
Embedded Systems Conference
Boston, September 2001

Class 334

Twenty-Five Most Common Mistakes with Real-Time Software Development

David B. Stewart

Executive VP and Chief Technology Officer
Embedded Research Solutions, LLC.
Columbia, MD 21046

Email: dstewart@embedded-zone.com
Web: http://www.embedded-zone.com
Abstract: The most common mistakes and pitfalls associated
with developing embedded real-time software are presented.
The origin, causes, and hidden dangers of these mistakes are
highlighted. Methods ranging from better education to using
new technology and recent research results are discussed.
The mistakes vary from problems with the high-level project
management methodologies, to poor decisions on low-level
technical issues relating to the design and implementation.
The most common mistakes have been identified from experi-
ence in reviewing the software designs and implementations
of many embedded programmers, ranging from seasoned ex-
perts in industry to rookies learning the material in college.

Introduction

Novices and experts alike, whether in a university or corpo-

ration, repeat the same mistakes over and over again when

developing real-time software. I have observed this while

reviewing the software designs and implementations of many

embedded programmers, ranging from seasoned experts in

industry to rookies just learning the material in college.

Most real-time software developers are not even aware that

some of their favorite methods are problematic. Other times

the methods are satisfactory, but not the best. Quite often,

experts are self-taught; hence they tend to have the same bad

habits as when they first began, usually because they have

never witnessed better ways of programming their embedded

systems. These experts then train novices, who subsequently

acquire the same bad habits. The purpose of this article is to

improve awareness of common problems, and to provide a

start towards avoiding and eliminating mistakes to create

software that is both more reliable and easier to maintain.

This list first began as the 10 most common pitfalls, but

there were just so many common mistakes and problems that

the list grew. For each problem, I present the misconception

or source of the problem. Then I offer possible solutions or

alternatives that can help minimize or eliminate the mistakes.

If you are not familiar with the details or terminology of the

alternate solutions, then a quick library or Web search should

yield additional literature on the topic. While there is usually

agreement about most items being mistakes, some of the mis-

takes listed and the corresponding proposed solutions may be

controversial. In such cases, simply highlighting that there is

a disagreement as to what is the best way to alleviate these

problems encourages designers to compare their methods to

other approaches, and to reconsider if their methods are prov-

ably better.
Correcting just one of these mistakes within a project can

lead to weeks or months of savings in manpower (especially

during the maintenance phase of a software life cycle) or can

result in a significant increase in quality and robustness of the

application. If multiple mistakes are common and they are all

fixed, potential company savings or additional profits can be

in the thousands or millions of dollars. Thus I encourage you

to review your current methods and policies, compare them to

each of the reported mistakes and the proposed alternatives,

and decide for yourself if potential savings exist for your

company or project. Even if there are no direct savings, con-

sider the potential for improved quality and robustness at no

extra cost by modifying some of your current practices.

Here now are the most common mistakes; problems that are

higher on the list (where #25 is lowest and #1 is highest on

list) are either more common and/or have the most impact on

quality, development time, and software maintenance. Natu-

rally, the order represents my opinion. It’s not so important

that one mistake is listed higher on the list than another. What

is important is that both are listed, thus both may be signifi-

cant in your specific environment.

#25 “My problem is different”

Many designers and programmers refuse to listen to the

experiences of others, claiming that their applications are dif-

ferent, and of course, much more complicated. Designers

should be more open-minded about the similarities in their

work. Even what seems like the most different applications

are probably nearly identical when you consider the nuts and

bolts of the real-time infrastructure. For example, communi-

cations engineers will claim their applications have no simi-

larities to systems designed by control engineers because of

the high volume of data and the need for special processors

such as digital signal processors (DSPs). In response, ask

"What is different in the LCD display software in a cellular

phone vs. one in a traffic light controller? Are they really dif-

ferent?"

Comparing control and communication systems side-by-

side, both are characterized by modules that have inputs and

outputs, with a function that maps the input to the output. A

256 x 256 image processed by a DSP algorithm might not be

that different from graphical code for an LCD dot matrix dis-

play of size 320 x 200. Furthermore, both use hardware with

limited memory and processing power relative to the size of

the application; both require development of software on a

platform distinct from the target, and many of the issues in
Page 1 of 13

mailto:dstewart@embedded-zone.com
http://www.embedded-zone.com

Class 334
Twenty-Five Most Common Mistakes with Real-Time Software

Embedded Systems Conference
Boston, September 2001
developing software for a DSP also apply to developing soft-

ware for a microcontroller.

The timing and volume of data are different. But if the sys-

tem is designed correctly, these are just variables in equa-

tions. Methods to analyze resources such as memory and

processing time are the same—both may require similar real-

time scheduling, and both may also have high-speed interrupt

handlers that can cause priority inversion.

If control systems and communication systems are similar,

perhaps so are two different control applications or two dif-

ferent communication systems. Every application is unique,

but more often than not the procedure to specify, design, and

build the software is the same. Embedded software designers

should learn as much as possible from the experiences of oth-

ers and not shrug off experience just because it was acquired

in a different application area.

#24 Delays implemented as empty loops

Real-time software often uses delays to ensure that data sent

or received over an I/O port has time to propagate. These

delays are frequently implemented by putting a few no-ops or

empty loops (assuming volatile is used if the compiler per-

forms optimizations). If this code is used on a different pro-

cessor, or even the same processor running at a different rate

(for example, a 25MHz vs. 33MHz CPU), the code may stop

working on the faster processor. This is especially something

to avoid, since it results in the kind of timing problem that is

extremely difficult to track down and solve, because the

symptoms of the problem might be sporadic.

Instead, use a mechanism based on a timer. Some RTOS

provide these functions, but if not, one can still easily be built.

Following are two possibilities to build a custom delay(int
usec) function.

Most count-down timers allow the software to read a regis-

ter to obtain the current count-down value. A system variable

can be saved to store the rate of the timer, in units such as

microseconds per tick. Suppose the value is 2µs per tick, and

a delay of 10µs is required: the delay function busy-waits for

five timer ticks. Suppose a different speed processor is

used—the timer ticks are still the same. If the timer frequency

changes, then the system variable would change, and the

number of ticks to busy-wait would also change, but the delay

time would remain the same.

If the timer doesn’t support reading intermediate count-

down values, an alternative is to profile the speed of the pro-

cessor during initialization. Execute an empty loop continu-

ously and count how often it occurs between two timer

interrupts. Since frequency of the timer interrupt is known, a

value for the number of microseconds per iteration can be

computed. This value is then used to dynamically determine

how many iterations of the loop to perform for a specified

delay time. In our custom RTOS with this implementation,

the delay function was accurate within 10% of the desired

time for any processor with which we tested it, without ever

having to change the code.

#23 Tools choice driven by marketing hype, not by
evaluation of technical needs

Software tools for embedded systems are often purchased

based on the flashiness of the marketing, because a lot of

other people are using them, or because of a feature that

sounds appealing but really does not make a difference.

Flashiness. Just because one tool has a prettier graphical

user interface than another does not make it better. It’s impor-

tant to consider the technical capabilities of each, relative to

the needs of the application being built.

Number of users. Buying software from a vendor just

because it’s the biggest does not mean it’s the best. Along

with pitches that more people are using the software are prob-

ably hidden true stories that more people are paying for more

than they really need, or that more people have unused ver-

sions of the tools sitting on the shelf after discovering the

tools were not suited to their needs.

Promises of compatibility. Managers are especially influ-

enced by a product because of promises of compatibility. So

what if software is 100% POSIX-compliant? What is its rele-

vance? Is there a plan to change the operating system? Sup-

pose there is a change to another POSIX-compliant operating

system-what is there to gain? Absolutely nothing, unless

"extensions" are used. But if such extensions are used, com-

patibility is lost, hence the benefits are no longer there. Stan-

dards such as POSIX have not been proven to even be good

for real-time systems, let alone the best. Therefore, don’t

assume that the product is better because of that promise.

Portability and reusability can only be achieved if all the

designers follow proven software engineering strategies for

developing component-based software. [2,3]

When selecting tools, consider the needs of the application

first; then investigate the dozens (or hundreds) of options

available from a technical perspective, as they relate specifi-

cally to the application requirements. The best tools for a par-

ticular design or application are not necessarily the most

popular.

#22 Large if-then-else and case statements

It’s not uncommon to see large if-else statements or case
statements in embedded code. These are problematic from

three perspectives:

• Such statements are extremely difficult to debug, because

code ends up having so many different paths. If

statements are nested it becomes even more complicated.

• The difference between best-case and worst-case

execution time becomes significant. This leads to either

under-utilizing the CPU, or the possibility of timing errors

when the longest path is taken.

• The difficulty of structured code coverage testing grows

exponentially with the number of branches, so branches

should be minimized.

Computational methods can often provide an equivalent

answer. Performing Boolean algebra, implementing a finite

state machine as a jump table, or using lookup tables are alter-

natives that can reduce a 100-line if-else statement to less

than 10 lines of code.
D. Stewart, Embedded Research Solutions Page 2 of 13

Class 334
Twenty-Five Most Common Mistakes with Real-Time Software

Embedded Systems Conference
Boston, September 2001
Here is a trivial example of converting an if statement to

Boolean algebra:
if (x == 1)

x=0;
else

x=1

Instead, a Boolean algebra computation would be the fol-

lowing:
x = !x; // x = NOT x; can also use x = 1–x

Despite the simplicity, some programmers still toggle a

Boolean value with the if statement above.

#21 Documentation was written after implementation

Everyone knows that the system documentation for most

applications is dismal. Many organizations make an effort to

make sure that everything is documented, but documentation

isn’t always done at the right time. The problem is that docu-

mentation is often done after the code is written.

Documentation must be done before and during coding,

never afterward. Before implementation begins, start with the

detailed specification and design documents. These become

the basis for what will ultimately be the user and system doc-

uments, respectively. Implement the code exactly as in these

documents; anytime the document is ambiguous, revise the

document first. Not only does this ensure that the document

remains up to date, but it ensures that the programmer imple-

ments what the document specifies.

Updating documentation during the implementation also

serves as a review for the code. Programmers often find bugs

in their code as they’re writing about it. For example, the pro-

grammer may write, "Upon success, this function returns 1."

The programmer then thinks, "if there is no success, what is

returned?" He looks at his code and might realize that the lack

of success scenario has not properly been implemented.

#20 Interactive and incomplete test programs

Many embedded designers create a series of test programs,

each program testing a separate feature. Test programs need

to be executed one at a time, and in some cases require the

user to provide input (say, through a keypad or switch) and

observe the output response. The problem with this method is

that programmers tend only to test what they are changing.

Since there are often interactions between unrelated code due

to the sharing of resources, every time a change is made, the

entire system should undergo testing.

To accomplish this, avoid interactive test programs. Create

a single test program that goes through as much self-testing as

possible, so that any time even the smallest change is made, a

complete test can easily and quickly be performed.

Unfortunately, this is more easily said than done. Some

testing, especially of I/O devices, can only be done interac-

tively. Nevertheless, the principle of automated testing

should be at the forefront of any attempt to create test soft-

ware, and not a side-thought with test code written only on an

as-needed basis.

#19 Software engineers not participating in
hardware design

For new products where the hardware has not yet been

defined, the software engineer should work closely with the

hardware designer to select a system architecture that can

minimize the overall cost. For example, the hardware

designer may feel that a 32-bit processor is needed for a par-

ticular application. The software designer, however, may

realize that close to 40% of the processor utilization would be

spent busy-waiting or polling for just one of the I/O devices.

Suppose the processor costs $10. That means $4 in parts is

dedicated to polling the I/O device.

Instead, it might be possible to use a two-processor design

that includes one 16-bit processor (cost $4) and one 8-bit pro-

cessor (cost $1). The 8-bit processor handles the I/O device,

while the 16-bit processor handles the rest of the workload.

Although the system has increased to using two processors,

which might result in a small increase in design time, the

hardware component cost is cut in half, and can lead to a more

cost effective design. The hardware and software designers

should together decide on the best way to interface the pro-

cessors, so as to minimize both hardware and software costs.

Often, the needed performance of hardware for new prod-

ucts is estimated based on an existing product. The software

designer should provide accurate answers as to the utilization

of the processor in the existing application.

If the processor and memory utilization are less than 90% on

average and less than 100% peak, then the system has proba-

bly been over-designed. Writing programs for a processor

with more than enough resources is a luxury for a software

developer. In some cases, however, this luxury is so costly

that it can make the difference between a profit and bank-

ruptcy! Contributing towards minimizing the price and power

consumption of an embedded system is a software engineer’s

duty. If the CPU is only 45% utilized, you can use a processor

that operates at half the speed instead, thus saving on power

consumption (yielding higher market share if the device is

battery-powered) and possibly reducing the cost of the pro-

cessor.

If the product is mass-produced, saving $1 on the processor

could save a million dollars over the production span of the

item. If the product is battery-powered, it will allow the bat-

tery to last much longer, thus increasing the marketing appeal

of the product. As an extreme example of power consumption

of computers, consider a laptop. Most have less than three

hours of power when using a heavy battery. A watch, how-

ever, has a lightweight, cheap battery that can last three years.

Although software isn’t usually associated with power con-

sumption, it does have a major role.

Fast processors and more memory than necessary tend to

also lead to laziness in thinking about the design. Start

embedded development with slower processors with less

memory, and move up to the next level of processor only on

an as-needed basis. Software that uses hardware more effi-

ciently is more likely to evolve from this approach than from

later trying to cut corners to bring down the cost of the sys-

tem.

#18 No emulators of target application

Building an emulator of an embedded application can sig-

nificantly improve development time. Implementing software

for target platforms can be quite time-consuming. Compiling,
D. Stewart, Embedded Research Solutions Page 3 of 13

Class 334
Twenty-Five Most Common Mistakes with Real-Time Software

Embedded Systems Conference
Boston, September 2001
downloading, then executing code on a target platform takes

longer than doing the same on the host platform. Debugging

is more difficult, because the ability to use simple techniques

like printf()’s throughout the code is often not possible. While

some modern systems improve debugging capabilities

through use of techniques such as BDM (background debug

mode) and give the ability to put breakpoints in the embedded

software, using these techniques is significantly more time-

consuming than using tools directly on the host workstation,

such as the GDB debugger to step through code and Purify to

search for memory leaks.

While in the later stages of implementation it will be neces-

sary to execute and debug all code on the target platform, this

is often not necessary in the early stages. In particular, before

timing and synchronization is an issue, each module should

be tested individually for its functionality. The integration of

the modules should also be tested; regardless of the real-time

needs of the software, there should not be any code or data

integrity problems.

It is usually very worthwhile to build at least a simple sim-

ulator of the application’s devices, so that most of the code

can be developed, tested, and debugged in the host environ-

ment. In our experience, it might take a week to build this

simulator, but it can easily save months of development time.

For example, we have a simulator of an LCD text display run-

ning under UNIX. The interface to this simulator is similar to

the interface of the real hardware, so that the display code we

write is nearly identical in both the target environment and the

host environment. To compare development environments,

imagine you want to make a very simple change, like modi-

fying one line of code from y++ to y+=2. The entire cycle to

edit/compile/download/execute/test on the target environ-

ment might take five minutes or more. This same cycle on a

host workstation might only take one minute. You can then be

five times more productive implementing code in the early

stages.

The key to building these simulations is to use the multitask-

ing features of the host operating system. The devices that

you are simulating execute as one or more separate heavy-

weight processes (not threads). Each of these processes cre-

ates either a shared memory segment or a message queue (we

use the System V IPC mechanisms). Use shared memory to

emulate a memory-mapped device, and message passing to

emulate a stream-oriented device, such as an embedded net-

work.

The embedded code executes in its own heavyweight pro-

cess, with this process emulating the target processor. If you

are using multitasking in the target environment (e.g. by using

an RTOS), use the lightweight threading features of a POSIX-

compliant operating system for each thread. If the RTOS is

also POSIX-compliant, you can use the same interface. Oth-

erwise, built a simple middleware layer (e.g. using macros)

that unifies the thread interface.

Since it is often not possible to emulate the I/O devices

exactly, we have found that we can write two device drivers,

one for the simulator, the other for the real I/O device. When

switching from simulation to the target environment, only the

device drivers need to change. The rest of the code remains

identical. If your RTOS does not provide device drivers, or

you have found the POSIX-style open/read/write/close inter-

face for device drivers inadequate, consider developing each

device driver as a separate thread, as we describe in [1].

Using a simulator has the further advantage that it can be

replicated easily. Suppose three programmers need to share

the target hardware. There can be lots of human synchroniza-

tion needed for each one to get a turn using the hardware.

With the simulator, however, two of them can use their own

copy of the simulator, and the third person the real hardware.

The resource conflicts are minimized, and all three of the pro-

grammers are more productive.

The simulator can also be used by the customer to obtain

customer feedback even before the hardware is ready, espe-

cially with regards to the user interface if the application has

an embedded display. The customer can try out the menu sys-

tem, key inputs, and provide feedback about what might be

missing, what is displayed but confusing, or suggestions for

shortcuts that can greatly improve usability of the product.

#17 Error detection and handling are an afterthought
and implemented through trial and error

Error detection and handling are rarely incorporated in any

meaningful fashion in the software design. Rather, the soft-

ware design focuses primarily on normal operation, and any

exception and handling are added after the fact by the pro-

grammer. The programmer either puts in error detection

everywhere, many times where it’s unnecessary but its pres-

ence affects performance and timing; or does not put in any

error handling code except on an as-needed basis as

workarounds for problems that arise during testing. Either

way, the error handling isn’t designed and its maintenance is

a nightmare.

Instead, error detection, or related issues such as fault toler-

ance, should be incorporated into the design of the system,

just as any other state. Thus, if an application is built as a

finite state machine, an exception can be viewed as an input

that causes action and a transition to a new state. Unfortu-

nately, the best way to implement a complete design that

incorporates all error detection and handling is still a major

research topic.

#16 Generalizations based on a single architecture

Embedded software designers may have the need to develop

software that is intended to run on a variety of processors and

platforms. In such a case, it’s not uncommon for the program-

mer to begin writing software for one of the platforms, but

generalize anything and everything in preparation for porting

the code at a later time.

Unfortunately, doing so usually causes more harm than

good. The design will tend to over-generalize items that are

very similar on very different architectures, while not gener-

alizing some items that are different, but that the designer did

not foresee as different.

A better strategy is to design and develop the code simulta-

neously on multiple architectures, generalizing only those

parts that are different in the different architectures. Intention-
D. Stewart, Embedded Research Solutions Page 4 of 13

Class 334
Twenty-Five Most Common Mistakes with Real-Time Software

Embedded Systems Conference
Boston, September 2001
ally choose three or four processors that are very different (for

example, from different manufacturers and using different

architectures).

#15 Optimizing at the wrong time

Coarse-grain optimizations are usually global in nature, and

involve major design decisions that need to be considered

before implementation begins. Fine-grain optimizations are

localized, and can be performed during the later stages of

implementation.

Both coarse-grain and fine-grain optimizations require a

knowledge of the hardware peculiarities. Thus, an analysis of

the hardware should be performed even before implementa-

tion begins.

For example, how long does it take to add two eight-bit

numbers? What about two 16-bit or 32-bit numbers? What

about two floats? What if an eight-bit number is added to a

float? Without an answer to these questions, a software

designer is not prepared to design the real-time software,

because decisions such as whether to perform all operations

in floating point or as scaled integers cannot be made. If a

design is implemented assuming one of those, it will be very

difficult later to change.

Here are answers to the above questions for a 6MHz Z180

(in microseconds): 7, 12, 28, 137, and 308. Note that it takes

250% more time to do float plus byte than float plus float, due

to the long conversion time from byte to float. Such anoma-

lies are often the source of code that overloads the processor.

In another example, a special purpose floating-point accel-

erator did floating-point addition/multiplication 10 times

faster than a 33MHz 68882, but sin() and cos() took the same

amount of time. This is because the 68882 has the trigonomet-

ric functions built into its hardware, while the floating point

accelerator did those particular functions in software.

When code is implemented for a real-time system, being

aware of the timing implications of every single line of code

is important. Understand the capabilities and limitations of

the target processor(s), and redesign an application that

makes excessive use of slow instructions. For example, for

the Z180, doing everything in float is better than having only

some variables float and lots of mixed-type arithmetic.

On the other hand, this information should not be used to

perform fine-grain optimizations. These are optimizations

such as replacing 3*x with x+x+x. This not only affects read-

ability, but in some cases will actually slow down code,

because one multiplication is faster than two additions.

A programmer who optimizes every line of code from the

beginning may implement the first version of the code in an

unreadable manner. This could severely increase the testing

and debugging time, at possibly unnecessary cost since it is

not even known yet if the code needs to be optimized.

As a general rule, do not perform fine-grained optimizations

during implementation. Only optimize segments of code later

during the debugging phases if it proves necessary to get bet-

ter performance. If optimization is unnecessary, then keep the

more readable code. If the CPU is overloaded, it is nice to

know that a variety of places remain in the code where sim-

ple, straightforward optimizations can be performed quickly.

#14 Reusing code not designed for reuse

Code that is not designed for reuse will not be in the form of

an abstract data type or object. The code may have interde-

pendencies with other code, such that if all of it is taken, there

is more code than needed. If only part is taken, it must be thor-

oughly dissected, which increases the risk of unknowingly

cutting out something that is needed, or unexpectedly chang-

ing the functionality. If code isn’t designed for reuse, it’s bet-

ter to analyze what the existing code does, then redesign and

re-implement the code as well-structured reusable software

components. From there on, the code can be reused. Rewrit-

ing this module will take less time than the development and

debugging time needed to reuse the original code.

A common misconception is that because software is

defined in separate modules, it is naturally reusable. This is a

separate mistake on its own, and related to creating software

with too many dependencies. See more details in mistake #3.

#13 Using blocking forms of message passing

When software is developed as functional blocks, the first

thought is to implement inputs and outputs as messages.

Although this type of inter-process communication (IPC)

works well in non-real-time environments—such as for dis-

tributed networking—it’s problematic in a real-time system.

Several major problems arise when using blocking forms of

message passing in a real-time system:

• Message passing requires synchronization, a primary

source of unpredictability to real-time scheduling.

Functional blocks end up executing synchronously, and

thus analysis of the system’s timing is difficult, if not

impossible.

• In systems with bi-directional communication between

processes or any kind of feedback loop, deadlock is a

possibility.

• Message passing incurs significantly more overhead as

compared to shared memory. While messages may be

required for communication across networks and serial

lines, it’s often inefficient when random-access to the data

is possible, as is the case for IPC on a single processor.

Simply replacing message passing with shared memory

buffers and guarding access by using semaphores is not a

good solution, as the semaphore mechanism has the same

problems as blocking in message passing.

Research literature shows thousands of papers that describe

IPC mechanisms for almost every scenario imaginable. While

it might take some time to find just the right solution for the

problem at hand, finding a solution that addressed the above

problems could greatly improve the robustness and reliability

of the real-time system.

For example, in our component-based control systems, we

use state-based communication to provide higher

assurability [2,3]. In this scheme, the most recent data is

always available to a process when the process needs it.

Steenstrup and Arbib developed the port-automation theory

to formally prove that a stable and reliable control system can

be created by only reading the most recent data [4]. Costly
D. Stewart, Embedded Research Solutions Page 5 of 13

Class 334
Twenty-Five Most Common Mistakes with Real-Time Software

Embedded Systems Conference
Boston, September 2001
blocking is eliminated by creating local copies of shared data,

to ensure that every process has mutually exclusive access to

the information it needs. Using states instead of messages

also provides robustness if the possibility of lost messages

exists, if code does not all execute at the same rate, and if

implementing with shared memory generates less operating

system overhead.

Converting control systems from message-based communi-

cation to state-based communication is generally straightfor-

ward. For example, an intelligent train control system has

independent control of every brake to maximize train han-

dling. To minimize stopping distance when coming to a full

stop, all the brakes on the train must be applied together. The

I/O logic for each brake is handled by a separate process; the

control module must inform each brake module to turn on the

brakes. When using a message-based system, the controlling

unit sends a message, "apply brake," to every brake process.

Due to the dependencies among processes, it creates a real-

time system that is difficult to analyze and has the potential

for unbounded blocking or deadlocks, thus it is not suitable

for real-time systems. In contrast, in a state-based communi-

cation mechanism, each brake module executes periodically

and monitors the brake variable to update the state of its own

brake I/O. For example, instead of the "apply brake" message,

revise the state of the brake variable so that it says, "the brake

should be on." Since processes are periodic, a schedulability

analysis is easier. Processes only need to bind to a single ele-

ment in the state table, thus eliminating direct dependencies

between processes. Communication through shared memory

also incurs less overhead when compared to a message-pass-

ing system.

There are various other IPC mechanisms that are suitable

for real-time systems too. The important part is to use solu-

tions that take timing into consideration, and that do not result

in a task blocking at arbitrary times because a queue is empty

or full.

#12 No memory analysis

The amount of memory in most embedded systems is lim-

ited. Yet most programmers have no idea what the memory

implications are for any of their designs. When they’re asked

how much memory a certain program or data structure uses,

they are commonly wrong by an order of magnitude.

In microcontrollers and DSPs, a significant difference in

performance may exist between accessing ROM, internal

RAM, and external RAM. A combined memory and perfor-

mance analysis can aid in making the best use of the most

efficient memory by placing the most-used segments of code

and data into the fastest memory. A processor with cache adds

yet another dimension to the performance.

A memory analysis is quite simple with most of today’s

development environments. Most environments provide a

.map file during compilation and linking stages with memory

usage data. A combined memory/performance analysis, how-

ever, is much more difficult, but is certainly worthwhile if

performance is an issue.

#11 Improper use of Global Variables

Global variables are often frowned upon by software engi-

neers because they violate encapsulation criteria of object-

based design and make it more difficult to maintain the soft-

ware. While those reasons also apply to real-time software

development, avoiding the use of global variables in real-time

systems is even more crucial.

In most RTOS, processes are implemented as threads or

lightweight processes. Processes share the same address

space to minimize the overhead for performing system calls

and context switching. The side effect, however, is that a glo-

bal variable is automatically shared among all processes.

Thus, two processes that use the same module with a global

variable defined in it will share the same value. Such conflicts

will break the functionality; thus, the issue goes beyond just

software maintenance.

Many real-time programmers use this to their advantage, as

a way of obtaining shared memory. In such a case, however,

care must be taken and any access to shared memory must be

guarded as a critical section to prevent undesirable problems

due to race conditions. Unfortunately, most mechanisms to

avoid race conditions, such as semaphores, are not real-time

friendly, and they can create undesired blocking and priority

inversion. The alternatives, such as the priority ceiling proto-

col, use significant overhead.

Global variables should never be used as a substitute for

passing arguments. While this may seem like a good way to

reduce the overhead of passing arguments to functions, it pre-

vents any form of scalability or reuse of software modules for

multiple functions, because the functions or modules that use

the global variables cannot be replicated. Instead, use an

abstract data type (ADT) to encapsulate all the data that you

would like to make global. Pass a pointer to this ADT as the

first argument to any function. The subroutine call overhead

from passing a single argument is minimal, yet this technique

enables code to be replicated, since each instance of a module

can have its own ADT. For larger applications for which

overhead is less of a concern, objects can replace ADTs to

eliminate the need for most global variables.

There are times when it is acceptable or necessary to use

global variables. For example, if every instance of a module

needs to share a data item, then a global variable might be in

order. In this case, however, appropriate synchronization or

mutual exclusion is needed to conserve the integrity of the

shared data.

Exchanging data with interrupt handlers often forces the

need for global variables, since the interrupt handler executes

in a different context than the rest of the code. As with global

variables used for shared memory, extra care needs to be

taken to avoid race conditions.

#10 Indiscriminate use of interrupts

Interrupts are perhaps the biggest cause of priority inversion

in real-time systems, causing the system to not meet all of its

timing requirements. The reason for this delay is that inter-

rupts preempt everything else and aren’t scheduled. If they

preempt a regularly scheduled event, undesired behavior may

occur. An ideal real-time system has no interrupts.
D. Stewart, Embedded Research Solutions Page 6 of 13

Class 334
Twenty-Five Most Common Mistakes with Real-Time Software

Embedded Systems Conference
Boston, September 2001
Many programmers will put 80% to 90% of the applica-

tions’s code into interrupt handlers. Complete processing of

I/O requests and the body of periodic loops are the most com-

mon items placed in the handlers. Programmers claim that an

interrupt handler has less operating system overhead, so the

system runs better. While it’s true that a handler has less over-

head than a context switch, the system doesn’t necessarily run

better for several reasons:

• Handlers always have high priority and can thus cause

priority inversion;

• Handlers reduce the schedulable bound of the real-time

scheduling algorithm, thus counteracting any savings in

overhead as compared to a context switch;

• Handlers execute within a different context and force the

use of shared global variables to exchange data with the

rest of the application;

• Handlers are difficult to debug and analyze because few

debuggers allow the setting of breakpoints or performing

user I/O within the handler.

Instead, minimize the use of interrupts when possible. For

example, program interrupts so their only function is to signal

an aperiodic server. Or convert handlers from periodically

interrupting devices to periodic processes. If you must use

interrupts, use only real-time analysis methods that take into

account the interrupt handling overhead. Never assume that

overhead from interrupts and their handlers is negligible.

#9 Poor software design diagrams

Most software systems are designed such that the entire sys-

tem is defined by a single diagram (or, even worse, none!).

Yet a physical item like a chair or table would have several

more diagrams—for instance, top view, side view, bottom

view, detailed view, functional view, and so on-despite the

fact that a chair can be much simpler than a software project.

When designing software, getting the entire design on paper

is essential. The most commonly accepted methods are

through the creation of software design diagrams. Many dif-

ferent kinds of diagrams exist. Each is designed to present a

different view of the system.

Of course, there are good diagrams and there are poor dia-

grams. A good diagram properly reflects the ideas of the

designer on paper. A poor diagram is confusing, ambiguous,

and leaves too many unanswered questions. To create good

software, the diagrams representing the software designs

must be good.

Common techniques for presenting designs through good

diagrams include the following:

• An architectural design diagram shows the top-down

decomposition of a large project. It is usually a data flow

diagram that shows relationships between objects,

modules, or subsystems based on the data exchanged

between them

• Each element in an architectural design should be

represented by a detailed design diagram. This diagram

provides enough detail for a programmer to implement

the details without ambiguity. In a multi-level

decomposition, the detailed design at one level may

become the architectural design for the next lower level.

Therefore, the same diagramming techniques are

applicable to both kinds of diagrams

The software designers must be sure to distinguish whether

they’re using process-oriented or data-oriented designs. A

process-oriented design, as typically used in many control

and communication systems, should include data flow dia-

grams (such as for control system representation), process

flow diagrams (also called flow charts), and finite state

machines representations. A data-oriented design, as used in

knowledge-based and database applications, should consist

of relationship diagrams, data structure diagrams, class hier-

archies, and tables.

An object-oriented design is a combination of process-ori-

ented and data-oriented design, and should contain diagrams

that represent all of the different views.

As an example of the need for diagrams, consider the data

structures shown in Figure 1a. If you have an application with

lots of structures defined, but no diagrams to show the rela-

tionship between them, you would need to spend hours (or

days) going through the code or relying on comments (which

may or may not be there) to figure out the relationships.

On the other hand, the data structure diagram shown in

Figure 1b clearly shows the relationship. For example, it now

becomes obvious that structure def_t is a doubly linked circu-

lar list with a header node; there are nxyz instances of the

structure xyz_t, defined as an array; and structure abc_t points

to both the header node of def_t and to the first element in

xyz_t.

Even when someone has provided design diagrams, they

often have not provided a legend. Such a diagram usually

mixes data flow and process flow blocks, and is marred by

inconsistencies and ambiguities. Even many of the diagrams

in software engineering textbooks have this problem!

A quick rule of thumb to determine whether a diagram has

flaws is to look at the legend and make sure that every box,

line, dot, arrow, thickness, fill color, or other marking on the

diagram matches the function specified in the legend. This

simple rule serves as a syntax checker, allowing developers

and reviewers to quickly identify problems with the design.

Furthermore, it forces every different type of block and line

and arrow to be drawn differently, so that different objects are

visually distinguishable.

Diagrams can be drawn according to a standard such as

UML or based on a custom set of conventions developed by

the company. What is important is that for every design dia-

gram there is a legend, and that all diagrams of the same type

use the same legend. Consistency is the key.

Following are guidelines for creating consistent data flow,

process flow, and data structure diagrams. Similar guidelines

should be established for any other kind of diagram required

by an application.

Data flow diagrams. These diagrams show the relationship

and dependencies between modules based on the data that is

communicated between them. These diagrams are most often

used in the modular decomposition phases. The data flow dia-

gram is the most common diagram at the architectural level;
D. Stewart, Embedded Research Solutions Page 7 of 13

Class 334
Twenty-Five Most Common Mistakes with Real-Time Software

Embedded Systems Conference
Boston, September 2001
but most data flow diagrams are poorly done, usually a result

of inconsistencies in the diagram.

To create good diagrams, create a convention and stick with

it. Always include a legend that explains the convention. Min-

imize the number of lines (and therefore, data items) that flow

between processes or modules. Note that each block in this

diagram will become a module or process, and each line will

be some form of coupling between module or communication

between processes. The fewer lines, the better. Some typical

conventions for data flow diagrams include the following:

• Rectangles are data repositories such as buffers, message

queues, or shared memory

• Rounded-corner rectangles are modules that execute as

their own process

• Directed lines represent data that flows from the output of

one process or module to the input of another process or

module

Process flow diagrams. These diagrams generally show the

details within a module or process. They are most often used

during the detailed design. As with data flow diagrams, create

a convention, stick with it, and make a legend that explains

the conventions. Some typical conventions for process flow

diagrams include:

• Rectangles are procedures or computations

• Diamonds are decision points

• Circles are begin, end, or transfer points

• Directed lines represent the sequence to execute code

• Ovals represent interprocess communication

• Parallelograms represent I/O

• Bars represent synchronization points

Data structure diagrams and class hierarchies. Data struc-

ture diagrams and class hierarchies show the relationship

between multiple data structures or objects. Such diagrams

should contain enough detail to directly create a struct (if

using C) or class (if using C++) definition in a module’s .h
file.

Some typical conventions for these diagrams include:

• A single rectangle is a single field within a structure or

class

• Groups of adjacent rectangles are all in the same structure

or class

• Non-adjacent rectangles are in different structures or

classes

• Arrows leaving a rectangle indicate pointers; the other

side of the arrow shows the structure or object being

pointed to

• Solid lines show relationships between classes. A legend

should indicate the type of relationship(s) shown in the

graph. Each different type should be represented by a line

of a different width, color, or type

 For example, Figure 1b is a data structure diagram.

#8 “It’s just a glitch.”

Some programmers use the same workarounds over and

over again because the system has a glitch. A programmer’s

typical response is that it always executes well if the

workaround is used.

*def

*xyz

ndef

abc_t

next

prev

name

loval

hival

def_t

structure abc_t field within structure

zoomed-in view

abc_t
field

head name1 namendef

xyz[0]

xyz[1]

xyz[2]

xyz[nxyz–1]

i

f

s[0] s[1]

b[0] b[1] b[2] b[3]

b[4] b[5] b[6] b[7]

typedef struct _def_t {
struct _def_t *next;
struct _def_t *prev;
char name[8];
short loval;
short hival;

} def_t;

typedef struct _xyz_t {
int i;
float f;
short s[2];
unsigned char b[8];

} xyz_t;

typedef struct _abc_t {
def_t *def;
xyz_t *xyz;
short ndef;

} abc_t;

of a structure

pointer

Legend

(a) (b)

Figure 1: Example of a data structure diagram. Suppose that only the data structures in (a) are provided. The lack of the diagram in (b) would
make it extremely difficult to understand the true structure of the design. Providing the diagram in (b) significantly improves the ability to visualize
the design.
D. Stewart, Embedded Research Solutions Page 8 of 13

Class 334
Twenty-Five Most Common Mistakes with Real-Time Software

Embedded Systems Conference
Boston, September 2001
Unfortunately, the same errors that force a workaround are

likely to resurrect themselves later in a different form. Any-

time there is any "glitch," it means something is wrong! Make

sure appropriate steps are taken to understand the problem. A

workaround may be valuable to ensure that a product is

shipped on time, but immediately after the deadline, take a bit

of extra time to identify the problem, to ensure it does not

show up again—such as during the next big demo.

The most common problems associated with glitches that

cause the program to crash or perform incorrectly just once

every few days or weeks are a race condition, memory cor-

ruption, deadlock, or priority inversion. Each of these prob-

lems is extremely difficult to track down, because they occur

randomly and leave very little evidence as to the true cause.

The solution is two-fold. For new applications, take precau-

tions during the design and implementation of the application

to minimize the possibility of any of these happening. A for-

mal code review might identify the problems whereas testing

will not (see Mistake #6). For addressing race conditions, this

means minimizing the number of global variables or shared

memory segments, minimizing preemption, and minimizing

the number of interrupt handlers. For memory corruptions,

use a tool such as Purify to identify all possible problems.

Since such a tool might not be available in the target environ-

ment, use it in the emulator environment to at least eliminate

most problems. To avoid deadlocks, consider using IPC

mechanisms that provide deadlock-free solutions, such as the

state-based communication we described in #13 or the prior-

ity ceiling protocol. To minimize the chance of priority inver-

sion, don’t use interrupts, and use proper real-time scheduling

methods.

Despite all the precautions, the problems might still arise,

and they require debugging. To pinpoint the problems, sev-

eral techniques can be used.

To track down a randomly-occurring problem that might be

a result of a race condition, put a “sleep()” command before

and after every access to a shared data item. This will obvi-

ously slow down the code tremendously, so be sure you are

executing code but with minimal power to the rest of the

application (e.g. turn off power to motors). If a race condition

does exist, it is much more likely to occur, since you will be

forcing the context switches to occur during the critical sec-

tions.

A common memory problem is stack overrun. To check for

this, initialize all of the memory allocated for the stack with a

non-zero and non-0xFF value. For example, put 0x55 every-

where. Run the code. Next time the glitch occurs, check to see

if there are still 0x55 in the memory. If not, then a stack over-

run did occur. You can even monitor the stack regularly in

this way to find the best size for the application.

For any type of random glitch, debugging might need to be

done over an extended period of time. When the glitch occurs,

make a note of the scenario in as much detail as possible. Add

some debugging code that might help zero in on the problem.

But since the problem only recurs occasionally, after the

debugging code is in, go back to whatever else you are work-

ing on. If that glitch occurs again, look at the debug output for

clues, and repeat by adding more debugging information. If

the embedded system has extra memory, debug output can

simply be copied into memory, and looked at only if neces-

sary. If there is very little memory but a spare digital I/O port

is available, the debugging output can be copied to that I/O

port, and captured by a logic analyzer. If the glitch occurs,

look at the logic analyzer output for clues.

There is no doubt that finding the cause of random glitches

is one of the hardest debugging tasks for an embedded system

programmer. Keep this in mind from the beginning, so as to

reduce the number of such errors that enter the system, and

ultimately reducing the debugging time to find the cause of

the errors.

#7 The first right answer is the only answer

Inexperienced programmers are especially susceptible to

assuming that the first right answer they obtain is the only

answer. Developing software for embedded systems is often

frustrating. It could take days to figure out how to set those

registers to get the hardware to do what they want. At some

point, though, it works. Once this happens, many program-

mers will remove all the debug code and put that code into the

module for good. Never shall that code change again.

Because it took so long to debug, nobody wants to break it.

Unfortunately, that first success is often not the best answer

for the task at hand. That step is definitely important, because

improving a working system is much easier than getting the

system to work in the first place. But improving the answer

once the first answer has been achieved is rarely done, espe-

cially for parts of the code that seem to work fine. Indirectly,

however, a poor design that remains unchanged might have a

tremendous effect, like using up too much processor time or

memory, or creating an anomaly in the timing of the system

if it executes at a high priority.

As a general rule of thumb, always come up with at least two

designs for anything. Quite often, the best design is in fact a

compromise of other designs. If a developer can only come up

with a single good design, other experts should be consulted

to obtain alternate designs.

#6 No code reviews

Many programmers, both novices and experts, guard their

code with the same secrecy that inventors guard patentable

ideas. This practice, unfortunately, is extremely damaging to

the robustness of any application. Usually, programmers

know they have messy code; hence they fear others seeing

and commenting on it. As a result, they hide it the same way

that children hide messy rooms from their parents.

To guarantee robustness, formal code reviews (also called

software inspections) must be performed. Code reviews

should be done regularly for every piece of code that goes into

the system. A formal review involves several people looking

over code and tracing it by hand on paper. Software engineer-

ing studies have shown that more bugs can be found in a day

of code reviews than a week of debugging.

The programmer should also get into the habit of doing self-

reviews. Many programmers write code, run it, and see what

happens—and if it does not work, they start debugging it,
D. Stewart, Embedded Research Solutions Page 9 of 13

Class 334
Twenty-Five Most Common Mistakes with Real-Time Software

Embedded Systems Conference
Boston, September 2001
without ever tracing it on paper. Spending one day hand-trac-

ing the code can save days or weeks of agonizing debugging.

Code reviews have the additional positive side effect of

increasing the number of people who understand the code,

thus preventing total reliance on a single employee.

#5 Nobody else here can help me

As most any teacher will confirm, you learn more about a

topic by teaching it.

Real-time programmers often feel helpless when they

encounter obstacles (which happens all the time) such as an I/

O device not working as described in the documentation.

Often, few others in the organization have the level of knowl-

edge required for this kind of programming, leaving these

programmers to solve the problem without assistance. Unfor-

tunately, this misconception that nobody else can help often

leads to the downfall of projects or quality of the application,

as adequate solutions might never be found. If no one else has

more expertise, the programmer should teach the material to

someone with less expertise, so that both the teacher and the

student can arrive at a better understanding of the problem.

Many organizations have new recruits who are willing to

learn new things to gain experience. The expert should

explain to such eager people how the program works and

what the problem is. The new person likely will not be able to

fully understand the problem. However, their questions may

expose an issue or problem that was overlooked by the expert

and may lead to a solution.

This approach also has an important side effect. It doubles

as a training technique so that when advanced programming

knowledge is required, there are more programmers qualified

to contribute.

#4 One Big Loop

When real-time software is designed as a single loop, there

is no flexibility to modify the execution time of individual

parts of the code. Few real-time systems need to operate

everything at the same rate. If the CPU is overloaded, one of

the methods to reduce utilization is to selectively slow down

only the less critical parts of the code.

Real-time systems should be implemented as concurrent

applications. For lower-end processors, use a flexible multi-

rate executive. For higher-end applications, use an RTOS

with limited or full preemption and appropriate tools to guard

against critical sections. In either case, the small overhead

that is added by the executive or RTOS is easily reclaimed by

executing each part of the code only at the rate it needs, rather

than executing all code at the fastest rate.

Developing software as a collection of small loops instead

of one big loop has the further advantage of providing good

modular decomposition into tasks, with data exchanges

between the modules being explicit. With proper design, it

may be possible to reuse some of the modules in other appli-

cations. In the one big loop scenario, however, it is doubtful

that any part of the software can be reused. Identifying the

design of software modules for reuse is described next.

#3 Too many inter-module and circular dependencies

The dependencies between modules in a good software

design can be drawn as a tree, as shown in Figure 2a. A

dependency diagram consists of nodes and arrows, such that

each node represents a module (such as one source code file),

and the arrows show dependencies between that node and

other modules. Modules on the bottom-most row are not

dependent on any other software module. To maximize soft-

ware reusability, arrows should always point downwards, and

not upwards or bidirectionally. For example, module abc
depends on module def if it has a #include "def.h" in the code,

or an extern declaration in the file abc.c to a variable or func-

tion defined in module def.c.

The dependency graph is a valuable software engineering

aid. Given such a diagram, it’s easy to identify what parts of

the software can be reused, create a strategy for incremental

testing of modules, and develop a method to limit error prop-

agation through the entire system.

Each circular dependency (a cycle in the graph) reduces the

ability to reuse the software module. Testing can only occur

for the combined set of dependent modules, and errors will be

difficult to isolate to a single module. If the graph has too

many cycles, or a major cycle exists where a module at the

bottom-most level of the graph is dependent on the top-most

module, then not a single module is reusable.

Figure 2b and Figure 2c both include circular dependencies.

If a circular dependency is inevitable, Figure 2b is much pre-

ferred over Figure 2c, since in Figure 2b reusing some of the

modules is still possible. The restriction in Figure 2b is that

modules pqr and xyz can only be reused together. In

Figure 2c, however, reusing any subset of modules isn’t pos-

sible, as too many dependencies exist between modules. Fur-

thermore, a major circular dependency exists, where module

xyz-which should not be dependent on anything because it is

at the bottom of the graph-is dependent on abc. It only takes
one such major cycle to make the entire application non-reus-
able. Unfortunately, most existing applications are more sim-

ilar to Figure 2c than to Figure 2a or Figure 2b, hence the

difficulty in reusing software from existing applications.

To best use dependency graphs to analyze the reusability

and maintainability of software, write code that makes it easy

to generate the graph. That is, all extern declarations for

exported variables in functions in a module xxx should be

defined in file xxx.h. In module yyy, simply looking at what

files are #included allows determination of that module’s

dependencies. If this convention is not followed, and an

extern declaration is embedded in yyy.c instead of #include-
ing the appropriate file, then the dependency graph will be

erroneous and an attempt to reuse code that appears to be

independent of the other module will be difficult.

A leading cause of circular dependencies is a single

#included file with all of the system’s constants, variable def-

initions, type definitions, and/or function prototypes is a sure

sign of non-reusable code. During a code review, it takes only

five seconds to spot code that cannot be reused, if such a file

exists. The key to spotting these problems almost immedi-

ately is the existence of an include file, often called globals.h,
D. Stewart, Embedded Research Solutions Page 10 of 13

Class 334
Twenty-Five Most Common Mistakes with Real-Time Software

Embedded Systems Conference
Boston, September 2001
but other common names are project.h, defines.h, and proto-
types.h. These files include all of the types, variables,

#defines, function prototypes, and any other header informa-

tion that is needed by the application. Programmers will claim

that it makes their lives much easier because in every module

all they need to do is include a single .h file in every one of

their .c files. Unfortunately, the cost of this laziness is a sig-

nificant increase in development and maintenance time, as

well as many circular dependencies that make it impossible to

use any subset of the application in another application.

The right way is to use strict modular conventions. Every

module is defined by two files, the .c and the .h. Information

in the .h file is only what is exported by the module. Informa-

tion in the .c file is everything that isn’t exported. More

details on enforcing strict modular conventions are given

next.

#2 No naming and style conventions

For non-real-time system development, this mistake is #1.

Creating software without naming and style conventions is

equivalent to building homes without any building codes.

Without conventions, each programmer in an organization

does his or her own thing. The problems arise whenever

someone else has to look at the code (and if an organization

properly does code reviews as in mistake #6, this will be

sooner, not later). For example, suppose the same module is

written by two different programmers. The code of one pro-

grammer takes one hour to understand and verify, while the

same code by the other programmer takes one day. Using the

first version instead of the second is an 800% increase in pro-

ductivity!

Naming and style conventions are the primary factors that

affect readability of code. If strict naming conventions are

followed, a reader will know what the symbol is, where it is

defined, and whether it is a variable, constant, macro, func-

tion, type, or some other declaration just by looking at it. Such

conventions must be written, just as a legend must appear on

a design diagram, so that any reader of the code knows the

conventions.

An organization should insist that all programmers use the

naming conventions in all parts of their projects. Part of a

code review should include checking for adherence to the

conventions. If necessary, a company can hold back merit

raises from programmers who do not follow the conventions;

it may seem like a silly reason to refuse to grant a raise, until

you take into consideration that a programmer not following

the conventions may cost the company $50,000 the following

year due to all of the extra labor expended by other employees

to understand and modify the code. If employees prefer to use

their own conventions, that’s their tough luck. Just as archi-

tects must follow strict guidelines to get their designs

approved by the building inspector, a software engineer

should follow strict guidelines as established by the company

to get their programs approved by the quality assurance

department.

The most fundamental questions with respect to software

maintainability are the following:

• If a customer reports a software error, how quickly can it

be found?

• If a customer requests a new feature, how quickly can it

be added?

• Once the error is identified, how many lines of code must

be changed to fix it?

Obviously, answers to the above questions depend on the

specific application and nature of the problems. However,

given two pieces of code that have the same functionality and

need the same fix, which program’s conventions will help do

the job more quickly? These criteria help to evaluate software

maintainability, and should be used when comparing not only

designs, but also styles and conventions.

Table 1 shows an excerpt of the C naming conventions that

are enforced at our organization. Researchers and engineers

who have learned these conventions quickly appreciate the

abc

def ghi

jkl

mno pqr uvw

xyz

stu

(a) Dependency graph with no

abc

def ghi

jkl

mno pqr uvw

xyz

stu

(b) Dependency graph with cycle

abc

def ghi

jkl

mno pqr uvw

xyz

stu

(c) Dependency graph with a
between ghi and jkl

Figure 2: Examples of dependency graphs, without and with cycles. An objective in developing good software is to decompose code into modules to
minimize or eliminate circular dependencies. In each diagram, the modules with thick borders should modules that are directly or indirectly dependent
on module jkl, and would be needed to test or reuse jkl, and could be affected by any problem in jkl.

cycles. This is desirable. a major circular dependency
D. Stewart, Embedded Research Solutions Page 11 of 13

Class 334
Twenty-Five Most Common Mistakes with Real-Time Software

Embedded Systems Conference
Boston, September 2001
more readable code they produce, especially after they are

forced to read code written by someone else who does not fol-

low any written convention.

Whether an organization favors these conventions or its

own doesn’t matter; what is important is that the naming con-

ventions can be backed by a good reason why each specific

convention was selected, they are written and distributed to

all developers, and they are strictly adhered to by all program-

mers.

Functions should always be given names such that each

exported function has a converse, as shown in Table 2. Two

important benefits are gained by defining functions in pairs.

It forces the designer to ensure completeness and allows the

designer to create the two portions simultaneously, using

each part to test the other. It also ensures that pairings are con-

sistent; for example, that the converse of send is not read, and

that the converse of create is not finish (see Table 2). If a

designer is creating the code for reading and writing at the

same time, both pieces of code can be tested by writing from

one process and reading from the other.

To create software so that further decomposition can be

done quickly if it’s required, put names in an order that

decomposes the module or ADT into sub-parts, each of which

is described by a known, and a single verb in the name as the

last word in the compounded function name. Do not order the

words in the way that they would naturally be read. For exam-

ple, if module xyz has a secondary structure xyzFile_t, then

functions that operate on that structure should be named the

following:

xyzFileCreate
xyzFileDestroy
xyzFileRead
xyzFileWrite

and not

xyzCreateFile
xyzDestroyFile
xyzReadFile
xyzWriteFile

Note that the last word for any function name should be the

verb that represents the action performed by the function. The

middle words are typically nouns that represent the object(s)

within the module on which the verbs act.

This convention makes it obvious that xyzFile is a sub-set

of the xyz module. Furthermore, if the module xyz grows and

the designer decides to further decompose it, it’s easy to move

the entire xyzFile subset to a separate module-say, xyzfile. A

global search and replace of xyzFile to xyzfile would result in

all the necessary changes, and within a few minutes, the

decomposition would be complete. If this naming convention

is not used, then trying to perform the same task of renaming

all the symbols when the xyzFile subset of xyz is placed in

another file would be very tedious.

While having a short cryptic module name is acceptable

because the name serves as a prefix to everything, you should

only use obvious abbreviations for function names. If an

obvious abbreviation isn’t available, use the full name. If an

abbreviation is used, use it everywhere for the project.

For example, always use xyzInit as the initialization code

for module xyz, rather than xyzInitialize. Or use either snd and

rcv, or send and receive, but don’t mix the two. Examples of

other common abbreviations include intr for interrupt, fwd for

forward, rev for reverse, sync for synchronization, stat for sta-

tus, and ctrl for control. An abbreviation like trfm, on the

other hand, supposedly short for transform, is not recom-

mended because the abbreviation isn’t obvious and readabil-

ity is therefore compromised. In such a case, the function

name without abbreviation, xyzTransform(), would be a bet-

ter choice. Uncommon abbreviations are difficult to follow

when reviewing the code. Using the slightly longer names is

much better and avoids confusion as to what the function

does.

#1 No measurements of execution time

Many programmers who design real-time systems have no

idea of the execution time of any part of their code. For exam-

Table 1: Naming conventions to improve software maintainability for C-language programs

Symbol Description Symbol Description

xyz.h File that contains header info for module ‘xyz’. Anything

defined in this file MUST have an xyz or XYZ prefix, and

must be something that is exported by the module.

xyc.c File that contains code for module ‘xyz’

xyz_t Primary data type for module xyz. Defined in xyz.h _abcde_t Internally-defined type. Must be defined at top of

xyz.c.xyzAbcde_t Secondary type “Abcde” for module xyz. Defined in

xyz.h.

xyzAbcde() Function “Abcde” that applies to items of type xyz_t. Abcde() Internal function. Must be defined as static. Prototype

at top of xyz.c. Function declared at bottom of xyz.c,

after all the exported functions have been declared.

XYZ_ABCDE Constant for module XYZ. Must be defined in xyz.h. abcde Local variable. Must be defined inside a func-

tion.Fields within a structure are also defined using this

convention.

XYZ_abcde Constant for module XYZ within an enumerated type. ABCDE
_ABCDE
_ABCDE_FGH

Local constant internal to module. Must be defined at

top of xyz.c. The third version allows the use of multi-

ple words. For example, _ABCDE_FGH. If just

“ABCDE_FGH”, is used, it implies module “abcde”

XYZ_ABCDE() #define’d macro for module XYZ. Must be defined in

xyz.h.

xyz_abcde Exported global variable defined in module xyz. Must be

defined in xyz.c, and declared as extern in xyz.h. Global

_abcde Internal global variable. Must be defined as “static” at

top of xyz.c. Note that even thouse these are internal,
D. Stewart, Embedded Research Solutions Page 12 of 13

Class 334
Twenty-Five Most Common Mistakes with Real-Time Software

Embedded Systems Conference
Boston, September 2001
ple, my colleagues and I were asked to help a company iden-

tify occasionally erratic behavior in its system. From our

experience, this problem is usually a result of a timing or syn-

chronization error. Thus our first request was simply for a list

of processes and interrupt handlers in the system, and the exe-

cution time in each. The list of names was easy for them to

generate, but they had no measured execution times; rather,

only estimates by the designers before the code was imple-

mented.

Our first order of duty was to measure the execution time

for each process and interrupt handler. We quickly discovered

that the cause of the erratic behavior was system overload.

Engineers at the company replied that they already knew that.

But they were surprised to hear that the idle process was exe-

cuting over 20% of the time. (When measuring everything,

you must include the idle task.) The problem was that their

execution time estimates were all wrong. One interrupt han-

dler, with estimated execution time of a few hundred micro-

seconds, took six milliseconds!

When developing a real-time system, measure execution

time every step of the way. This means after each line of code,

each loop, each function, and so on. This process should be

continuous, done as often as testing the functionality. When

execution time is measured, correlate the results to the esti-

mates; if the measured time doesn’t make sense, analyze it,

and account for every instant of time.

Some programmers who do measure execution time wait

until everything is implemented. In such cases, there are usu-

ally so many timing problems in the system that no single set

of timing measurements will provide enough clues as to the

problems in the system. The operative word in real-time sys-

tem is time.

One obstacle that many engineers face with timing code is

not knowing where are the starting and end points of each

process. If code is implemented in such a way that the start

and end points are not obvious, then the code must be rede-

signed. It is an indication of poor decomposition and likely

many circular dependencies. While it may seem extreme to

immediately suggest rewriting the code, consider how much

time can be wasted in making the real-time system work if it

is not possible to accurately measure time!

Summary

I have presented the 25 most common problems in real-time

software development, from my perspective as both an indus-

try consultant and an academic professor. Correcting just one

of these mistakes in a project can lead to weeks or months of

savings in manpower (especially during the maintenance

phase of a software life cycle) or can result in a significant

increase in the quality and robustness of an application. If

many of your mistakes are common ones, and you can find

and fix them, potential company savings or additional profits

can be in the thousands or millions of dollars.

For each mistake listed, I encourage you to ask yourself

about your current methods and policies, compare them to the

reported mistakes and the proposed alternatives, and decide

for yourself if there are potential savings for your project or

company. I expect you’ll find potential for improved quality

and robustness at no extra cost, just by modifying some of

your current practices.

References
[1] M. Moy and D. B. Stewart, “An engineering approach to

determining sampling rates for switches and sensors in

real-time systems,” in Proc. of Real-Time Applications
Symposium, Washington DC, June 2000.

http://www.embedded-zone.com/bib/conf/rtas2000.shtml
[2] D. Stewart, “Designing Software Components for Real-

Time,” Embedded Systems Programming, v.13, n.13, pp.

100-138, December 2000.

http://www.embedded-zone.com/bib/mags/esp2000.shtml
[3] D.B. Stewart, R.A. Volpe, and P.K. Khosla, “Design of

dynamically reconfigurable real-time software using port-

based objects,” IEEE Trans. on Software Engineering,

v.23, n.12, December 1997.

http://www.embedded-zone.com/bib/journals/tse97.shtml
[4] M. Steenstrup, M. Arbib, and E.G. Manes. Port Automata

and the Algebra of Concurrent Processes, Journal of Com-
puter and System Sciences, v. 27, n.1, pp. 29-50, August

1983.

Table 2: Examples of always defining functions in pairs.

xyzCreate ↔ xyzDestroy xyzInit ↔ xyzTerm xyzStart ↔ xyzFinish xyzOn ↔ xyzOff

xyzAlloc ↔ xyzFree xyzSnd ↔ xyzRcv xyzRead ↔ xyzWrite xyzOpen ↔ xyzClose

xyzStatus ↔ xyzControl xyzNext ↔ xyzPrev xyzUp ↔ xyzDown xyzStop ↔ xyzGo
D. Stewart, Embedded Research Solutions Page 13 of 13

http://www.embedded-zone.com/bib/conf/rtas2000.shtml
http://www.embedded-zone.com/bib/mags/esp2000.shtml
http://www.embedded-zone.com/bib/journals/tse97.shtml

	Introduction
	#25 “My problem is different”
	#24 Delays implemented as empty loops
	#23 Tools choice driven by marketing hype, not by evaluation of technical needs
	#22 Large if-then-else and case statements
	#21 Documentation was written after implementation
	#20 Interactive and incomplete test programs
	#19 Software engineers not participating in hardware design
	#18 No emulators of target application
	#17 Error detection and handling are an afterthought and implemented through trial and error
	#16 Generalizations based on a single architecture
	#15 Optimizing at the wrong time
	#14 Reusing code not designed for reuse
	#13 Using blocking forms of message passing
	#12 No memory analysis
	#11 Improper use of Global Variables
	#10 Indiscriminate use of interrupts
	#9 Poor software design diagrams
	#8 “It’s just a glitch.”
	#7 The first right answer is the only answer
	#6 No code reviews
	#5 Nobody else here can help me
	#4 One Big Loop
	#3 Too many inter-module and circular dependencies
	#2 No naming and style conventions
	#1 No measurements of execution time
	Summary
	References

