Concepts Language Idioms Writing VHDL

Basic VHDL for FPGA Design
Minimal Getting Started Guide

Brian Woods

University of North Carolina at Charlotte

(Standalone Lecture)

NI/4

UNC CHARLOTTE

Fixed Point

1/50

Concepts Language Idioms Writing VHDL Fixed Point

Concepts

*
“\’711 2/50

UNC CHARLOTTE

Concepts

VHDL for FPGA Design

@ Quick introduction to language for FPGA design
@ This does NOT...

e describe the whole language
@ describe all of its uses
@ discuss simulation

@ Just the minimum to write your first FPGA core

L

N7

UNC CHARLOTTE

/

3/50

Concepts

VHDL

@ VHDL is a Hardware Description Language (HDL)
@ Lots of others exist...
e Verilog
SystemC
SystemVerilog
BlueSpec
JHDL

N4

NC - 4/50
UNC CHARLOTTE

Concepts

VHDL Basics

VHDL is NOT a software language

VHDL is NOT a software language

Not all legal VHDL can be synthesized, only a subset
Verbose and strongly typed

Statements are parallel with the exception of inside processes
Looks a lot like ADA ... but that probably doesn’t help you

N4

. - 5/ 50
UNC CHARLOTTE

Concepts Language Idioms Writing VHDL Fixed Point
Terms
@ | entity |— interface of a hardware building block
@ | top-level entity |— blocks are organized in a hierarchy with the top-level

being the root

<

N

UNC CHARLOTTE

Keep Hierarchy Diagram
NGC FILE 1 (10)

0

12 KEEP HIERARCHY YES 12

15

14

6/ 50

Concepts

Terms

@ | architecture — used to describe the behavior of an entity

@ | configuration |— there can be more than one architecture per entity; a

@ | package

N4

UNC CHARLOTTE

configuration binds one an component instance to an entity-architecture pair

— a collection of data types and function/procedure

7/ 50

Concepts

Libraries

@ Entity, architectures, and packages are compilable units in VHDL
@ Alibrary is a storage location for compiled units

@ Libraries explicitly creates a namespace for compiled units
the use command imports the namespace

@ If you don'’t specify a library; the default is called work

N4

N - 8/50
UNC CHARLOTTE

Concepts

Constraints

@ Top-level entities usually have inputs and outputs; i.e.
e clock
@ reset
e application inputs
e application outputs

@ Constraints are used for a lot of things, but first, we use them to associate
top-level I/O with external pins on FPGA chip

N4

NC - 9/ 50
UNC CHARLOTTE

Concepts

@ | data flow

Coding Styles

— assignment statements

@ | structural

— instantiate components

@ | behavioral

— sequential semantics describes what the hardware should

do

N4

UNC CHARLOTTE

10/ 50

Concepts Language Idioms

Data Flow Example

nl <= (al and bl) or cl;
ml <= (cl or dl) and al;
z1l <= nl or not (ml);

<

N

UNC CHARLOTTE

Writing VHDL

Fixed Point

11/50

Concepts

instl:
inst2:
inst3:

<

N

UNC CHARLOTTE

Language Idioms Writing VHDL Fixed Point

Stuctural Example

compl port map (a_internal => a_externall, b => bl, ¢ => cl);
compl port map(a_internal => a_external2, b => b2, c => c2);
combine port map(cl => cl, c2 => c2, outl => outl);

12/ 50

Concepts Language
outl <=
"0001" when
"0010" when
"0100" when
"1000";
*
\z

UNC CHARLOTTE

(inl
(inl
(inl

Idioms Writing VHDL

Behavioral Example

"00") else
"01l") else
= "10") else

Fixed Point

13/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Language

*
“\"l 14/50

UNC CHARLOTTE

Language

Language Basics

@ Lexigraphical symbols include
o Keywords (ARCHITECTURE, IF, PORT, etc.)
o Literals (0,1, 2,’Z’,"1010")
e Operators (+, —, AND, <=)
e Whitespace (space, tab, newline)

@ VHDL is NOT case sensitive but probably should be!

L

A1/ 4 15/ 50

UNC CHARLOTTE

/

Concepts Language Idioms Writing VHDL

Typical File

library ieee;
use ieee.std_logic_1164.all;

entity fsm_2 is
port (clk, reset, x1 : IN std_logic;
outp : OUT std_logic);
end entity;

architecture behl of fsm 2 is
variables
signals
component declaration
begin
assignments
instantiations
processes
end behl;

NI/4

UNC CHARLOTTE

Fixed Point

16/ 50

Language

@ | signals

More Terms

e only one driver per signal
e used with assignment statement <=

@ Conventional language constructs

N4

UNC CHARLOTTE

variables

assignment

if/then/else |-

when/else

— define wires in a design

case

functions |and

procedures

for-loop

17/ 50

Language

HDL Specific

inside an architecture begin/end
@ ’'Event — true when signal changes
<= — parallel assignment

Process begin/end — creates sequentially interpreted block of code

°®
@ name : comp — creates an instance of comp named name
Q®
@ Sensitivity list

*
iv; 18/ 50

UNC CHARLOTTE

Concepts Language Idioms Writing VHDL

if then else example

ifexample: process (inl, in2)
begin
if (inl="1’ and in2="1’) then
outl <= '0';
elsif (inl=’1’ or in2=’'1’) then
outl <= "1";
else
outl <= '0';
end if;
end process ifexample;

<

N

UNC CHARLOTTE

Fixed Point

19/ 50

Concepts Language Idioms Writing VHDL

When Else Example

outl <= "01" when (inl=’'1’ and in2=’'1') else
"01l" when (inl="1’" and in2='0’) else
"10" when (inl="0’ and in2="1') else
llOOll;

NI/4

UNC CHARLOTTE

Fixed Point

20/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Case Example

caseexample:process (in3bit)

begin
case int3bit is
when "001" => outl <= "1’";
when "010" => outl <= '1';
when "100" => outl <= "1’";

when others => outl <= '0’;
end case;
end process caseexample;

<

gvz 21/50

UNC CHARLOTTE

Concepts Language

For (Generate) Example

—— for generates need to be named
addergen: for i in 0 to 3 generate

begin
nbitadder: adder port map (
in0 => a(i),
inl => b(i),
cin => carry(i),

out => y(0),
cout => carry(i+l)
)i
end generate addergen;
carry (0) <= cin;
cout = carry(3+1);

<

N

UNC CHARLOTTE

Fixed Point

22/ 50

Language

Components and Instantiation

@ Way to use other entities/architectures

@ Must declare a component before instantiation
@ Declare a component and instantiation in the architecture

e Component goes before the begin
e Instantiation goes after

@ Can instantiate it multiple time
@ Each instantiation must have a unique name

L

N7

UNC CHARLOTTE

/

23/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Component/Instantiation Example

architecture example of slides
component adder is
port (in0, inl, cin: in std_logic;
out, cout: out std_logic)
end component;

begin
adderl: adder port map (
in0 => a,
inl => Db,
cin => cin,
out =>vy,

cout => cout
)

end example;

<

“\’7" 24/ 50

UNC CHARLOTTE

Concepts Language Idioms Writing VHDL Fixed Point

Idioms

<

“\’7" 25/ 50

UNC CHARLOTTE

Idioms

Coding Idioms

@ If you write behavioral code using idioms or templates, the synthesis tool will
infer macros or optimized netlists for the technology
@ For example,

e a small code change, big change in hardware
e resulting code uses resources more efficiently

*
iv; 26/ 50

UNC CHARLOTTE

Concepts Language Idioms Writing VHDL Fixed Point

Three-Input AND Gate

library ieee;
use ieee.std_logic_1164.all;
entity and_3 1is

port(X, Y, Z : in std_logic; X
F : out std_logic); Y F

end and_3; bd
architecture imp of and_1 is
begin

FF <= X AND Y AND Z;
end imp;

*
NIz 27/ 50

UNC CHARLOTTE

Concepts Language Idioms Writing VHDL Fixed Point

Flip-Flop With Positive-Edge Clock

library ieee;
use ieee.std_logic_1164.all;
entity registers_1 is
port(C, D : in std_logic;
Q : out std_logic); D FD Q
end registers_1;
architecture archi of registers_1 is
begin C
process (C) >
begin
if (C’event and C=’1’) then
Q <= D;
end if;
end process;
end archi;

EITiA

L 4

“\’7" 28/ 50

UNC CHARLOTTE

Concepts Language Idioms Writing VHDL

FF W/Neg-Edge CLK and Async RST

library ieee;
use ieee.std_logic_1164.all;
entity registers_2 is

port (C, D, CLR : in std_logic;

0 : out std_logic);
end registers_2; D FDC_1 Q
architecture archi of registers_2 is T e
begin c
process (C, CLR) O
begin
if(CLR = "1’)then CLR
Q <= "'0"; o
elsif (C’event and C='"0’)then
Q <= D;
end if;

end process;
end archi;

NI/4

UNC CHARLOTTE

Fixed Point

29/ 50

Concepts Language Idioms
4-Bit Register
library ieee; use ieee.std_logic_1164.all;
entity registers_5 is
port (C, CE, PRE : in std_logic;
D : in std_logic_vector (3 downto 0);
0 : out std_logic_vector (3 downto 0)
end registers_5;
architecture archi of registers_5 is
begin
process (C, PRE)
begin
if (PRE=’1’) then

Q <= "1111";
elsif (C’event and C="1’")then
if (CE="1’) then
Q <= D;
end if;
end if;
*cnd process;

m;é;\x@%chi;

Writing VHDL

SR
m

FDPE

o

x3FH

Fixed Point

30/ 50

Language Idioms Writing VHDL Fixed Point

4-to-1 1b MUX

library ieee; use ieee.std_logic_1164.all;
entity multiplexers_1 is
port (a, b, ¢, d : in std_logic;
s : in std_logic_vector (1 downto 0);
o : out std_logic);

Concepts

end multiplexers_1;
architecture archi of multiplexers_1 is

begin
process (a, b, ¢, d, s)
begin
if (s = "00") then o <= aj;
elsif (s = "01") then o <= b;
elsif (s = "10") then o <= c; / s
else o <= d;
end if;

end process;
end archi;

*
“\’7" 31/50

UNC CHARLOTTE

Concepts Language Idioms Writing VHDL

State Machines
@ In theory, composed of
e next state combinational function
o state memory (FF or RAM)
e output combinational function
@ Moore-type: outputs only depend on current state
@ Mealy-type: outputs depends on inputs and state

RESET—
MNext State Output - Outp
State Register - Function uts
Inputs —&——= i
pu Function CLOCK
Only for Mealy Machine

NI/4

UNC CHARLOTTE

Fixed Point

32/ 50

Concepts Language Idioms Writing VHDL

State Machines

@ With VHDL, can be coded with...
@ one process — compact but error prone
e two processes — probably best choice
o three processes — longer not necessarily clearer

@ Example:
RESET

outp='1"

x1

outp='"1' outp="0'

NI/4

UNC CHARLOTTE

Fixed Point

33/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Two Process State Machine

library ieee; use ieee.std_logic_1l164.all;
entity fsm_2 is

port (clk, reset, x1 : IN std_logic;

outp : OUT std_logic);

end entity;
architecture behl of fsm 2 is

type state_type is (sl,s2,s3,s4);

signal state, next_state: state_type ;

Only for Maaly Machine

begin PROCESS 1 PROCESS2 -

process 1 (next slide)
process 2 (slide after next)

end behl;

L 4

“\’7" 34/ 50

UNC CHARLOTTE

Concepts Language Idioms Writing VHDL

Process1

processl: process (clk,reset)
begin
if (reset =’1’) then state <=sl1;
elsif (clk=’1l’ and clk’Event) then
case state is
when sl =>
if x1="1' then
state <= s2;
else
state <= s3;
end if;
when s2 => state <= s4;
when s3 => state <= s4;
when s4 => state <= sl;
end case;
end if;
end process processl;

<

N

UNC CHARLOTTE

Fixed Point

35/ 50

Concepts

process?2
begin
case state is

when
when
when
when

sl
s2
s3
s4

end case;
end process

<

N

UNC CHARLOTTE

Language

process (state)

=> outp <
=> outp <
=> outp <
=> outp <

process2;

rqr
r1r
/OI
ror

~e N

Idioms

Process?

Writing VHDL

Fixed Point

36/ 50

Concepts Language

processl
begin
case state is
when sl =>
if x1=’'1" then;
next_state <= s2;
else
next_state <= s3;
end if;
outp <= ’'17;
when s2 =>
next_state <= s4;
outp <= '1’;
when s3 =>
next_state <= s4;
outp <= '0’;
when s4 =>
next_state <= sl;
outp <= '0’;
end case;
¢ end process processl;
Wz

UNC CHARLOTTE

process (state,

x1)

Idioms

Process1 Ver 2

Writing VHDL

Fixed Point

37/ 50

Concepts Language Idioms Writing VHDL

Process?2 Ver 2

process2: process (clk,reset)
begin
if (reset ='1") then;
state <= sl;
elsif (clk='"1’ and clk’Event) then
state <= next_state;
end if;
end process process2;

<

N

UNC CHARLOTTE

Fixed Point

38/ 50

Idioms

State Machines Options

@ Lots of possible implementations that are controlled with constraints
e state: what kind of memory
e next state: what kind of encoding
@ Synthesizer will “guess” but designer might need to provide hints (speed
versus space, etc.)

L

{\’7" 39/ 50

UNC CHARLOTTE

/

Idioms

Other Inferred Macros

@ Decoders, Priority Decoders

@ Counters, Accumulators

@ Various Shift Registers

o Tristate Gates

@ Adders/Subtractors/Comparators
@ Pipelined Multipliers/Dividers

@ RAMs and ROMs

*
“\’71' 40/ 50

UNC CHARLOTTE

Writing VHDL

Writing VHDL

*
iv; 41/50

UNC CHARLOTTE

Writing VHDL

Before Writing

@ Does the design need to be partitioned?
@ Best to keep it conceptually simple per entity
@ Once simplified enough, visual the hardware

@ How can VHDL make realizing that easier?

o For generates
o Buses/arrays
e etc

@ How to write/structure it where it’s easily readable and reusable

§\ ’2 42/50

UNC CHARLOTTE

Writing VHDL

Writing

@ Assign ports

@ Start with skeleton comments

@ Fillout code

@ Use of idioms

@ Periodically save and check syntax

L

{\’7" 43/ 50

UNC CHARLOTTE

/

Concepts Language Idioms Writing VHDL Fixed Point

Writing Example

—-—-carry out, high when all three inputs are high
- or two are high
co <= (a and b) or (a and ci) or (b and ci);

—— output, high when 1 or 3 inputs are high
o <= a xor b xor cij;

*
Wz 44/50

UNC CHARLOTTE

Writing VHDL

Testbenches

@ Used to exercise circuit for debugging/testing
@ Should go through a reasonable amount of cases
@ Extremely useful in large systems

@ Make sure to write hardware synthesizable VHDL, other wise simulation and
implementation results could differ

*
iv; 45/ 50

UNC CHARLOTTE

Writing VHDL

Writing a Testbench

@ First initize any registers in the test bench
@ Decide how to best cycle through the input values
@ Determine what internal signals are needed

@ Write some form of process(es) that cycle the inputs
@ Determining time increments

e for combinational systems, wait for statements
o for clocked systems, use the clock

46/ 50

Fixed Point

Fixed Point

47/ 50

Fixed Point

Fixed Point Arithmetic

@ Assume 12.4 means 12 bits before the binary point and 4 after
@ Multiplication
o Is additive on each side
32x32 =64
16x8 =24
126+x4.4 =16.10
16 x 8.8 =24.8
(16%28) % 8.8 = (16 % 8.8) 28 = 24.8 % 28 = 32

L

N7

UNC CHARLOTTE

/

48/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Fixed Point Arithmetic

@ Assume 12.4 means 12 bits before the binary point and 4 after
@ Addition

Add one in general

32+32=233

16+88=17.8

16.0 + 0.16(positiveonly) = 16.16
16.0+1.16 =17.16

L

N

~ 49/ 50
UNC CHARLOTTE

Concepts Language Idioms Writing VHDL Fixed Point

Further Reading

@ Xilinx http:
//www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/xst.pdf

@ Synth Works math tricks
http://www.synthworks.com/papers/vhdl_math_tricks_mapld_2003.pdf

@ VHDL: Program by Example Douglas Perry 4th
@ Designers Guide Peter Ashendon

@ Krzysztof Kuchcinski
http://fileadmin.cs.lth.se/cs/Education/EDAN15/Lectures/Lectured.pdf

@ Xilinx ftp://ftp.xilinx.com/pub/documentation/misc/examples_v9.zip

NI/4

~ 50/ 50
UNC CHARLOTTE

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/xst.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/xst.pdf
http://www.synthworks.com/papers/vhdl_math_tricks_mapld_2003.pdf
http://fileadmin.cs.lth.se/cs/Education/EDAN15/Lectures/Lecture4.pdf
ftp://ftp.xilinx.com/pub/documentation/misc/examples_v9.zip

	Concepts
	Language
	Idioms
	Writing VHDL
	Fixed Point

