Process Coordination
and Shared Data

Lecture 26

Embedded Systems

In These Notes ...

Sharing data safely

— When multiple threads/processes interact in a system, new
species of bugs arise

1. Compiler tries to save time by not reloading values which it
doesn’t realize may have changed

2. Switching between threads can lead to trying to operate upon
partially updated variables/data structures

— We must design the system to prevent or avoid them

Operating System support for Process Coordination
— Monitors

— When multiple thread/processes interact in a system, new species
of bugs arise

— We must design the system to prevent or avoid them
— Bugs and solutions

. 4
‘1 r: ITJZQC \ZMATES LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4

Volatile Data

Compilers assume that variables in memory do not change
spontaneously, and optimize based on that belief

— Don’t reload a variable from memory if you haven’t stored a value there
— Read variable from memory into register (faster access)
— Write back to memory at end of the procedure, or before a procedure call

This optimization can fail
— Example: reading from input port, polling for key press
« while (SW_0) ; will read from SW_0 once and reuse that value

« Will generate an infinite loop triggered by SW_0 being true

Variables for which it fails
— Memory-mapped peripheral register — register changes on its own
— Global variables modified by an ISR — ISR changes the variable

— Global variables in a multithreaded application — another thread or ISR
changes the variable

. 4
‘1 r: The WILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems
e

UNC CHARLOTTE

The Volatile Directive

Need to tell compiler which variables may change outside of
their control

— Use volatile keyword to force compiler to reload these vars from
memory for each use
volatile unsigned int num_ints;

— Pointer to a volatile int
volatile int * var; // or
int volatile * var;

— Now each C source read of a variable (e.g. status register) will
result in a assembly language move instruction

— Good explanation in Nigel Jones’ “Volatile,” Embedded Systems
Programming July 2001

L 2
‘1 r: ITJZec \ZLLALI‘{IIAE\;IT%FATES LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4

CooEeration and Sharing Information

Program consists of one or more threads/processes

Any two threads/processes are either independent or
cooperating

Cooperation enables

— Improved performance by overlapping activities or working in
parallel

— Better program structure (easier to develop and debug)
— Easy sharing of information

Two methods to share information
— Shared memory
— Message passing

L 2
‘1 r: ITJZec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4

Shared Memorx

|s practical when communication cost is low

Low-end embedded systems have no memory protection
support
— Threads can access the data directly — e.g. global variables
— (Who needs seatbelts or airbags!)

UNIX and high-end embedded systems have memory protection
support
— Impossible to see other processes’ memory space by default
« E.g. virtual memory

— Establish a mapping between process’s address space to a named
memory object which can be shared across processes

— POSIX Threads (pthreads) APl is a standard for workstation
programming

. 4
‘1 r: The WILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems

UNC CHARLOTTE
~—

Message Passing

Most useful when communication cost is high
— Often used for distributed systems

Producer process generates message, consumer process
receives it

Each process must be able to name other process

Consumer is assumed to have an infinite receive queue
— Bounded queue complicates the programming

OS manages messages
Mailbox is a queue with only one entry

L 2
‘1 r: ITJZec \ZLLALI‘{IIAE\;IT%FATES LEE COLLEGE of ENGINEERING Embedded SyS tems
——

The Shared Data Problem

Often we want to split work between
ISR and the task code

Some variables must be shared to
transfer information

Problem results from task code using
shared data non-atomically

— An atomic part of a program is
non-interruptible

volatile unsigned int
tchi=0, tc=0;

#pragma INTERRUPT tc_isr

}

void tc_isr(void) {

tc++; if(ltc) tchi++;

unsigned long get_ticks(){

unsigned long temp;

.) _ _ 1 temp = tchi;
— A critical section (group of instructions) 2 temp <<= 16;
in a program must be executed atomically 4 temp += tc;
for correct program behavior ’
_ 5 return temp;
get_ticks() returns a long, formed by }
concatenating variable tchi and _
register tc Step | temp tchi tc
— If an interrupt occurs in get_ticks, 1 0x00000123 | 0x0123 Oxffff
we may get old value oftchiand 15 19x01230000 | 0x0123 OXFFFF
new value of tc
3 0x01230000 | Ox0124 0x0000

L 2
‘1 r: ITJZec \ZLLALI‘{IIAE\;IT%FATES LEE COLLEGE of ENGINEERING Embedded SyS tems
——

Critical Sections Lead to Race Conditions

Critical section: A non-re-entrant piece of code that can only be executed
by one process at a time. Some synchronization mechanism is required
at the entry and exit of the critical section to ensure exclusive use.

Re-entrant Code: Code which can have multiple simultaneous, interleaved,
or nested invocations which will not interfere with each other. This is
important for parallel processing, recursive functions or subroutines, and

interrupt handling.
— If invocations must share data, the code is non-reentrant. (e.g. using global
variable, not restoring all relevant processor state (e.g. flags))
— If each invocation has its own data, the code is reentrant. (e.g. using own
stack frame and restoring all relevant processor state)

Race condition: Anomalous behavior due to unexpected critical
dependence on the relative timing of events. Result of increment
example depends on the relative timing of the read and write operations.

. 4
‘1 rl ITJZQC \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems
e

Long Integer

long int ct;
void f1() {
ct++;
}
void £2 () {
if (ct==0x10000)
/* .. */

}

What if f2() starts running after
the f1’s add.w (resultingin a
carry) but before the adcf.w?

Race condition due to non-atomic
operation
— Data structures
— Large variables

. 4
‘1 r: {H}Gz \ZMATES LEE COLLEGE of ENGINEERING Embedded SyS tems
e

; void £1 ()
add.w #0001H, ct
adcf.w _ct+2

rts

; void £2 ()
cmp.w #0,_ct
jnz unequal
cmp.w #1,_ct+2
jnz unequal
; equal
unequal:

; unequal

Is Queue Access Atomic for Serial Example?

Size field is modified by both ;» Enqueue

enqueue and dequeue s q->Size++;

functions mov.w -2[FB],A0Q s q
mov.w -2[FB],Al :q

Does compiler generate code mov.w 0024H[AO],0024H[Al]

which is atomic? add.w #0001H,0024H[A1]

This code is very inefficient — ; Dequeue

the compiler vendor wants you ; g->S1ze--;

to buy the licensed and mov.w -3[FB],AQ ;g

optimized version mov.w -3[FB],Al ;g

mov.w 0024H[AO0],0024H[A1]
sub.w #0001H,0024H[A1]

L 2
‘1 r: ITJZec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4

Solution 1 — Disable InterruEts

Disable interrupts during critical section

Problems

Renesas syntax ->
#define ENABLE_INTS

{_asm(" FSET 1");}

#define DISABLE_INTS
{_asm(" FCLR I'");}

You must determine where the
critical sections are, not the compiler
(it's not smart enough)

Disabling interrupts increases the

response time for other interrupts unsigned long get_ticks(){

unsigned long temp;

DISABLE_INTS,

temp = tchi;

temp <<= 16;

temp += tc;
ENABLE_INTS,;

return temp;

What if interrupts were already
disabled when we called get_ticks?

Need to restore the interrupt masking
to previous value

L 4
N\

&E\ZMATES LEE COLLEGE of ENGINEERING Embedded Systems

Are InterruEts Currentlx Enabled?

FLG’s | flag (bit 6) #define I_MASK (0x0040)
— Enables/disables interrupts #define GET_INT_STATUS(x) {_asm(" STC
— Section 1.4 of ESM FLG,$$[FB]",x); X &= I_MASK;}

Need to examine flag register, but #define ENABLE_INTS {_asm(" FSET I'");}
how? #define DISABLE_INTS {_asm(" FCLR I");}

— Not memory-mapped

— Can’t access with BTST unsigned Tong get_ticks(){

Solution : :
_ unsigned long temp, iflg;

— STC: Store from control register :)

(ESM, p. 123) GET_INT_STATUS(ifl1g);

— Use a macro (CLPM, p. 98) to copy DISABLE_INTS;

the flag bit into a variable iflg in our ~ temp = tchi;
code (we copy the whole register, temp <<= 16;
then mask out the other bits) — nifty temp += tC;
feature! if (iflg)

— Later use that variable iflg to ENABLE_INTS;
determine whether to re-enable return temp;

interrupts }

L 2
‘1 r: ITJZec \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems
——

Solution 2 — ReEeatedlx Read Data

Keep reading until the function unsigned long get_seconds() {
returns the same value unsigned long templ, temp2;

— Easy here because get_seconds
returns an easily compared

value (a long) temp2 = tchi;

temp2 <<= 16;

Problems which limit this approach temp2 += tc;

— tc might be changing every clock do {
cycle, so get_ticks would never templ = temp2;
return. Loop time must be short temp2 = tchi;
compared with interrupt temp2 <<= 16;
frequency temp2 += tc;

— What if we wanted to compare } while (templ != temp2);
two structures? Would need a return tempZ;

function (slower, more code) }
— Compiler may optimize out code

L 2
‘1 r: ITJZec \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems
——

A Gotcha! TC keeEs changing!

See Ganssle’s “Asynchronicity” unsigned long get_ticks(){

Solution: after disabling interrupts, unsigned long temp, iflg;
do the timer C ISR’s work if unsigned templ, temp2;
needed GET_INT_STATUS(iflg);

Examine Interrupt Request bit of DISABLE_INTS;
tcic (timer C interrupt control temp2 = tc;
register), which indicates templ = tchi;
overflow if (ir_tcic) {

Increment counter if it did overflow templ++;

temp2 = tc;
}
if (iflg)

ENABLE_INTS;
temp = templ;
temp <<= 16;
temp += temp?2;
return temp;
}
2

‘1 r: ITJZec \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4

Solution 3 — Use a Lock

Relies on kernel/scheduler for efficiency

Define a lock variable (global) for each resource to
be shared (variable (inc. data structure), I/O
device)

— Lock is O if resource is available
— Lock is 1 if resource is busy
Functions agree to check lock before accessing
resource
— if lock is 0, can use resource
— iflock is 1, need to try again later
« if preemptive kernel is used, call kernel to
reschedule this thread later
 for non-preemptive kernel, call kernel to yield
processor to other threads
Enable interrupts when possible to reduce interrupt
latency
Some processors have atomic read-modify-write
instructions, avoiding need to disable interrupts
when accessing lock variable

L 4
\‘ r The WILLIAM STATES LEE COLLEGE of ENGINEERING
N UNC CHARLOTTE

Embedded Systems

' 4
e

DISABLE_INTS

if (lock_var == 0) {
lock_var = 1;
ENABLE_INTS
access resource
DISABLE_INTS
lock_var = 0;
ENABLE_INTS

} else {
ENABLE_INTS

// try again
Tater

}

Atomic Read-Modifx-Write Instructions

Test-and-set

— Read a memory location and, if the value is 0, set it to 1 and
return true. Otherwise, return false

— M16C: BTSTS dest (Bit test and set)

o/ <=1 if dest == 0 (“return value is Z flag”), else Z <=0
‘C<=1ifdest!=0,else C<=0
edest <=1

— BTSTC: Bit test and clear

Fetch-and-increment

— Return the current value of a memory location and increment the
value in memory by 1

Compare-and-swap

— Compare the value of a memory location with an old value, and if
the same, replace with a new value

L 2
‘1 r: ITJZec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4

Load-Locked= Store-Conditional

Load-Linked, Store-Conditional (LLSC)

— Pair of instructions may be easier to implement in hardware

— Load-linked (or load-locked) returns the value of a memory
location

— Store-conditional stores a new value to the same memory
location if the value of that location has not been changed since
the LL. Returns 0 or 1 to indicate success or failure

— If a thread is switched out between an LL and an SC, then the SC
automatically fails

4

‘1 r, ITJZec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems
——

SimEIe SEin Lock

Test-and-set
Spin_lock(lock) {
while (test-and-set(lock) == FALSE);
}

Spin_unlock(lock) {
lock = 0;
}
Simple, but slow and wastes time

— Requires OS to switch out this thread eventually and resume another, which
will eventually let spin_lock finish (we hope)

Typically use an OS call to improve efficiency, as OS knows immediately if
lock is available
— If available, grant lock to requesting thread and resume execution

— If not available, move requesting thread to wait queue and resume next
thread

L 2
‘1 r: ITJZec \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems
——

Solution 4 — Disable the Scheduler

If no ISR shares this data with the thread, can disable
scheduler, keeping it from switching to another thread

Interrupts are still enabled

Counter-productive
— We added the scheduler to provide efficient processor sharing
— This defeats the purpose of the scheduler!

L 2
‘1 rl ITJZec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4

Solution 5 — Use an OS Semaphore

Operating system typically offers mutual exclusion support

through semaphores
— Provide mutually exclusive access to a shared resource
— Signal occurrence of events
— Link resumption of threads to semaphore events
— Allow tasks to synchronize their activities

Behavior

— Thread requests semaphore to enter critical section

— If semaphore available (non-zero), thread enters critical section
and OS updates semaphore state (sets to zero or decrements)

— If semaphore unavailable (zero), OS moves thread to waiting
queue

— When a semaphore becomes available, OS moves the thread
waiting on it to the ready queue

— After critical section, thread releases semaphore

. 4
‘1 r: ITJZQC \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4

SemaEhore OEerations bx OS

Creation/initialization
Take/Wait/Pend/P

— Often includes time-out parameter. Wait returns error code,
allowing calling task to decide how to deal with lack of semaphore.

Release/Signal/Post/V
— If no task is waiting on semaphore, increment its value
— If any tasks are waiting on this semaphore, move the highest
priority (or longest-waiting) task to the Ready queue
Two types of Semaphores
— Binary (0 and 1)
« Only one thread can access shared resource at a time

— Counting (0 through N)
» Up to N devices can access shared resource at a time

L 2
‘1 r: ITJZec \ZLLALI‘{IIAE\;IT%FATES LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4

Using SemaEhores

Rules and Overview

— We create a semaphore to guard a shared _
resource to maintain data integrity long int counter;

— We must get permission to access the resource :
— We must release that permission when done void f1() {

Semaphore operations Take(counter_sem);
— Take (P) the-semaphore before (down, pend) counter++;
— Release (V) it after (up, post)
Value of semaphore indicates number of units of Release(counter_sem);

resource available for use

— Use a binary semaphore (1 or 0) to control access]
to a specific resource void f2() {

P: wait until semaphore is free, then take it (down) Take(counter sem)'
— If semaphore is free, take it and continue — !
executing counter++;
— Otherwise put calling thread into waiting state i
V: release the semaphore (up) Release(counter_sem);

— If a task is waiting for this semaphore, move that }
task to the ready queue

. 4
‘1 r ITJZE \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems

/4
~——

Solutions to Shared Data Problem

1. Disable task switches
— No effect on response time for interrupts
— Doesn’t handle ISRs
2. Disable interrupts
— Only method if ISR and task share data
— Fast — single instruction, typically
— Greedy — slows down response time for all other threads
3. Use a lock variable
« Poor performance if no kernel used
4. Disable scheduler
« Poor performance if no kernel used
5. Use OS-provided semaphore
— Some slowdown, but only significantly affects threads using them
— Need more software

L 2
‘1 rl ITJZec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems
——

Monitors

Semaphores have a few limitations: unstructured, difficult to program
correctly. Monitors eliminate these limitations and are as powerful as
semaphores

A monitor consists of a software module with one or more procedures,
an initialization sequence, and local data (can only be accessed by
procedures)

Structure

— The critical section of each concurrent task is replaced by a call to the
monitor operation

— An implicit semaphore is associated with each monitor, called the monitor
lock

— User doesn'’t directly access monitor lock
— Only one task is active in the monitor at any one time

— A call to a monitor operation results in the calling task acquiring the
associated semaphore

— If the lock is already taken, the calling task blocks until the lock is acquired

— An exit from the monitor operation releases the semaphore -- the monitor
lock is released so it can be acquired by a different task

I
L 4

‘1 r: ITJZec \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-25

A 4

Monitors and Programming Languages

Where are they?

— Most programming languages do
not specify concurrency and
synchronization mechanisms,
must be added

— Some do: Java, Concurrent class Counter {

Pascal, Modula 2, Modula 3 long value=0;
Details public synchronized void
— Identify method as a critical _
section using synchronized 'ncrement() {
keyword value++;

— The Java compiler inserts code

to ¥

« Get lock immediately after }
entering increment()

* Release lock immediately
before returning from it

L 4
‘Wr The WILLIAM STATES LEE COLLEGE of ENGINEERING Embedded Systems 20_26

UNCCHARLOTTE
e

Deadlock

A needs resources X and Y

B needs resources X and Y A()Igck(X);
Sequence leading to deadlock lock(Y); Context

- A requests and gets (locks) X .

— context switch unlock(Y); Switch

_ Blocks Y unlock(X);

- B requests X, doesn’t get it, ;

leading to.:. B() {

— context switch lock(Y

- AcantgetyY lock(X);

- Bcantget X) > B never
unlock(X); gets X
unlock(Y);

)

L 2
‘1 rl ITJ}Ifc WILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-27

~——

Deadlock gCont'dz

Deadlock: A situation where two or more processes are
unable to proceed because each is waiting for one of the
others to do something.

Livelock: When two or more processes continuously change
their state in response to changes in the other process(es)
without doing any useful work. This is similar to deadlock
In that no progress is made but differs in that neither
process is blocked or waiting for anything.

Deadlock can occur whenever multiple parties are competing for
exclusive access to multiple resources -- what can be done?
— Deadlock prevention
- Deadlock avoidance
- Deadlock detection and recovery

4
‘1 r: ITJZec \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-28
e

Deadlock Prevention

Deny one of the four necessary conditions

— Make resources sharable
* No mutual exclusion

— Processes MUST request ALL resources at the same time.
« Either all at start or release all before requesting more
* “Hold and wait for” not allowed
» Poor resource utilization and possible starvation

— If process requests a resource which is unavailable

* It must release all resources it currently holds and try again
later

 Allow preemption
» Leads loss of work
— Impose an ordering on resource types.
» Process requests resources in a pre-defined order
« No circular wait
» This can be too restrictive

. 4
‘1 r: ITJZec \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-29

A 4

More Deadlock Strategies

Avoidance

— Allow necessary conditions to occur, but use algorithms to predict
deadlock and refuse resource requests which could lead to
deadlock — Called Banker’s Algorithm

— Running this algorithm on all resource requests eats up compute
fime
Detection and Recovery

— Check for circular wait periodically. If detected, terminate all
deadlocked processes (extreme solution but very common)

— Checking for circular wait is expensive
— Terminating all deadlocked processes might not be appropriate

L 2
‘1 r: ITJZec \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-30

A 4

Scheduﬁng

Choosing which ready thread to
run next

Common criteria -

— CPU Utilization —fraction of time is
the CPU busy

— Throughput — number of tasks are
completed per unit time { }

— Turnaround time — time delay from
task first being submitted to OS to
finally completing

— Waiting time — amount of time a
task spends in waiting queue

— Response time — time delay from
request submission to first
processing in response to that
request []

I
L 4

‘1 r: ITJZec \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-31

A 4

Common Scheduling Algorithms

First-Come, First Served (FCFS)

— All queues operate as strict FIFOs without priority
— Problems: large average delay, not preemptive

Round Robin: add time-sharing to FCFS

— At end of time tick, move currently running task to end of ready queue

— Problems: Still have a large average delay, choosing time-tick is trade-
off of context-switching overhead vs. responsiveness

Shortest Job First (SJF)

— Job = process

— SJF is provably optimal in minimizing average waiting time

— Problem: How do we determine how long the next job will take?
» Could predict it based on previous job?

L 2
‘1 r: ITJZec \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-32

A 4

Prioritx Scheduling

Run the ready task with
highest priority
Define priority
— Internal: Time limits, memory
requirements
— External: Importance to
application, fees paid,
department submitting task
Problem: indefinite blocking
(starvation)

— Low level processes may never get to run in heavily loaded
system

— Two outcomes
» Processes run during winter break
» Processes disappear when computer eventually crashes

4
‘1 ’/',' ITH%GE \ZILLLAM STATES LEE COLLEGE of ENGINEERING Embedded Sys tems 20-33
e

From OS to RTOS

Traditional (non-real-time) Operating System
— Hard to predict response time...

— Hard to guarantee that a task will always run
before its deadline

Real-Time Operating System

— Easy to determine that a task will always run
before its deadline

— Designed for periodic tasks
What does Real-Time mean?

Real-Time
means
right now.

Late
answers
are wrong
answers!

L 4
‘1 r: ITJZec \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded Sys tems 20-34
A4

Scheduling — Selecting a Ready task to run

Goals
— Meet all task deadlines
— Maximize processor utilization (U)
« U = Fraction of time CPU performs useful work
 Limit scheduling overhead (choosing what to run next)
 Limit context switching overhead

Assigning priority based on importance doesn’'t work —
why not?
How do we assign priorities to task?

— Statically — priority based on period (doesn’t change)
— Dynamically — priority based on time left (changes)

L 2
‘1 r: [Tjgec WILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-35

A 4

Definitions for Task i

*Task execution time = T,

*Task execution period = 7;: time between arrivals

Utilization = fraction of time which CPU is used
— Forataski T

— Overall, for all ntasks in the system

o 1
U—;;

*Completion Time = time at which task finishes

*Critical Instant = time at which task’s completion time is
maximized. All tasks arrive simultaneously.

*Schedulable = a schedule exists which allows all tasks to meet
their deadlines, even for the critical instant

. 4
‘1 r: {Iﬁe }A%ATES LEE COLLEGE of ENGINEERING Embedded Svstems 20-36

Rate Monotonic Scheduling

Assumptions

— Tasks are periodic with period 7;
— Single CPU

7-Conz‘exz‘SWiz‘ch = Tscheduler= 0
— No data dependencies between tasks

— Constant process execution time T,
— Deadline = end of period = 7;

Assign priority based on period (rate)
— Shorter period means higher priority

L 2
‘1 rl [Tjgec WILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-37

~——

Processor Behavior — Graphical Analysis

0 1 2 7 8 9 10 11 12
T/nTe
P1 R1 R1
po ﬁ
Task Exec. Time T Period t Priority
P1 1 4 High
P2 2 6 Medium
P3 3 12 Low

LEGE of ENGINEERING Embedded Systems

20-38

Exact Schedulabilitx Test for Task i

Account for all processing at critical instant
Consider possible additional task arrivals
a, = nth estimate of time when task / completes

Loop ;
— Estimate higher priority job
arrivals, compute completion Clo o E Tj
time —0
— Recompute based on J=
any new arrivals _ —
lterate until i S
— n
— a,>7;: not schedulable an+1 — Tz —+ T
— a,=a,_, <=t;: schedulable L T . /
Jj=0 j

L 4
‘1 r: ITJZec \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-39
A4

Exact Schedulability Test for Example

a, =) T, =1+2+3=6

j=0
i—1]]
a, =3+ gTJ=3+ Ole14] O lv2=34242=7
0| T 4 6
i—1 [7] 7]
a,=3+) lTJ.=3+ Tt L s 223424429
| T = 6
i—1 B
a; =3+ 2 =34 2 k14| 2 [# 2234344210
’ .|’ 4 6
i=0] %

-~
|
p—

3+
j

a,

Il
)

10

! - 6

10 T =3+ E]>¥<1+{—}<2:3+3+4:10
T.
J

Iterate until a,,

= da

a; =a, < 12, so system is schedulable

ATES LEE COLLEGE of ENGINEERI

e Embedded Systems 20-40

Utilization Bound for RMS

Utilization U for ntasks
— Fraction of time spent on tasks

Maximum utilization U,,,, for mtasks

— Max. value of U for which we can
guarantee RMS works

Utilization bound test

- U < Uy, always
schedulable with RMS

- UMax< U < 10

inconclusive
— U > 1.0: Not schedulable

Why is Uy, SO small?

Maximum

Utilization

o (e) (e») (e»)
o v r & o —

(approaches In(2))
Conservative

o

‘1 r: ITJZec \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4

20
Number of Tasks

30

20-41

40

ExamEIe of Scheduling with RMS and UB

Task Exec. Time T Period 1 Priority
P1 1 4 High
P2 2 6 Medium
P3 3 12 Low
U:T1+T2+T3 :1+2+) =0.833

T, 7, 7, 4 6 12

‘1 r: [Tjgec WILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-42

RMS Sometimes Fails Under 100% Utilization

For some workloads with utilization below 100%, RMS priority allocation can fail
Tasks P1, P2 have later deadlines than P3 yet preempt it due to their shorter periods

Thread Exec. Time T Period t Priority
P1 1 8 High
P2 1 9 Medium
P3 9 12 Low
P1 | P2 P1 P2 7
0 1 2 3 4 5 6 7 8 910 11 12\
1 Tlme 21 issed
Deadline
2 R2

Counter-example provided by C. Palenchar

L 2
‘1 rl [Tjgec WILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-43

~——

Earliest Deadline First

Can guarantee schedulability at up to 100% utilization

Can’t use Exact Schedulability Test for EDF

— Sum up all possible higher priority tasks, but priority depends on
how close deadlines are!

— Can we modify the test to deal with this?

How does the kernel keep track of upcoming deadlines?
— Can determine priority when inserting task into ready queue

* Need to search through queue to find correct location (based
on deadline)

— Can determine which task to select from ready queue

* Need to search through queue to find earliest deadline
— Both are up to O(n) search time

« Can also do binary search tree

. 4
‘1 r: ITJZec \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-44

A 4

Earliest Deadline First ExamEIe

Thread |Execution Time T Period 1

P1 1 4
P2 2 6
P3 3 12

0 1 2 T 7 8 9 10 11 12
ime

pP1 21 ITI =1

R2

‘1 rl ITJ};;ZC WILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-45

System Performance During Transient Overload

RMS — Each task has fixed priority.
— This priority determines that tasks will be scheduled consistently
» Task A will always preempt task B if needed

» Task B will be forced to miss its deadline to help task A
meet its deadline

EDF — Each task has varying priority.

— This priority depends upon when the task’s deadline is, and
hence when the task becomes ready to run (arrival time)

« Task B may have higher priority than A depending on arrival
times

 To determine whether task A or B will miss its deadline we
need to know their arrival times

L 2
‘1 r: ITJZec \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20-46

A 4

