Digital Design

with RTL Design, VHDL, and Verilog

Digital Design

Chapter 6:
Optimizations and Tradeoffs

Slides to accompany the textbook Digital Design, with RTL Design, VHDL,
and Verilog, 2nd Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2010.
http://www.ddvahid.com

Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.ddvahid.com
http://www.ddvahid.com
http://www.novapdf.com

Karnaugh Maps for Two-Level Size Optimization

 Easy to miss possible opportunities to
combine terms when doing algebraically

« Karnaugh Maps (K-maps)
— Graphical method to help us find
opportunities to combine terms

— Minterms differing in one variable are adjacent
in the map

— Can clearly see opportunities to combine
terms — look for adjacent 1s
* For F, clearly two opportunities
» Top left circle is shorthand for:
XYy'zZ'+Xy'z =Xy (z+z) = Xy'(1) = XY’
« Draw circle, write term that has all the literals
except the one that changes in the circle

— Circle xy, x=1 & y=1 in both cells of the circle,
but z changes (z=1 in one cell, 0 in the other)

 Minimized function: OR the final terms

Digital Design 2e . .
§ Copyright © 2010 Easier than algebraically:
m Frank Vahid

—/—V

yz Notice not in binary order
X 00 01 11 10
0 [xXyz' |xyz | Xyz |XyZ K-map
Xy'z' |xy'z | xyz | XyzZ' ’

Treat left & right as adjacent too

F= x’y’z +Xxyz + xyz’ +)g’y’z’

F=xy*1l +xy*1

F=xy+Xxy

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

yz y P
X 00 . 0+% 11 % 10
0 1“7 71 [Lo |ho i
~q N
1 0 0 1 1
F_ yz
X 00 01 11 10
0 1|1) o 0)
1 0 0 1 1
— 1) 1/]
F=Xy +Xxy Xy Xy
F=Xxyz + xyz’'+ Xy'z’ + Xy’z
F=xy(z+2)+Xxy(z+72) 7

http://www.novapdf.com

K-maps
 Four adjacent 1s means
two variables can be
eliminated

— Makes intuitive sense — those
two variables appear in all
combinations, so one term
must be true

— Draw one big circle —
shorthand for the algebraic
transformations above

Digital Design 2e

G =Xy'z' + Xy'z + Xyz + XyzZ’
G =x(y'z+ y'z +yz + yz') (must be true)
G =x(y'(z'+z) + y(z+Z'))

G = Xx(y'+y)
G=xX
G yz
X 00 01 11 10
1 1 1 1 1
X
G yz
Draw the biggest © 01 11 10
circle possible, or o|lo|o|o0o|oO
you’ll have more terms
than really needed HED CHE
Y8

¥ Copyright © 2010
- Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

K-maps

B
* Four adjacent cells can be In H=XYyz+XYyz +Xy'z + xyz
Shape of a square ANQL (xy appears in all combinations)

X
e OK o cover a 1 twice \ 0 o1 ﬁ 10

. . 0| o0 0
— Just like duplicating a term |
 Remember,c+d=c+d+d y 0 [2

e No need to cover 1s more than
once

— Yields extra terms — not minimized

7
\ oo |l1|lo]|oO

1 0

J yZ X’y’ y’Z 1 1 i./ 1 1
X
X 00 / 01/ 11 10 The two circles are shorthand for:
117X | =XY'z +Xy'Z' + Xy'z + Xyz + Xyz’
0 Cl 1) 0 0 X2 | =X'Y'Z + Xy'Z + XY'Z' + Xy'Z + XyZ + XyZ’
// I = (XY'Z +Xxy'z) + (Xy'Z +Xy'Z + Xyz + XyZ))
f R : 1= (y2) + ()
1 0 " 1 1) 0
N 7
Digital Design 2e
¢ ® Copyright © 2010 9
-;~< - Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

K-maps

 Circles can cross left/right sides N . Ol/x’y: y
— Remember, edges are adjacent \ 0 @ ol o ,
» Minterms differ in one variable only Vi
e Circles musthave 1, 2,4, or8 tie ool
cells — 3, 5, or 7 not allowed N
— 3/5/7 doesn’t correspond to olo|o|lo]o
algebraic transformations that ™1 1] 1) o0
comblne terms to eliminate a -
variable X 00 01 11 10
« Circling all the cells is OK o Y]] N—

— Function just equals 1 !

Digital Design 2e
® Copyright © 2010
* | Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

10

http://www.novapdf.com

K-maps for Four Variables

S|

: P Y2
* Four-variable K-map follows w0 o1 11 10
same principle 0| o|olf1) o
— Adjacent cells differ in one a1 o
variable E/C:)
— Left/right adjacent i I |l
— Top/bottom also adjacent W00 oty o
. . AN
5 and 6 variable maps exist 6 yz F=wxy'+yz
— BUt hard tO use WX 00 01 11 10
 Two-variable maps exist o | o |/ [1\|o
— But not very useful — easy to do oo |o|l1]|1fo
algebraically by hand yF z o alo a1l
0 10 0 \1 y 0
1 Z-
\ Digital Design 2e G:Z
@ Copyright © 2010 1

@ Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Two-Level Size Optimization Using K-maps

S|

General K-map method

1. Convert the function’s equation into
sum-of-minterms form

2. Place 1s in the appropriate K-map
cells for each minterm

3. Cover all 1s by drawing the fewest
largest circles, with every 1
iIncluded at least once; write the
corresponding term for each circle

4. OR all the resulting terms to create
the minimized function.

Digital Design 2e
i Copyright © 2010
) Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

12

http://www.novapdf.com

Two-Level Size Optimization Using K-maps

L —

General K-map method Common to revise (1) and (2):
1. Convert the function’s equation into « Create sum-of-products

sum-of-minterms form e Draw 1s for each product
2. Place 1s in the appropriate K-map

cells for each minterm Ex: F = W'xz + yZ + W'Xy'Z'
FYZ wxz yz
WX 00 11/ 10

\o1
00 | O \‘Nl 0
01 1 | 1
/

11 0 0 1 0

wW'xy'z’

10 | O 0 1 0

Digital Design 2e
® Copyright © 2010 13
S Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Two-Level Size Optimization Using K-maps

S|

General K-map method Example: Minimize:

1. Convert the function’s equation into G=a+ab’c’+b*(c +bc)

sum-of-minterms form 1. Convert to sum-of-products
: . G=a+ab'c+bc +bc
2. Place 1s in the appropriate K-map 2. Place 1s in appropriate cells

cells for each minterm

G_ bc ,
3. Cover all 1s by drawing the fewest a 00 01 11 10 bC
largest circles, with every 1
: . ab'c 0..]. 1 01| O 1
included at least once; write the 4.
corresponding term for each circle L1111 ’
4. OR all the resulting terms to create a
the minimized function. 3. Cover 1s
G. bc
a 00 01 11 10 c
N /
0 }\ 01| o0 /(
1 1// 1 1 \\1
—T e a
b, Digital Design 2e 4. ORterms: G=a+_¢’
Copyright © 2010 14

@ Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Two-Level Size Optimization Using K-maps
— Four Variable Example
e Minimize: a’b'c'd abed’

— H=ab'(cd’ + c’'d") + ab’c’d’ + ab’cd’ Eabfc’d’ a’bd 2'bed’

+ a’'bd + a’bed’ -/ aped
1. Convert to sum- of Droducts NN

— H= abcd +abc’ ’+abcd + w0 |4
ab’cd’ +abd+abcd ~
Q

2. Place 1s in K-map cells o
3. Cover 1s
4. OR resulting terms

épo\ 01 11 ([10

1 | 0 0 0

10 | 1 0 0

Funny-looking circle, but
remember that left/right /.
adjacent, and top/bottom ; /¢

H = b’d’ + a’bC + a,bd adjacent

Digital Design2e e

W Copyright © 2010 15
* | Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Don’t Care Input Combinations

B |
« What if we know that particular input "W? ye
combinations can never occur? X 00/01 11 10
— e.g., Minimize F = xy’z’, given that x'y’Z’ 0 m Ol 0| O
(xyz=000) can never be true, and that
xy'z (xyz=101) can never be true 1 U X1 010
— Soit doesn’t_matter what F outputs when 0od use of don't cares
X'y'Z’ or xy’z is true, because those
cases will never occur
— Thus, make F be 1 or O for those cases
in a way that best minimizes the F_yz yz unneeded
equation X 00/01 1 10
. _ 7N
On K-map o Ux! ol ol o
— Draw Xs for don’t care combinations
* Include Xin circle ONLY if minimizes 1 (i X)LL_ va,
equation

Unnecessary use of don’t
cares; results in extra term

e Don'tinclude other Xs

Digital Design 2e
i Copyright © 2010 :
) Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Optimization Example using Don't Cares

e Minimize:
— F=abc +abc’ +ab'c F._bc
— Given don't cares: a’bc, abc a
0
1

 Note: Introduce don’t cares
with caution

— Must be sure that we really don't
care what the function outputs for
that input combination

— If we do care, even the slightest,
then it's probably safer to set the
output to O

Digital Design 2e

® Copyright © 2010
0 Frank Vahid

ac b
o0 01 / 11 10/
(_L

/
0 [1 XJR

ol

17

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Optimization with Don'’t Cares Example:
R Sliding Switch

e Switch with 5 positions

— 3-bit value gives position in
binary y

1 2 3 4 5 X =
213141
detector

o
 \Want circuit that - > F

— Outputs 1 when switch is in
position 2, 3, or 4 Without S~

— Outputs 0 when switch is in dont © o1 1t 10 Xy
position 1 or 5 ga_ri?;/ 0|0
_ - T ———Xy7Z
— Note that the 3-bit input can +xy'’z 1 @’o’ oo
never output binary 0O, 6, or 7

. Z
e Treat as don’t care input y ¢ y
combinations 0 o 1/1
With don't

0 } 0 /
cares.
. y ° \ ad FEyrz

Digital Design 2e =
W ® Copyright © 2010 18
- Frank Vahid

O a

=
<[X
1

X

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Automating Two-Level Logic Size Optimization

e I yz
* Minimizing by hand y

— Is hard for functions with 5 or B& 01 (11\ 10

more variables o (|1 1) 1| o

— May not yield minimum cover @) |

dependi g H 1 (l2fflo [z 2)
epending on order we choose \ ") |

— Is error prone o |
YZ Xy yZ Xy

* Minimization thus typically vz 4 terms
done by automated tools «
: : : OO0 01 11 10
— Exact algorithm: finds optimal 7
: ~
solution 0 {1 1) 0
. — Heuristic: finds good solution, (b) / s ~
: : 1 11//o (1 | 1
but not necessarily optimal W, \- /
/ I \
y'z' X'z Xy
Only 3 terms

Digital Design 2e
- ¥ Copyright © 2010
| Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Basic Concepts Underlying Automated Two-Level

Logic Size Optimization
o Definitions F_yz

Xy'z
— On-set: All minterms that define X 00 01/ 11 10
when F=1 @ Yz
— Off-set: All minterms that define 010 0 O/;xyz
when F=0
- 1| o | o (@[T
— Implicant: Any product term A\ Z
(minterm or other) that when 1 4 implicants of F
causes F=1 Note: We use K-maps here just for
. ° On K_map any |ega| (but not intuitive illustration of concepts;
necessar”;/ Iargest) circle automated tools do not use K-maps.
» Cover: Implicant xy covers e Prime implicant: Maximally
minterms xyz and xyz expanded implicant — any
— Expanding a term: removing a expansion would cover 1s not in
variable (like larger K-map circle) on-set
e Xyz => Xy IS an expansion of xyz * X'z, and xy, above

* But not xyz or xyz' — they can
be expanded
Digital Design 2e

i Copyright © 2010 N
) Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Basic Concepts Underlying Automated Two-Level

— Logic Size Optimization
» Definitions (cont) G

. . . yz yz
— Essential prime implicant: The g\\\\ //
only prime implicant that covers a c0 01/ 11 10

particular minterm in a function’s 0 ol o

not essential

on-set
* Importance: We must include all ;I’
] . . 1 0 1
essential Pls in a function’s cover
« In contrast, some, but not all, non- XY /o !
essential Pls will be included essential XZ Xy

not essential essential

Digital Design 2e
: 8 Copyright © 2010 21
1 Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Automated Two-Level Logic Size Optimization Method

___-4

TABLE 6.1 Automatable tabular method for two-level logic size optimization.

Step

Description

| Determine prime implicants

Starting with minterm implicants, methodically compare all pairs (actually, all
pairs whose numbers of uncomplemented literals differ by one) to find
opportunities to combine terms to eliminate a variable, yielding new implicants
with one less literal. Repeat for new implicants. Stop when no implicants can be
combined. All implicants not covered by a new implicant are prime implicants.

2 Add essential prime implicants
to the function’s cover

Find every minterm covered by only one prime implicant, and denote that prime
implicant as essential. Add essential prime implicants to the cover, and mark all
minterms covered by those implicants as already covered.

3 Cover remaining minterms with
nonessential prime implicants

Cover the remaining minterms using the minimal number of remaining prime
implicants.

« Steps 1 and 2 are exact

« Step 3: Hard. Checking all possibilities: exact, but computationally
expensive. Checking some but not all: heuristic.

Digital Design 2e
Copyright © 2010
Frank Vahid

ﬂ

22

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Tabular Method Step 1. Determine Prime Implicants
Methodically Compare All Implicant Pairs, Try to Combine

44

« Example function: F = x

yz'+ Xyz+Xyz+Xyz+Xxyz' +Xxyz
Actually, comparing ALL pairs isn’t necessary—just
pairs differing in uncomplemented literals by one.

Minterms Minterms
(3-literal 2-literal (3-literal 2-literal 1-literal
implicants) Xy'Z4xyz No implicants implicants) implicants implicants
(O) lenzn O (O) XyZ \/ 7 (O l) Xy
1) xy 1) Xy'Z | g (15 yz/
(1) xy'z 1 (1) xyz eeere e —— (1,3) X'Zs/
(3) X'yZ (3) X'yZ \/ (3’7) yz ‘/
(5) xy'z 2 G)xyzd ! | (5, 7)xz J
(6) xyz' (6) xyz' J 7 (6,7) xy
(7) xyz 3 (Mxyz Prime implicants:
Implicant's number of .
uncomplemented literals Xy Xy Z

i Digital Design 2e
2 Copyright © 2010)
¥ | Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Tabular Method Step 2: Add Essential Pls to Cover

‘_4

* Prime implicants (from Step 1): X'y', Xy, z

Minterms

Prime implicants

@R
OINGE.7) (1.3,57)

Minterms

Prime implicants

Minterms

Prime implicants

- (0) X'y~ -
A1) Xyz-1
(3) Xyz
(5) xy'z
(6) xyz'

(7) xyz

SRS Fran

Digital Design 2e
® Copyright © 2010

"2;(_— Nem T Oy xey'zi] -
/é(" ~eeX oADK
X “3) xy2 -
X ROFCH .
X (6) xyz' X
X X TV xyz~ Jo_ ot o= =t -
() (b)

k Vahid

RS B
AL Xyz-
“@xyz-f-

A5z

6y Rz - |

'(’75\Xy2‘s__/__,"

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

If only one X in row, then that Pl is essential—it's the only Pl
that covers that row's minterm.

24

http://www.novapdf.com

Tabular Method Step 3: Use Fewest Remaining PIs to
Cover Remaining Minterms

B
 Essential Pls (from Step 2): X'y', xy, z Prime implicants
— Covered all minterms, thus nothing to do in Minterms %% T (g%)
step 3 Y T I S ——

e Final minimized equation:

" Yz AT K X
F=XYy +Xxy+z

(B xyz--A-- ST Xo---
A Yz AT X
(BYRYZ ~ A= -X o= S
T)XyZ ooy
(c)

Digital Design 2e
W ® Copyright © 2010 25
- Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Problem with Methods that Enumerate all Minterms or

e Compute all Prime Implicants

« Too many minterms for functions with many variables

— Function with 32 variables:
o 232 =4 billion possible minterms.
 Too much compute time/memory

 Too many computations to generate all prime implicants

— Comparing every minterm with every other minterm, for 32
variables, is (4 billion)? = 1 quadrillion computations

— Functions with many variables could requires days, months, years,
or more of computation — unreasonable

% Digital Design 2e
" Copyright © 2010 2
S Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Solution to Computation Problem

S|

e Solution
— Don’t generate all minterms or prime implicants
— Instead, just take input equation, and try to “iteratively” improve it
— Ex: F = abcdefgh + abcdefgh’+ jkimnop
* Note: 15 variables, may have thousands of minterms

« But can minimize just by combining first two terms:
— F = abcdefg(h+h’) + jkimnop = abcdefg + jkimnop

Digital Design 2e
i Copyright © 2010 "
) Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Two-Level Optimization using lterative Method

 Method: Randomly apply “expand”
operations, see if helps

— Expand: remove a variable from a
term

I
X

yz
00 01 _11 10

1_ 1 X
1| o) @‘o

» Like expanding circle size on K-map Xy'z Xxyz
— e.g., Expanding x’z to z legal, but | yz
expanding X'z to z' not legal, in shown X 00 01 11 10 Xz
function i ¢
— After expand, remove other terms o) 0 CO GE 0 [a
c.overe.d by newly ex-panded term 1 1o @ @ 0 Not legal
— Keep trying (iterate) until doesn’t help , '
Xy'z Xyz
Ex: o Illustrated above on K-map,
F = abcdefgh + abcdefgh’+ jkimnop but iterative method is
F = abcdefg + abcdefgh’ + jkimnop intended for an automated
F = abcdefg + jkimnop solution (no K-map)
g;%iﬁilgate%ggoi% Covered by newly expanded term abcdefg 28

8 Frank Vahid a

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Ex: lterative Hueristic for Two-Level Logic Size
B Optimization

e F=Xyz+xyz'+XyZz +Xyz (minterms in on-set)
« Random expand: F = xyX+ xyz' + X'y'z' + X'y'z

— Legal: Covers xyz' and xyz, both in on-set

— Any implicant covered by xy? Yes, xyz'.
c F=Xxy+XyZ' +XYyZ +XYyz
« Random expand: F = xy¥ + xX'y'z' + X'y'z

— Not legal (x covers xy'z', xy'z, xyz', xyz: two not in on-set)
« Random expand: F = xy + X'y'X + X'y'z

— Legal

— Implicant covered by x'y': X'y'z
e F=xy+XYyz +x)Xz

® Copyright © 2010 29
* | Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Multi-Level Logic Optimization — Performance/Size

— Tradeoffs

« We don't always need the speed of two-level logic
— Multiple levels may yield fewer gates
— Example
s Fl=ab+acd+ace > F2=ab+ac(d+e)=a(b+c(d+e)
» General technique: Factor out literals — xy + xz = x(y+z)

22 transistors
2 gate delays a

oF1

(o
b)
-
N

b — @ 20
: g oF2

a— c — 0 15 I

(7]
C— 4 =
d— g 10—

F1 d T .

N —

a— e 16 transistors @ 1 1 |

4 gate-delays 1 2 3 4

dela ate-delays
F1=ab + acd + ace F2 = a(b+c(d+e)) V(0)

(a) (b) (€)

a

Digital Design 2e
" ® Copyright © 2010
Y Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

30

http://www.novapdf.com

Multi-Level Example

‘_4

e Q: Use multiple levels to reduce number of transistors for
— F1 = abcd + abcef

 A:abcd + abcef = abc(d + ef)
« Has fewer gate inputs, thus fewer transistors

22 transistors 18 transistors
2 gate delays 3 gate delays 20 oF1
N 2 ®
b— h— 6 S151- "
tCJ : 8 2 : / 4 = GN') R
d— 2 2101
©
4 »—f1 d 4 =
a 5
b— e —
c— 10 4 | 1 [|
?— f — 1 2 3 4
— delay (gate-delays
F1 = abcd + abcef F2 = abc(d + ef) y (@ ys)
(a) (b) (c)

Digital Design 2e
) Copyright © 2010 31
WS Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Multi-Level Example: Non-Critical Path

B
« Critical path: longest delay path to output
« Optimization: reduce size of logic on non-critical paths by using multiple

levels
26 transistors 22 transistors
3 3 gate-delays 3 gate-delays
bjl a gar o
o
4 b7 =L B 201 oF2
C . 4 &
It SN) C— \‘\\ 9 15_
d— 6 F1 s
6 =F2 & 10—
e a— n
= T
'y 5 ; 'L 5 2 I I I
_ 1 2 3 4
9—=e 9 delay (gate-delays)

F1 = (a+b)c +dfg + efg F2 = (a+b)c + (d+e)fg
@) (b) (©)

Digital Design 2e
; ® Copyright © 2010 32
L Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

Automated Multi-Level Methods

e Main techniques use heuristic iterative methods

— Define various operations
» “Factoring”: abc + abd = ab(c+d)

* Plus other transformations similar to two-level iterative
Improvement

Digital Design 2e
i Copyright © 2010 N
) Frank Vahid

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com

