Sharing the Processor:
A Survey of Approaches to
Supporting Concurrency

Todax

Topic - How do we make the processor
do things at the right times?

— For more details see Chapter 5 of D.E.
Simon, An Embedded Software Primer,
Addison-Wesley 1999

There are various methods; the best fit
depends on...

— system requirements — response time

— software complexity — number of threads of
execution

— resources — RAM, interrupts, energy
available

An Embedded
Software Primer

A
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING 2
AN # UNCCHARLOTTE

RTOS Cult De-Programming

Real-Time
Operating
How do we schedule the tasks System
on the CPU?
An infinite loop in main &
Real-time operating system ygrra A
Is there anything else j y
available? ncognita
while (1) {
)

Definitions

Other

processing
| |

< Ttask
Scheduler =l [
Task or ISR Code

\ 4

Latency

a
\ 4

Response
Time

a
\ 4

— Treiease(l) = Time at which task i is becomes ready to run

— Tresponsell) = Delay between request for service and completion of
service for task i

— T,(l) = Time needed to perform computations for task i
— T,gg(i) = Time needed to perform interrupt service routine i

\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

Round-Robin/SuEer-LooE

Extremely simple void main (void) {
— No interrupts while (TRUE) {

— No shared data problems if (device A ready())
service_device_A();

_ }
Poll each device (if if (device_B_ready()) {

(device_A;ready())) service_device B();

T }
Service it with task code when if (device C_ready()) {

needed service device C();
}

\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN

UNCCHARLOITE
=

ExamEIe Round-Robin AEEIication

void DMM Main (void) {
enum {OHMS 1, ... VOLTS 100} SwitchPos;
while (TRUE) {
switch (SwitchPos) {
case OHMS 1:
ConfigureADC (OHMS_1) ;
EnableOhmsIndicator () ;
x = Convert () ;
s = FormatOhms (x) ;
break;

case VOLTS 100:
ConfigureADC (VOLTS_100);
EnableVoltageIndicator();
x = Convert () ;
s = FormatVolts (x);
break;

}
DisplayResult (s);
Delay (50);
}
}

A

\‘ ’ The WILLIAM STATES LEE COLLEGE of ENGINEERING 6
AN /4

UNC CHARLOTTE
“——

Sample Application - Network Videophone

Video

— 30 frames/s

— 360 x 240 images

— Compress/

Decompress with

MPEG-2

Audio

— 8 kHz sampling

— Compress with

GSM 06.10

Processor

— 3000 MIPS

Tasks have

Service | Direction | Function WCET Deadline
Video | Send SampleFrame I ms 33.3 ms
CompressFrame 2’7 ms 33.3 ms
SendFrame 0.1 ms 33.3 ms
Receive ReceiveFrame 0.1 ms 33.3 ms
DecompressFrame | 2.7 ms 33.3 ms
DisplayFrame I ms 33.3 ms
Audio | Send ReadMicBuffer 0.001 ms | 20 ms
CompressAudio 0.160 ms | 20 ms
SendAudio 0.001 ms | 20 ms
Receive ReceiveAudio 0.001 ms | 20 ms
DecompressAudio | 0.160 ms | 20 ms
LoadAudioBuffer 0.001 ms | 20 ms

deadlines

A
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN /4

UNC CHARLOTTE
“——

Scheduling NV with Round-Robin

Round robin works for either void main() {
video or audio, but not both while (TRUE) {

Need to split up video if (TimeToSample) ({
CompressFrame () SampleFrame () ;
CompressFrame () ;

SendFrame () ;

}
if (FrameWaiting) {

CompressFrame: 27 ms ReceiveFrame () ;
F =IRMB DecompressFrame () ;
I CA DisplayFrame () ;
| SA }

All audio tasks: Deadline is 20 ms
from beginning of first task

\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN

UNCCHARLOITE
“——

Limitations of Round-Robin

Architecture supports multi-rate systems very poorly

— Voice Recorder: sample microphone at 20 kHz, sample switches at 15
Hz, update display at 4 Hz. How do we do this?

Polling frequency limited by time to execute main loop
— Can get more performance by testing more often (A/Z/B/Z/C/Z]...)

— This makes program more complex and increases response time for
other tasks

Potentially Long Response Time
— |n worst case, need to wait for all devices to be serviced

- maX(response (])) Z task (t)
Fragile Architecture

— Adding a new device will affect timing of all other devices
— Changing rates is tedious and inhumane

A

\‘ ’, The WILLIAM STATES LEE COLLEGE of ENGINEERING 9
\ UNC CHARLOTTE

Event-Triggered using Interruets

Very basic architecture, useful for simple low-power devices,
very little code or time overhead

Leverages built-in task dispatching of interrupt system

— Can trigger ISRs with input changes, timer expiration, UART data
reception, analog input level crossing comparator threshold

Function types

— Main function configures system and then goes to sleep
« If interrupted, it goes right back to sleep

— Only interrupts are used for normal program operation

Example: bike computer
— Int1: wheel rotation
— Int2: mode key
— Int3: clock
— Qutput: Liquid Crystal Display

- ‘ ’, The WILLIAM STATES LEE COLLEGE of ENGINEERING 1 O
AN # UNCCHARLOTTE

Bike ComEuter Functions

ISR 1: ISR 2: ISR 3:
Reset Wheel rotation Mode Key Time of Day Timer
Configure timer, rotations++; mode++; cur_time ++;
inputs and if (rotations> mode = mode % lcd_refresh--;
outputs R_PER_MILE/10) { NUM_MODES; if (lcd_refresh==0) {
tenth__miles++; return from interrupt; || convert tenth_miles
cur_time = 0; rotations = 0; and display
rotations = O; } convert speed
tenth_miles = 0; speed = and display
circumference/ if (mode == 0)
while (1) { (cur_time — prev_time); convert cur_time
sleep; compute avg_speed,; and display
} prev_time = cur_time; else
return from interrupt convert avg_speed
and display
lcd_refresh =
LCD_REF_PERIOD
}

\‘ ’, The WILLIAM STATES LEE COLLEGE of ENGINEERING 1 1
AN # UNCCHARLOTTE

Limitations of Event-Triggered using Interrupts

All computing must be triggered by an event of some type
— Periodic events are triggered by a timer

Limited number of timers on MCUs, so may need to
iIntroduce a scheduler of some sort which
— determines the next periodic event to execute,
— computes the delay until it needs to run
— Initializes a timer to expire at that time
— goes to sleep (or idle loop)

Everything (after initialization) is an ISR
— All code is in ISRs, making them long

— Response time depends on longest ISR. Could be too slow, unless
interrupts are re-enabled in ISR

— Priorities are directly tied to MCU'’s interrupt priority scheme

\‘ ’, The WILLIAM STATES LEE COLLEGE of ENGINEERING 1 2
AN # UNCCHARLOTTE

Round-Robin with InterruEts

BOOL DeviceARequest, DeviceBRequest,
Also called DeviceCRequest;
foreground/background void interrupt HandleDeviceA () {

: /* do A’s urgent work */
Interrupt routines

— Handle most urgent work DeviceARequest = TRUE;
— Set flags to request }
processing by main loop ~ void main(void) {
. hile (TRUE
More than one priority level ™3 2® Jo80 feuest) |
— Interrupts — multiple FinishDeviceA() ;
interrupt priorities possible }
— main code if (DeviceBRequest) ({

FinishDeviceB() ;

}

if (DeviceCRequest) ({
FinishDeviceC() ;

}

*
13

’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING

‘1 # UNCCHARLOTTE
“——

Scheduling NV with Round Robin + Interrupts

BOOL ReadMicBuffer_ Req = FALSE,
SampleFrame_Req = FALSE;

interrupt void HandleMicBuffer ()
{

copy contents of mic buffer

ReadMicBuffer Done = TRUE,;

}

interrupt wvoid
HandleSampleFrame () {

Sample a frame of wvideo

SampleFrame_Done = TRUE;

CompressFrame: 27 ms

A

[
»

Delay 1

void main (void) {
while (TRUE) ({
if (ReadMicBuffer Done) {
CompressAudio () ;
SendAudio () ;
ReadMicBuffer Done=FALSE,;
if (SampleFrame_Done) {
CompressFrame () ;

SendFrame () ;

SampleFrame_Done = FALSE;

etc.

—_—

\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN /4

UNC CHARLOTTE
“——

14

Limitations of Round-Robin with Interrupts

All task code has same priority

— What if device A must be handled quickly, but FinishDeviceC (slow)
is running?

_ max(7;,,,,... (/)= 2L)+ L i)

— Difficult to improve A’s response time
* Only by moving more code into ISR

Shared data can be corrupted easily if interrupts occur during
critical sections
— Flags (DeviceARequest, etc.), data buffers
— Must use special program constructs
« Disable interrupts during critical sections
« Semaphore, critical region, monitor
— New problems arise — Deadlock, starvation

\‘ ’, The WILLIAM STATES LEE COLLEGE of ENGINEERING 15
\ UNC CHARLOTTE

What is Scheduling?

We have seen a “reactive” system — activities are processed based on
interrupts.

When scheduled activities are needed, you can set up timer interrupts, or
you can have the operating system schedule these periodic tasks
(perhaps triggered by interrupts...).

Scheduling is choosing which task to run and then running it
The rules:

Define certain functions to be tasks
If there is a task ready to run, then run it
Finish a task before you start another one

If there is more than one task to start, run the highest priority task first (O
is highest priority)

A
‘Wr: &%\ZIH%ATES LEE COLLEGE of ENGINEERING Embedded Systems 16
“——

A Simple Example

 We will keep track of how long until the task will run
(“time”) and 1t it 1s scheduled now (“run”

Priority Length [Frequency
2 1 20
1 2 10
3 1 5

Elapsed time 0O 1 2 3| 4 5 6 7 8 910 11 12/ 13 14/ 15 16|17 18 19 20 21 22 23 24 25

Task executed T3 T2 = T3 e B

20 19/ 18 17|16 15/ 14 13/ 12 11 10, 9 8
time T2 100 9 8 7 6| 5 4 3 2 110 9 8
5 4 3 2/ 1 5 4 3 2 1| 5 4 3

NN
- O o
o1 o1l On

run T2 1 1

-k
—i
—i
-k
-k -l
- —l
- —l
—i
-t

A
‘Wr: {H}G%\ZIH%ATES LEE COLLEGE of ENGINEERING Embedded Systems 17
“——

A More Complex Example

e Note at the end, things “stack up” (one T3 missed)

Priority Length Frequency
2 1 20
Task2 | 2 10
3 1 5
0 1 3

Elapsedtime @ 0 1 2 3 4 5 6| 7/ 8 9 10 11 12 13 14 15 16|/ 17/ 18|19 20 21 22/ 23 24 25

Task exeottod T EET TmE T4 [tz jralITE

2019 18/ 17 16/ 15 14 1312/ 11/ 10| 9 8 7 6/ 5 4| 3 2/ 1 20 19 18/ 17 16 15

timeT2 |10 9 8 7 6 5 4 3 2 110 9 8 7 6 5 4 3 2 110 9 8 7 6 5
5 4 3 2 15 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5

3 2 1 3 2 1 3 2 13 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2

11 1 1
1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

2
‘1 r: The WILLIAM STATES LEE COLLECE of ENGINEERING Embedded Sy stems 18
“——

UNC CHARLOTTE

Over-extended Embedded System

This is an “overextended” system because some tasks are
missed — several times. There is not enough processor
time to complete all of the work. This is covered in more
detail in a future lecture.

Priority Length |Frequency
2 1 20
Task 2 1 2 10
3 1 5
0 2 3

Elapsedti 0| 1 2 3 4| 5/ 6 7 8 9,10 11 12 13/ 14 15 16|17 18 19|20 21 22 23|24 25 26|27 28 29 30

Task exccuied | [N

20 19|18 17 16 15 14,13 12/ 11 10| 9| 8 7 6 5 4 3| 2/ 120 19 18 17 16|15 14 13 12 11 10

timeT2 |10 9 8 7 6 5 4 3 2 110 9 8 7 6 5 4 3 2 110 9 8 7 6 5 4/ 3 2 110
5 4 3 2/ 1, 5 4 3 2/ 1 5 4 3/ 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1| 5

3 2 1 3 2 13 2 13 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2/ 1 3

1 1 1) 1] 1
11 1
1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 11
1 1 1 1 1 1 1 1 1 1 1 1 1

2
‘1 r: The WILLIAM STATES LEE COLLECE of ENGINEERING Embedded Sy stems 19

UNC CHARLOTTE
“——

Run-To-ComEIetion Scheduler

Use a scheduler function to run task functions at the right rates

— Table stores information per task
« Period: How many ticks between each task release
» Release Time: how long until task is ready to run
« ReadyToRun: task is ready to run immediately
— “round-robin” scheduler runs forever, examining schedule table
which indicates tasks which are ready to run (have been “released”)
— A periodic timer interrupt triggers an ISR, which updates the
schedule table
« Decrements “time until next release”
« |f this time reaches 0, set that task’s Run flag and reload its time with the
period
Follows a “run-to-completion” model
— A task’s execution is not interleaved with any other task
— Only ISRs can interrupt task
— After ISR completes, the previously-running task resumes

Priority is determined by position in table. Hard to change
dynamically

A
\‘ ’, The WILLIAM STATES LEE COLLEGE of ENGINEERING 20
AN # UNCCHARLOTTE

RTC Scheduler App Programmer’s Interface

APl enables control of tasks at more efficient level
— Add Task(task, time period, priority)
 task: address of task (function name without parentheses)
« time period: period at which task will be run (in ticks)
« priority: lower number is higher priority. Also is task number.
« automatically enables task
— Remove Task(task)
* removes task from scheduler.
— Run Task(task number)
« Signals the scheduler that task should run when possible and enables
it
— Run RTC Scheduler()
* Run the scheduler!
» Never returns
« There must be at least one task scheduled to run before calling this
function.
— Enable_Task(task _number) and Disable Task(task _number)
« Set or clear enabled flag, controlling whether task can run or not
— Reschedule_Task(task _number, new_period)
« Changes the period at which the task runs. Also resets timer to that
value.

A

\‘ ’, The WILLIAM STATES LEE COLLEGE of ENGINEERING 2 1
AN # UNCCHARLOTTE

Limitations of Run-To-ComEIetion Scheduler

Tasks run to completion — problem with long tasks

— Maximum response time for a task is the duration of the longest
task

— Long tasks complicate programming

* No elegant way to start an operation (e.g. flash programming)
and yield processor for 10 ms

« Can improvise
— Trigger another task
— Use a state machine within this task
Prioritization implies unfair processor allocation — starvation
possible

\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN

UNCCHARLOTTE
“——

22

Function-Queue Scheduling

void interrupt HandleDeviceA () {

Interrupt routine | /* do urgent work for A */
enqueues a function to
be called by main Enqueue (Queue, FinishDeviceA) ;
: }
Queue provides o
scheduling flexibility void FinishDeviceA (void) {
— Functions can be /* do remainder of A’s work */
enqueued with any }

order desired

— Use priority of device to
determine position in
queue

void main (void) {
while (TRUE) {
while (NotEmpty (Queue)) ({
f = Dequeue (Queue) ;
£();
}

A

The WILLIAM STATES LEE COLLEGE of ENGINEERING 23
NI/

UNCCHARLOITE
“——

Limitations of Function-Queue Scheduling

What if a long lower-priority function (FinishDeviceC) is
executing and we need to run FinishDeviceA?
— Must wait until FinishDeviceC completes

_max(T,,,,,,. (/)= max(T,, (O)Vi+ Ty (i)

— Cooperative multitasking, no pre-emption

What if the lowest-priority functions never get to run?
— Heavily loaded system

\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

24

—Beal-Time OS5 (RTOS, Kernel, ...)

As with previous methods
— ISRs handle most urgent operations
— Other code finishes remaining work

Differences:
— The RTOS can preempt (suspend) a task to run something else.

— Signaling between ISRs and task code (service functions) handled
by RTOS.

— We don’t write a loop to choose the next task to run. RTOS
chooses based upon priority.

\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING 2 5
AN # UNCCHARLOTTE

th These Differences Matter
Signaling handled by RTOS

— Shared variables not needed, so programming is easier

RTOS chooses next task to run
— Programming is easier

RTOS can preempt tasks, and therefore schedule freely

— System can control task code response time (in addition to
interrupt routine response time)

— Worst-case wait for highest-priority task doesn’t depend on
duration of other tasks.

— System’s response (time delay) becomes more stable

» A task’s response time depends only on higher-priority tasks
(usually — more later)

\‘ ’, The WILLIAM STATES LEE COLLEGE of ENGINEERING 26
AN # UNCCHARLOTTE

More RTOS Issues

Many RTOS’s on the market
— Already built and debugged
— Debug tools typically included
— Full documentation (and source code) available

Main disadvantage: RTOS costs resources (e.g. uC/OSl|
compiled for 80186. YMMYV)
— Compute Cycles: 4% of CPU
— Money: 77?7
— Code memory: 8.3 KBytes
— Data memory: 5.7 KBytes

\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

ComEarison of Prioritx Levels Available

High

-
\ 4
Low

28

Software Architecture Characteristics

Priorities Available | Worst Case Stability of | Simplicity

TResponse for TResponse

Highest Priority | when Code

Task Code Changes
Round-robin | None Y T Poor Very simple
Round-robin | Prioritized interrupt | X T + Good for Must deal with
with routines, then task 2 Thyterrupt interrupts, | shared data
interrupts code at same priority poor for (interrupts/tasks)

task code
RTC and Prioritized interrupt | max(Tp,g) + 2 Relatively | Must deal with
Function- routines, then Thnterrupt good shared data and must
queue prioritized task code write/get scheduler
scheduling code
Real-time Prioritized interrupt | X TInterrupt + Tog Very good | Most complex
operating routines, then (much is handled by
system prioritized task code RTOS)
‘1 ‘-'r: 31; VgILLLAM STATES LEE COLLEGE of ENGINEERING 29

Review of Scheduler Information

Scheduler provided in these slides

Details
— Scheduler uses a software timer per task

— All software timers are decremented using a timer tick based on
the Timer BO hardware overflow interrupt

— Each task runs to completion before yielding control of MCU back
to Scheduler (non-preemptive)

A
‘Wr: &%\(YIHLA%ATES LEE COLLEGE of ENGINEERING Embedded Systems
“——

30

Round Robin Scheduler API

Init_RR_Scheduler(void)

— Initialize tick timer BO and task timers
Add Task(task, time period, priority)

— task: address of task (function name without parentheses)

— time period: period at which task will be run (in ticks)

— priority: lower number is higher priority. Also is task number.

— automatically enables task

— return value: 1 — loaded successfully, 0 — unable to load
Remove Task(task)

— removes task from scheduler.
Run Task(task number)

— Signals the scheduler that task should run when possible and enables it
Run RR Scheduler()

— Run the scheduler!

— Never returns

— There must be at least one task scheduled to run before calling this function.
Enable_Task(task _number) and Disable Task(task number)

— Set or clear enabled flag, controlling whether task can run or not
Reschedule Task(task _number, new_period)

— Changes the period at which the task runs. Also resets timer to that value.

A
‘Wr: {H}G%\ZIH%ATES LEE COLLEGE of ENGINEERING Embedded Systems 3 1
“——

Set up Timer B0 in Init RR Scheduler

Set up BO timer to generate an interrupt every 1 millisecond
// default tbO will be = 65536 (timer tick = 5.4613 ms)
// if you load tb0 = 12000, timer tick will = 1.0000ms

init_Task_Timers(); // Initialize all tasks
tb0 = 12000; // 1 ms timer tick
DISABLE_INTS

tb0ic = 1; // Timer BO overflow
ENABLE_INTS

tbOst = 1; // start timer BO

A
‘Wr: &%\(YIMATES LEE COLLEGE of ENGINEERING Embedded Systems 32

~——

Task List Structure

#define USE_ROUND_ROBIN_SCH 1
// Set to 1 if using Round Robin Task Scheduler
#define MAX_TASKS 5
// Set maximum number of tasks to be used in system
// Will affect performance.

typedef struct {

int initialTimervalue; // “frequency” of task
int timer; // time to next “run”
int run; // binary - 1 = “run now”
int enabled;
void (* task) (void); // address of function

} task_t;

task_t GBL_task_Tist[MAX_TASKS];
int GBL_run_scheduler=0;

A
‘Wr: {H}G%\ZIHLA%ATES LEE COLLEGE of ENGINEERING Embedded Systems 3 3
“——

Running the Scheduler

void Run_RR_Scheduler(void) { // Always running
int 1;
GBL_run_scheduler = 1;
while (1) { // Loop forever & Check each task
for (i=0 ; i<MAX_TASKS ; 1i++) {
// If this is a scheduled task
1f (GBL_task_list[i].task != NuLL) {
if (GBL_task_list[i].enabled == 1) {
if (GBL_task_1list[i].run == 1) {
GBL_task_1list[1].run=0; // Reset task timer
GBL_task_1list[1].task(); // Run the task

. Priority Length |Frequency
break; ! 1 Le
} 1 2 10
3 1 5

Elapsed time 0l 1 2 3 4/ 5 6 7 8 9/10 11 12 13 14| 15/16 17 18 19| 20|21 22 23| 24| 25
} Task executed T3 T3 T3
} 16/ 15 14 13/ 12/ 11/10 9 8 7| 6/ 5 4 3 2 1 20 19 18 17/ 16 15
6 5 4/ 3 2 1/10/ 9 8 7/ 6 5 4 3 2 1/10 9 8 7 6 5
} 1 5 4/ 3 2 1 5 4 3 2 1 5 4 3 2 1 5 4 3 2 1 5
} 1 1 1
1 1
. | [[[~ — 10 T T 1 71 I 1
‘1 rl &%?LLIAM STATES LEE COLLEGE of ENGINEERING Embedded Systems 34

~——

Task List Initialization

void init_Task_Timers(void) { // Initialize all tasks
int 1;
for (i=0 ; i1<MAX_TASKS ; 1i++) {
GBL_task_1list[i].initialTimervalue = 0O;
GBL_task_1ist[i].run = O;
GBL_task_1list[i1].timer = enabled = 0;
GBL_task_Tlist[1].task = NULL;

} Priority Length |Frequency

2 1 20
} Task2 [1 ? 10
3 1 5

Elapsed time 0O 1 2 3 4 5 6 7 8 9/10 11 12 13 14/15 16 17 18 19|20 21 22 23| 24 25

Task executed L) 1 T

20/ 19 18|17, 16 15 14/ 13/12 11|10 9 8 7 6| 5 4| 3 2| 1,20 19 18 17|16 15

timeT2 |10 9| 8 7 6 5 4/ 3 2 110 9 8 7 6 5 4 3 2 110 9 8 7 6 5

5 4 3 2 1, 5 4 3 2 1, 5 4 3 2 1| 5 4 3 2 1 5 4 3 2 1 5

run T2

—h

—t ok
—

—

—h
A T
— —
— —
—

—h

A
‘Wr: {H}G%\ZIHLA%ATES LEE COLLEGE of ENGINEERING Embedded Systems 35
“——

Adding a Task

int addTask(void (*task)(void), int time, int priority)

{
unsigned int t_time;
/* Check for valid priority */
1f (priority >= MAX_TASKS || priority < 0) return O;
/* Check to see if we are overwriting an already scheduled
task */
1f (GBL_task_Tlist[priority].task != NULL) return O;
/* Schedule the task */
GBL_task_Tlist[priority].task = task;
GBL_task_Tlist[priority].run = 0;
GBL_task_list[priority].timer = time;
GBL_task_Tlist[priority].enabled = 1;
GBL_task_Tlist[priority].initialTimervalue = time;
return 1;

}

The WILLIAM STATES LEE COLLEGE of ENGINEERING
UNC CHARLOTTE

A
N\

Embedded Systems

36

Task Selection

// Make sure to load the vector table with this ISR addr
#pragma INTERRUPT tick_timer_intr
void tick_timer_intr(void) {
static char 1;
for (i=0 ; i<MAX_TASKS ; 1i++) { // If scheduled task
if (GBL_task_list[i].task != NuLL) {
if (GBL_task_list[i].enabled == 1) {
if (GBL_task_list[i].timer) {
if (--GBL_task_list[i].timer == 0){
GBL_task_1list[i].run = 1;

GBL_task_Tlist[i].timer =
GBL_task_1list[i].initialTimervalue;

} Priority Length [Frequency
2 1 20
1 2 10
} 3 1 5

Elapsedtime | 0 1/ 2 3 4 5 6 7 8 9/10 11/ 12/13 14/ 1516/ 17 18/ 19 20/ 21 22 23| 24 25

} Task executod i) ko) i)
} 16/ 15/ 14/ 13/12 11/10 9| 8 7 6 5 4| 3 2| 120 19/ 18 17 16 15
6 5 4 3 2/ 110 9 8 7 6 5 4 3 2 110 9 8 7 6 5

15 4 3 2 1 5 4 3 2 1 5 4/ 3 2/ 1 5 4 3 2 1 5

1) 1) 1
1 1
I I [1 L 1 W] 1] 1 1

A
‘Wr: &%\ZIH%ATES LEE COLLEGE of ENGINEERING Embedded Systems 37
“——

Removing a Task

void removeTask(void (* task) (void))

{

int 1;

for (i=0 ; i1<MAX_TASKS ; i++) {
if (GBL_task_list[i].task == task) {

GBL_task_Tlist[1].task = NULL;
GBL_task_Tlist[i1].timer = O;

GBL_task_Tist[i1].1initialTimervalue

GBL_task_T1ist[i].run = enabled = 0;

return;

A
‘Wr: &%\(YIHLA%ATES LEE COLLEGE of ENGINEERING Embedded Systems
“——

0;

38

Enabling or Disabling a Task

void Enable_Task(int task_number)

{

GBL_task_Tlist[task_number].enabled = 1;
}
void Disable_Task(int task_number)
{

GBL_task_Tlist[task_number].enabled = 0O;

}

A
‘Wr: &%\?IMATES LEE COLLEGE of ENGINEERING Embedded Systems
“——

39

Rescheduling a Task

Changes period of task and resets counter

void Reschedule_Task(int task_number, int new_timer_val)

{

GBL_task_Tlist[task_number].initialTimervalue =
new_timer_val;

GBL_task_1list[task_number].timer = new_timer_val;

}

A
‘Wr: &%\(YIHLAIMATES LEE COLLEGE of ENGINEERING Embedded Systems

~——

40

Start Round Robin sttem

To run RR scheduler, first add the function (task):

addTask(flash_redLED, 25, 3);
addTask(sample_ADC, 500, 4);

Then, the last thing you do in the main program is:

Run_RR_Scheduler();

‘Wr: &%\(YIHLAMATES LEE COLLEGE of ENGINEERING Embedded Systems

41

Big Picture

Methods learned so far
— We've been using a foreground/background system
« Interrupt service routines run in foreground
» Task code runs in background
— Limitations

« Must structure task functions to run to completion, regardless of
“natural program structure” — can only yield processor at end of task

» Response time of task code is not easily controlled, in worst case
depends on how long each other task takes to run
What we will learn next
— How to share processor flexibly among multiple tasks, while not requiring
restructuring of code
Goal: share MCU efficiently

— Embedded Systems: To simplify our program design by allowing us to
partition design into multiple independent components

— PCs/Workstations/Servers: To allow multiple users to share a computer
system

2
‘1 ’/',' The WILLIAM STATES LEE COLLECE of ENGINEERING Embedded Sy stems 42

UNC CHARLOTTE
“——

Example: Secure Answering Machine (SAM)

Jisp Speake
m i Amp
00 ophe GLUE LOGIC
. §) » Latches
II S
* Drivars
LCDVLED AID :
o :. "_._____
Micro- 11 r ggsm & BUFFER1 | BUFFER 2
cnntrﬁler ! -
' POWER SUPPLY BLOCK |
™ Telephone « Power Transistor .
User Keys . ne * Photocouplers I/0 INTERFACE
L T s
. . - (OPTO)

Sl SO SCK

Testing the limits of our cooperative round-robin scheduler

Secure Answering Machine
— Stores encrypted voice messages in serial Flash memory

— Want to delete messages fully, not just remove entry from directory (as with file
systems for PCs)

— Also have a user interface: LCD, switches

A
‘Wr: &Z\(YIMATES LEE COLLEGE of ENGINEERING Embedded SyStemS 43

~——

SAM Delete Function and Timing

void Delete_Message(unsigned mes_num) {

LCD(“Are you sure?”); // 10 ms
get_debounced_switch(&k, 5); // 400 ms min, 5 s max
if (k == CANCEL_KEY) {
LCD(“Cancelled”); // 10 ms
} else if (k == TIMEOUT) {
LCD(“Timed out”); // 10 ms
} else {
LCD(“Erasing”); // 10 ms
Flash_to_Buffer (DIR_PAGE); // 250 us

Read_Buffer(dir); // 100 us

. // find offsets

. // erase dir. entry
write_to_Buffer(dir); // 6 us
Buffer_to_Flash(DIR_PAGE); // 20 ms
Flash_to_Buffer(data_page);

- // overwrite msg: 50 us
Buffer_to_Flash(data_page); // 20 ms

LCD(“Done’);

A
‘Wr: {H}G%\ZIH%ATES LEE COLLEGE of ENGINEERING Embedded Systems 44
“——

Cooperative RR Scheduler? [LSPCAre Yousure?)

get_debounced
switch(&k, 5);

Since task must Run To Completion... i
The delete function could take up to five / switch on k \
seconds to run, halting all other tasks
(but interrupts run) LCD(“Cancelled”) LCD(“Timed Out”)
Other software needs to keep running, LCD(“Evrasing”)
so break this into pieces. Run one 1
piece at a time. Flash_to_Buffer(DIR_PAGE)
How to split? i
— Each piece ends where processor waits for Read_Buffer(dir)
user (e.g. debounced switch) or other v
devices (Flash, LCD). ... // Find offsets
How to control execution of pieces? ... // erase dir. entry
1. Use a task per piece, use calls to Ui, Lt BT El):
Reschedule Task and Disable Task as !
needed Buffer_to_Flash(DIR_PAGE)
* Need 13 different tasks (12 shown !
here) Flash_to Buffer(data_page)
2. Use a state machine within one task v

... // Overwrite msg in buffer
= Buffer_to_Flash(data_page);

‘Wr: &%\ZIHLA%ATES LEE COLLEGE of ENGINEERING Embedded Systems 45

~———

State Machine in One Task

1

LCD(“Are You Sure?”);

cur_state = 2;

switch(cur_state)

2:

if (LCD_Done) {
get_debounced
_switch(&k, 5);
cur_state = 3;

}

3:
if (debounce_done) {

if (k == CANCEL_KEY) {
LCD(“Cancelled”);
cur_state = 99;

} else if (k == TIMEOUT) {
LCD(“Timed Out”);
cur_state = 99;

} else {

LCD(“Erasing”);
cur_state = 4;

\ 4

\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

A\ 4

4:
if (LCD_Done) {
Flash_to_Buffer(
DIR_PAGE);
cur_state = 5;

}

S:
if (Flash_done) {
Read_Buffer(
dir);
cur_state = 6;

}

ﬁ
()
—
c
=
)
yY

Embedded Systems

46

Daxdreaming

Some functions are causing trouble for us — they use slow
devices which make the processor wait
— LCD: controller chip on LCD is slow
— DataFlash: it takes time to program Flash EEPROM
— Switch debouncing: physical characteristics of switch, time-outs

Wouldn't it be great if we could ...
— Make those slow functions yield the processor to other tasks?
— Not have the processor start running that code again until the device is

ready?
« Maybe even have the processor interrupt less-important tasks?

— Avoid breaking up one task into many tasks, or a state machine?
— Open ourselves up to a whole new species of bugs, bugs which are
very hard to duplicate and track down?

2
‘1 r: The WILLIAM STATES LEE COLLECE of ENGINEERING Embedded Sy stems 47
“—

UNC CHARLOTTE

PreemEtive Scheduling Kernel

What we need is a kernel

Shares the processor among multiple concurrently running
tasks/threads/processes

Can forcibly switch the processor from thread A to B and resume B later
(preemption)

Can resume threads when their data is ready
Can simplify inter-thread communication by providing mechanisms
The heart of any operating system

Terminology: “Kernel Mode”

PCs and workstations don’t expose all of the machine to the user’s program
Only code in kernel or supervisor mode have full access

Some high-end embedded processors have a restricted mode (e.g. ARM,
MIPS)

A
‘Wr: {H}G%\ZIHLA%ATES LEE COLLEGE of ENGINEERING Embedded Systems 48
“——

Operating Systems (for PCs and Workstations)

Two perspectives
— Extended Machine — top-down view (using abstractions)
 File System: make a magnetic platter, read/write head, spindle motor and
head servo look like a hierarchical collection of directories containing files
and other directories
 Virtual Memory: make a disk and 512 MB of RAM look like 4 GB of RAM
— Resource Manager — bottom-up view
« Share access to resources
« Keep them from interfering
Common PC/Workstation operating system features
— Process management — share the processor
— Process synchronization and communication
— Memory management
— File management
— Protection
— Time management
— 1/O device access
For embedded systems, we care mostly about preemptive thread

management — sharing the processor

2
‘1 ’/',' The WILLIAM STATES LEE COLLECE of ENGINEERING Embedded Sy stems 49
“——

UNC CHARLOTTE

What Execution State Information Exists?

A program, process or thread in

execution which has state Memory
information...
— Current instruction — identified with obal data
program counter CPU i
— Call stack — identified with stack RO | R1|R2|R3 heap
pointer AO | Al [FLG [USP
« Arguments, local variables, PC | FB |I15P| 5B

return addresses, dynamic links
— Other CPU state

» Register values (anything which
will be shared and could be
affected by the other
processes) — general purpose
registers, stack pointer, etc.

« Status flags (zero, carry,
interrupts enabled, carry bit,

etc.)

— Other information as well instructions

» Open files, memory
management info, process
number, scheduling information

* Ignore for now

OxFFFF

A
‘Wr: &%\?IMATES LEE COLLEGE of ENGINEERING Embedded Systems 50
“——

Processes vs. Threads

Process — No information is visible to other processes
(nothing is shared)

Thread — Shares address space and code with other threads
(also called lightweight process)

One big side effect: context switching time varies

— Switching among processes requires swapping large amounts of
information

— Switching among threads requires swapping much less information
(PC, stack pointer and other registers, CPU state) and is much

faster

For this discussion, concepts apply equally to threads and
processes

A
‘Wr: &%\ZIH%ATES LEE COLLEGE of ENGINEERING Embedded Systems 5 1

~———

Maintaining State for MultiEIe Threads

Store this thread-related information in a
task/thread control block (TCB)

— process control block = PCB

Shuffling information between CPU and
multiple TCBs lets us share processor

Consider case of switching from thread A to
thread B

— Assume we have a call stack for each
thread

— Assume we can share global variables
among the two threads

« Standard for threads

« For M16C architecture, SB register is
same for both threads

CPU

RO

R1 | R2

R3

A0

Al |FLG

usp

PC

FB | ISP

SB

Memory

A A4

A 4

\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

Embedded Systems

0x0000

global data

heap

A Stack

Thread A

instructions

Thread B

OxFFFF

52

SteE 1. Cogx CPU State into TCB A

CPU i1s initially executing task A,

so save this information in TCB A

\ 4

Memory
0x0000

global data

heap

B Stack

A Stack

Thread A

instructions

Thread B

OxFFFF

CPU
RO [R1 | R2 | R3
A0 | Al |FLG|USP
“'l!.’> PC | FB | ISP | SB
TCB A
RO [R1 [R2 | R3
A0 | AL |FLG|USP
PC | FB | ISP | SB
L 2
A
‘Wr: &Z\(YIMATES LEE COLLEGE of ENGINEERING Embedded Systems
—

53

SteE 2. Reload Old CPU State from TCB B

Reloading a previously saved

state configures the CPU to Memory
execute task B from where —
it left off CPU global data
.]]) RO | R1 | R2 | R3 heap
This context switching is A0 | AL |FLG|usP
performed by the dispatcher PC| FB ISP | SB n
code TCB A q |
RO | R1 | R2 | R3 <//\I B Stack
I I I 1 AO | Al [FLG|USP !
Dls.patcher IS typically written s =t I A
in assembly language to - [/ >
gain access to registers not / A Stack
visible to C programmer / B
U g Thread A
RO TRCI:B RBZ 3 instructions
A0 | A1 [FLG[usp Thread B
PC | FB | ISP | SB]

OxFFFF

A
‘Wr: &%\(YIMATES LEE COLLEGE of ENGINEERING Embedded Systems 54
“——

Thread States

Now that we can share the CPU,
let’s do it!

Define five possible states for a
thread to be in

— New —just created, but not What the
running yet task needs

— Running — instructions are happen
being executed (only one
thread can be running at a

time!)

— Waiting/Blocking — thread is
waiting for an event to occur

— Ready — process is not
waiting but not running yet (is
a candidate for running)

. . Task needs

— Terminated — process will run i
no more something
to happen

A
‘Wr: &%\ZIHLA%ATES LEE COLLEGE of ENGINEERING Embedded Systems
“——

This

highest

priority
ready task

This
highest
priority

ready task

55

Thread Queues [[[]

Create a queue for each -

state (except running) }
Now we can store thread t;/!lr(]itetggs =
control blocks in the n 1
appropriate queues appen
This
Kernel moves tasks among highest .
queues/processor _J priority Thls
registers = ready task highest
as needed priority
ready task
Task needs
something
to happen

(.

‘1 r: &%\ZMATES LEE COLLEGE of ENGINEERING Embedded Systems 56

~———

Thread State Control

Use OS scheduler to keep track of threads and their states
— For each state, OS keeps a queue of TCBs for all processes in that state

— Moves TCBs between queues as thread state changes
— OS’s scheduler chooses among Ready threads for execution based on
priority
— Scheduling Rules
« Only the thread itself can decide it should be

« A thread never gets the CPU. It must be signaled by an ISR or
another thread.
* Only the scheduler moves tasks between and

What changes the state of a thread?
— The OS receives a timer tick which forces it to decide what to run next
— The thread voluntarily yields control
— The thread requests information which isn’t ready yet

2
‘1 ’/',' The WILLIAM STATES LEE COLLECE of ENGINEERING Embedded Sy stems 37
“——

UNC CHARLOTTE

Overview of Data Structures for Scheduler

TcBB Running points to TCB for
P currently running process.
New | EEEE TCB has old information
Nt I Vull which will be updated on
¢ 1P || Pointer next task switch TCB A
TCB C TCBE TCB G 5 e 5 e
RO|R1|R2[R3 RO|R1|R2[R3 RO|R1|R2|R3
A0 | Al |FLG|USP| A0 | Al |FLG|USP A0 | Al |FLG|USP] AO | Al [FLG|USP
/ pc|FB[isp|sB pc|FB|isp|sB pc| B [1sp[sB pc | FB |1SP | SB
Ready Next f Next ;< Next
© | Prev Prev Prev \' Next
TCB F TCB D TCB H Prev
RO|R1|R2|R3 RO|R1|R2|R3 RO|R1|R2|R3
Q A0 | Al |FLG|USP| A0 | Al |FLG|USP| A0 | Al |FLG|USP]
Wait > /pc|FB1sP[B pc|FB15P[sB pC| B 1P| sB
Next 1 Next ;< Next |
© | Prev Prev Prev \‘

Add Next, Prev pointers in each TCB to make it part of a doubly linked list

Keep track of all TCBs
— Create a pointer for each queue: Ready, Wait, New
— Create a pointer for the currently running task’s TCB

A
\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOTTE

Embedded Systems

58

ExamEIe: Context Switch

Thread A is running, and scheduler decides to run thread C instead. For example,
thread A is still able to run, but has lower priority than thread C.

Start by copying CPU state into TCB A

TCB B

RO [R1[R2[R3 CPU

A0 [A1 |FLG[USP|

pC|FB [1sp[sB RO | R1 [R2 | R3

| AO [Al |FLG|USP
™ prev) pC | FB | ISP
6 Pointer TCB A
TCB C TCB E TCB G RO | R1|R2 | R3
RO[RL[R2[R3 RO[RL[R2[R3 RO[R1[R2[R3
A0 | AL |[FLG|USP) A0 | AL |[FLG|USP) A0 | At |FLGusP AO | Al [FLG|USP
/ pC|FB [1sP|sB pC|FB [1sP| B pC|FB[1sP|sB pc | FB |15P | SB
Ready Next Next ;< Next \' N
(1 Prev Prev Prev eXt
TCB F TCB D TCB H Prev
RO[RL[R2[R3 RO[RL[R2[R3 RO[R1[R2[R3
a A0 | A1 |FLG|USP] A0 | Al |FLG|USP] A0 | Al |FLG|USP]
Wait > |pc|rB[1sP[SB pC|FB[1sP[sB pC|FB [15p| B
Next | Next ;< Next \‘
0 Prev Prev Prev

A
‘Wr: {H}G%\ZIHLA%ATES LEE COLLEGE of ENGINEERING Embedded Systems 59
“——

ExamEIe: Context Switch

Insert TCB A into ready queue by modifying appropriate
pointers

TCB B CPU

RO |R1[R2|[R3 RO [R1|R2]|R3
A0 [A1 [FLG|usP

/ pc| FB |1SP| SB A0 | Al [FLG|USP

PC | FB | ISP | SB
New net | s
o Prev Pointer

TCB C TCBE TCB G TCB A
RO|R1[R2|R3 RO|R1|R2[R3 RO|R1[R2[R3 RO[R1|R2[R3
A0 [A1 [FLGJUSP) A0 | At [FLG|USP) A0 | At [FLGUSP) A0 | AL [FLGUSP)
/ PC[FB|1SP[SB PC|FB [1sP|sB pc|FBisP[sB PC [FB|1SP[SB
Ready Next {f Next ;< Next < Next ~
§ 1 Prev Prev Prev Prev
TCB F TCB D TCB H
RO|R1[R2[R3 RO|R1[R2[R3 RO|R1|R2[R3
- A0 | A1 |FLG|USP| A0 | Al |FLG|USP| A0 | Al |FLG|USP]
Wait [> pc|rB[isP[sB pc[FB|ISP[sB PC|FB [1SP[sB
Next Next ;< Next \‘
© | Prev Prev Prev

A
‘Wr: &%\ZIHLA%ATES LEE COLLEGE of ENGINEERING Embedded Systems
“——

ExamEIe: Context Switch

Remove thread C from the ready queue and mark it as the
thread to run next

TCB B CPU

RO |R1[R2|[R3 RO [R1|R2]|R3
A0 [A1 [FLG|usP
AO | Al |FLG|USP

/ pc|FB [1sP| sB
New | PC | FB | ISP | SB
iz Null
6 Prev Pointer
TCB E TCB G TCB A TCB C
RO [R1[R2[R3 Ro[R1[R2|R3 rRo[R1[R2[R3 RO[R1[R2[R3
A0 | A1 [FLG|USP A0 | A1 [FLG|usP A0 | At [FLGJusP A0 | A1 [FLG|USP
/ pc|FB [1sP| sB pc | FB[1sp| sB pc|FB|isp| sB pc|FB [1sp| sB
Ready Next ;< Next < Next ~o Next |
1 Prev Prev Prev 1 Prev
TCB F TCB D TCBH
RO [R1[R2[R3 RO [R1[R2[R3 RO [R1[R2|R3
0 A0 | A1 |FLG|USP] A0 | Al |FLGJUSP| A0 | Al |[FLGJUSP]
Walt | pc|rB[isp[sB pc| B [1sp| sB pc|FB [1sP| sB
Next Next ;< Next \‘
0 Prev Prev Prev

A
‘Wr: &%\ZIHLA%ATES LEE COLLEGE of ENGINEERING Embedded Systems
“——

ExamEIe: Context Switch

Copy thread C’s state information back into the CPU and

resume execution

New

[

TCB B

RO

R1|R2

R3

A0

Al [FLG|USP!

PC

FB [ISP

SB

Next

Prev

CPU

FB |ISP[SB PC | FB |ISP| SB PC| FB [ISP| SB
;< Next ;< Next \'

Ready Next
Sl Prev Prev Prev
TCB F TCB D TCB H
RO|R1|R2|R3 RO|R1|R2|R3 RO|R1|R2|R3
i A0 [A1 [FLGlusP A0 | A1 [FLGlusP A0 [AL [FLGusP
Wa It > pc|FB|1SP|SB PC| FB |ISP| SB PC| FB |ISP| SB
Next Next ;< Next \‘
0 Prev Prev Prev
2
‘1 ’/',' 31; VgILLLAM STATES LEE COLLEGE of ENGINEERING Embedded Sy stems
“——

RO | R1 | R2 | R3
AO | A1l | FLG|USP
PC | FB | ISP | SB
o Null
Pointer
TCB E TCB G TCB A
RO|R1|R2|R3 RO|R1|R2|R3 RO|R1|R2|R3
A0 | Al |FLG|USP| A0 | Al |FLG|USP} A0 | Al |FLG|USP}

TCB C

RO

R1|R2

A0

Al [FLG

USP

PC

FB [ISP

SB

Next

Prev

62

