navigator, we’ll mostly be using: Add Sources, Simulation and Generate Bitstream.
There’s a lot of intermediate steps, but those are the main ones that we’'ll be using. | would like
to note that Synthesizing a design can help catch errors that aren’t syntax related (like libraries
missing etc).

In the sources section, | don't think you’ll ever need to switch away from the sources tab or the
hierarchy sub tab. It's a pretty good way to look at the code and see how multiple source files
are related.

The Tcl Console and Messages are good for figuring out what went wrong. Depending on the
error I've found useful information in either/or.

ECGR 2181 - Vivado Walkthrough 7

As a note, if there’'s something you'd prefer to change with Xilinx’s built in editor you can access
that via “tools” -> “options” in the “general” left vertical tab. There’s the “Shortcuts” tab, which
you can view/edit shorts for the editor and various other parts of Vivado. (Just an FYI)

We'll learn more about some of the interfaces as we use them in our project.

Writing VHDL/Implementation
Now that we've had a short intro the interface, let’s start using it.

First we need to figure which FPGA pins we're using for the top level VHDL file. The
constraint file will be in the Source section under “Constraints (1)” -> “constrs_1 (1)".
Double click on it to open the file.

Sources R E S

M A
A2 e

1 Design Sources
= Constraints (1)
@-{>constrs_1 (1)

Lf5 Basys3_Master.xdc
= Simulation Sources
L =sim_1

Hierarchy Libraries Compile Order

& Sources | ¥ Templates

In the xdc file, there’s a section for the clock, switches, leds, etc. We want to uncomment the
first 4 switches (0 through 3) and the first led (0). Afterwards the file should look like:

ECGR 2181 - Vivado Walkthrough 8

13
11 ## Switches
12 set_property PACKAGE_PIN V17 [get_ports {sw[0]}]

13 set_property IOSTAMDARD LVCMOS33 [get_ports {sw[0]}]
14 set_property PACKAGE FIN V16 [get_ports {sw[1]}]
15 set_property IOSTAMDARD LVCMOS33 [get_ports {sw[1]}]

16 set_property PACKAGE_PIM W16 [get_ports {sw[2]}]

17 set_property IOSTAMDARD LVCMOS33 [get_ports {sw[2]}]

18 set_property PACKAGE_PIN W17 [get_ports {sw[3]}]

19 set_property IOSTAWDARD LVCMOS33 [get_ports {sw[311]

20 #set_property PACKAGE PIN W15 [get ports {sw{d]}]
#set_property IDSTANDARD LVEMDS33 [get_ports {swidl}]

22 #set_property PACKAGE_PIN V15 [get_ports {sw(5]}]
#set_property IOSTANDARD LVEMIS33 [get_ports {sw(5]}]

24 #set_property PACKAGE_PIN Wid [get_ports {swiél}]

25 #set_property IOSTANDARD LVOMOS33 [get_ports {sw(e]}]

26 #set_property PACKAGE_PIN W13 [get_ports {sw(7]}]

27 #set_property TOSTANDARD LVCMIS33 [get_ports {swi7i}]
2B #set_property PACKAGE_PIN V2 [get_ports {swi81}]
29 #3et_property TOSTANDARD LVCMIS33 [get_ports {swi&]}]

30 #set_property PATKAGE PIN T3 [get ports {swid]}]
31 #set_property IOSTANDARD LVEMDS33 [get_ports {sw(91}]
32 #set_property PACKAGE_PIN 72 [get_ports fswi1@]}]
#set_property TOSTANDARD [VEMIS33 [get_ports {swiig]}]
34 #eet_property PACKAGE_PIN RZ [get_ports {swilll}]
#set_property IDSTANDARD LVEMOS3Z [get_ports {swi21]}]
36 #set_property PACKAGE PIN W2 [aet_ports fswi12]}]
#set_property TOSTANDARD LVEMOS3S [get_ports {swi12]}]
3B #set_property PACKAGE_PIN U1 [wet_ports {swii3l}]
#set_property IOSTANDARD LVOMIS33 [get_ports {swi23]}]
40 #set_property PACKAGE_PIN T1 [get_ports {swildj}]

41 #set_property IDSTANDARD LVEMDSSS [get_ports {sw{i4]}]
A2 #set_property PACKAGE_PIN R2 [get_ports fswi15]}]

43 #set_property IOSTANDARD LVEMOS33 [get_ports {swi15]}]
44

45

A5 #4# LEDS

4? set_property PACKAGE_PIN U165 [get_ports {led[&]}]

set_property IOSTAWDARD LWCMOS3Z [get_ports {led[0]]]
49 #set_property PACKAGE PIN E19 [get_ports {ledi1]}]
50 #set_property TOSTANDARD LVOMIS33 [get_ports {ledii]}]

We could change the names from sw and led but they suit our purposes. In the top level VHDL
file they'll be “sw: in std_logic_vector(3 downto 0);” and “led: out std_logic_vector(0 downto 0)”.
Since we know our ports, let’s create a VHDL file. Normally you don’t use a vector/bus for a 1
bit value, but since led was part of a bus in this cause, we're just using one bit of that bus.

your own designs just use “std_logic” rather that “std_logic_vector (O downto 0)".

In the “Flow Navigator” Panel, click the “Add Sources” button. You’ll want to select
“Add or create design sources” in the “Add Sources” window.

B AddScurcee. =a]x]

Add Sources

Vl\//ADO‘ This guides you through the process of adding and creating sources for your project

O Add or create constraints

@ Add or create design sources

(O Add or create simulation sources
O ~dd or create DSP sources

O add existing block design sources

O Add gxisting IP

XILINX

ALL FROGRAMVABLE.

To continue, click Mext

=Back |[_next> | Enish | [cancel

After that you'll see the “Add or Create Design Source” window. There’s a green plus symbol
which will create a pop up and then select “ Create File...”

ECGR 2181 - Vivado Walkthrough

Add or Create Design Sources

Specify HDL and netlist files, or directories containing HOL and netlist files, to add to your project. Create a new source file on disk '
and add it to your project.

Add Files...
~dd Directaories...
Create File...

“-= 1+

Fress the = button to Add Files, Add Directories or Create File

[Scan and add RTL include files into project
[copy sources into project

Add sources from subdirectories

- Back “ Hewxt = H Finish ‘ I Cancel
Input your VHDL file name and click ok.
B Add Scurces —o=
Add or Create Design Sources
Specify HDL and netlist files, or directories containing HOL and netlist files, te add to your project. Create a new source file on disk '
and add it to your project.
+
1+
+

Create a new source file and add it to

wyour project, ‘

Freq Eile type: ‘@ WHDL i | pate File
File name: [top| |
File location: ‘63 =<Local to Project= - |

——

[0 Sean and add RTL include files into project
[copy sources into project
Add sources from subdirectories

= Back H Hext = H FEinish |{ Cancel

It should look like:

ECGR 2181 - Vivado Walkthrough

B Add Sourczs =]a]x]
Add or Create Design Sources

Specify HOL and netlist files, or directories containing HOL and netlist files, to add to your project. Create a new source file on disk ‘
and add it to your project.

| indexx | wame | Ubrary | Location |

+ @ 1 top.whd xil_defaultlb =Local to Project=
t
+

[Scan and add RTL include files into project
[Copy sources into project
[F Add sources from subdirectories

< Back H Mext = H Einish JH cancel |

Since we know that sw will be a 4 bit wide bus and led will be a 0 bit wide bus, we put that
into the VHDL “Module Definition” that is next.

& Defirme Modulk

Cl=1E]

Define a module and specify Y0 Ports to add to your source file.
For each port specified:

MSE and LSB values will be ignored unless its Bus column is checked, ‘
Ports with blank narmes will not be written,

Module Definition

Eritity name: [top

Architecture name: |Elehaviora|
If0 Port Definitions
o= ___Fort Name | Direction | Bus | MSE | LSE |

|
sy in -] & 3]
= led out -] &]]
1 in - O
¥ in - O

|| OK H | Cancel

Click ok and you’ll have a vhdl source file in your “Sources” panel.

ECGR 2181 - Vivado Walkthrough
11

I
X

Sources —

CTIEr:
= Design Sources (1)
L #iatop - Behavioral (top.vhd)
= Congtraints (1)
@ constrs_1 (1)
Ly Basys3_Masterdc
= Simulation Sources (1)

@= sim_1 (1)

Hierarchy Libraries Compile Order

£ Sources | ¥ Templates

Now we need to write some VHDL. Since we have a 4 bit input, that means our input range is
0 to 15. The prime numbers in that range are: 2, 3, 5, 7, 9, 11, 13. So the output (led(0))
needs to be higher when the input is equal to those.

The VHDL file from the entity down (excluding the libraries) is:

3dentity top 1s
35 Port { sw @ in STD_LOGIC_VECTOR (3 downto G);

36 led : out STD_LOGIC_WECTOR (O downto ©3);

37end top;

38

39 architecture Behavioral of top 1is

40|

41 begin

42

43 led(0] ==

44 '1' when (sw = "0010") else -2
45 '1' when (sw = "0011"]) else -3
46 '1' when (sw = "0101") else -5

47 ‘1" when (sw = "0111") else -7
42 ‘1" when (sw = "1001") else - g
49 ‘1" when (sw = "1011") else - 11
50 ‘1" when (sw = "1101") else - 13
21 BLCA

22

53 end Behavioral;

I run the synthesis tool (in the “Flow Navigator” as “Run Synthesis”) after this to make sure there
weren’t any errors in the code.

Creating a Testbench

Test benches are extremely using for debugging circuit logic. Hardware isn't like software
where you can easily run a debugger while it runs, so logic that isn’t depending on complex /O,
simulation can useful for testing. Although if you don't use the idioms and try to be “creative”
the simulation results can differ from implementation results (aka what gets loaded to the
FPGA). Just a note that simulation isn’t the final test, running it on the FPGA is.

ECGR 2181 - Vivado Walkthrough

First click on “Add sources” and select “Add or create simulation source.”

el Saureee

Add Sources

VlVADO‘ This guides you through the process of adding and creating sources for your preject

O Add or create constraints

O Add or create design sources

@ Add or create gimulation sources
O Add or create DSP sources

© Add existing block design sources

O Add existing IP

AL PROGRAMMABLE~

To continue, click MNext

[=Back |[_mest> |[Finish | [cancel |

Just like adding a source file, you need to click the green plus symbol and select “Create
File...” on the “Create Simulation Sources” window.

B RelE|Satrees))
Add or Create Simulation Sources

Specify simulation specific HOL files, or directories containing HOL files, to add to your project. Create a new source file on disk and '
add it to your project.

Specify simulation set: | sim_1

Add Files...
Add Directories...
Create File...

“-s 1

Press the < button to Add Files, Add Directories or Create File

[Scan and add RTL include files into project
[copy sources into project
[#] Add sources from subdirectories

Include all design sources for simulation

= Back]‘ Mext > || Einish H Cancel

Then input “top_tb”, make sure the file type is VHDL and then hit ok.

ECGR 2181 - Vivado Walkthrough

I Greste Source File Cl=1E]
Create a new source file and add it to

wour project. ‘
File type: [wHDL - |
File name: [top_th |
FHgIocaHon:|o-ﬂLocaItoPrMEct> v|

l QK]| Cancel J

After creating the VHDL file it should look like:

& Add Sourcee)

\='a

Add or Create Simulation Sources
Specify simulation specific HOL files, or directories containing HOL files, to add to your project, Create a new source file on disk and
add it to your project.

Specify simulation set: |:. sim_1 = ‘

+ Index | Name | | Location
4@ 1

ibrary
top_tb.wvhd wil_defaultlib =Local to Project=>

[Scan and add RTL include files into project
[Copy sources into project
9] £dd sources from subdirectories

[Include all design sources for simulation

/

<pack | ned = | Finish

| [_cancel |

13

Select Finish and then after that the “Module Definition” window will pop up. You don’t want to
add anything here. With test benches, the goal is to exercise a component and doesn’t have
anything to do with signals going in or out of the test bench entity. If a test bench had input
ports you need another test bench to drive that test bench... So leave these blank and hit Ok.

ECGR 2181 - Vivado Walkthrough
14

£ Define ModhlE HEH

Cefine a module and specify V0 Ports to add to your source file,

For each port specified:
MSBE and LSE values will be ignored unless its Bus column is checked. ‘
Ports with blank names will not be written,

Module Definition

Entity narne: |t0p_tb |

Architecture name: |Elehauiora| |

If0 Port Definitions

4= PortMame | Direction | Bus | MSB | LSE | |
in [~ O

|, Ok] | Cancel

Afterwards your source windows should have the top.vhd and the top_tb.vhd.

la
*

Sources — 0O
A= |2ef| B
= Design Sources (1)
Lsistop - Behavioral (top.uhd)
= Constraints (1)
&= constrs_1 (1)
L5 Basys3_Masterxdc
= Simulation Sources (2]
@ sim_1 (2]
I:._-_h-.'.tup - Behavioral (top.vhd]
Whikop_th - Behavioral {top_th.whd)

Hierarchy Libraries Cormpile Order

£ Sources ¥ Templates

Open the top_tb VHDL file. It should be pretty barren. You'll want to add a component
definition for top and add signals internal to the test bench. The internal signals would be sw
and led, but also a counter signal. The reason for this is that a counter for n bits will go through
all 2n iterations of the n bits exercising all possibilities of n bits. Since we’re using unsigned
signals we needs to uncomment line 27 (*use IEEE.NUMERIC_STD.ALL;"). Then after tying
the signals together, the architecture should look like:

ECGR 2181 - Vivado Walkthrough

15
3Zarchitecture Behavioral of top_tb is
29
40 component top
41 Part
42 sw : 1n STD_LOGIC VECTOR (3 downto O);
43 led : out STD LOGIC VECTOR (0 downto O)
44 I
45 end component;
46
47 --signals internal to the test hench
45 signal sw: std logic wector (3 downto G);
49 signal led: std logic_vector (O downto 0};:
30
51 --counter used to provide input to the swiiches
52 signal counter: unsignedi(3 downto Q) :="'0000";
53
54 begin
35
56 uut: top port map (
37 SwWo == SW,
58 led == led
59 I
G0
51 --since VHOL ig strongly typed we need to convert
52 --unsigoed to std logic wecter
53 sw <= std logic vector{counter);
G4
85 --Counter process
56 --warning: will NOT work in hardware
57 th: process
55 begin
fsie] walt for 20ns;
70 counter == counter + 1;
71 end process tb;
72

Faend Behawinral:

Running The Testbench

Now for the easy part, running it all. All you need to do is on the “Flow Navigator” panel
select “Run Simulation” and when the menu pops up select “Run Behavioral
Simulation.” That should start up the simulator. Initially it should be really zoomed in so you'll
need to zoom out a fair bit to see something reasonable. Another thing that might be helpful is
to change the radix of the sw bus. All you have to do is right click on the signal where it has
“Name” and “Value”, (see picture to get a better idea) and then select “Radix” and then
“unsigned decimal.” It should look something like:

o B cou....0]| 0000

As you can see, the circuit works as aspected. When the switches form a prime number the
LED goes high. Sadly Vivado doesn’'t have a way to print waveforms so you have to take a
screenshot of it to include it in a report/document/etc.

ECGR 2181 - Vivado Walkthrough
16

If there’s a more complex circuit or multiple VHDL files, you can go into the scope panel and
add those signals to the waveform.

Creating the Bitstream
To create the bitstream simple go to the “Flow Navigator” panel and select “Generate Bitstream”
under the “Program and Debug” section.

Programming the FPGA
| haven't yet gotten a Basys3 so | can’t say for certain if you need to DL the Digilent Adept
software/drivers to program the FPGA but once | acquire one this section will be updated.

