Serial Communications

LEGE of ENGINEERING Embedded Systems

In these notes .

General Communications

Serial Communications
— RS232 standard
— UART operation
— Polled Code
— SCl/12C

4

\1 r, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\ /&

UNC CHARLOTTE
e

Ve
ﬁc c14
12
1T
0.1uF
C15
0.1uF u4
16 2
Vee Vs .
g; I R UART 0:
ci3 c17 RS-232C
P1
S6A I o o2 ff % 1035
CT204222ST 0.1uF 0.1uF 6 o
P6 2 1, 16 _P62M 10 % 7 21q
to 50-pin pra 7 o
2 15 comecir 9 A8 310
TB3 TB5 8 0
b o6 M M%”—’—D o
6 3 3 ol4 63l % 9 o
to 50:pin HOLE 12 < 1 HOLE Lo
4 ’V‘/C‘GW
TB4 15 GND V- 6 TB6
UP = I0 - 747250-4
DOWN = RS232 MAX202/3232
HOLE HOLE
C16
2 H 1
\V 0.1uF

15p
25

070 0 0 0i0i0iDe]

WSBILSE convrson ()

Data bus high-order bits

Data bus low-order bits

UART (7 bits) UARTI transmit register

SP: Stop bit
PAR: Parity bit

Embedded Systems

Data Communications

There was no standard for networks in the early days and as a result it was difficult for networks
to communicate with each other.

The International Organization for Standardization (ISO) recognized this and in 1984 introduced
the Open Systems Interconnection (OSI) reference model.

The OSI reference model organizes network functions into seven numbered layers.

Each layer provides a service to the layer above it in the protocol specification and
communicates with the same layer’s software or hardware on other computers.

Layers 5-7 are concerned Application |—> Network Processes to Applications
with services for the . .
applications. Presentation | = Data Representation

Session =3 |Interhost Communication

Layers 1-4 are concerned Transport |—> End-to-end Connections

with the flow of data from
end to end through the

network Data Link |—> Access to Media

-2 Address and Best Path

Physical |- Binary Transmission

2
‘1 r: ITJZec \ZLLALI‘{IIAE\;IT%FATES LEE COLLEGE of ENGINEERING Embedded SyS tems 3
A4

Physical Layer (1) — Serial Communications

The basic premise of serial communications is that one or
two wires are used to transmit digital data.
— Of course, ground reference is also needed (extra wire)

Can be one way or two way, usually two way, hence two
communications wires.

Often other wires are used for other aspects of the

communications (ground, “clear-to-send”, “data terminal
ready”, etc).

101101100111

Tx

Machine 1

Rx «

001101101111

‘1 rl ITJ};Jec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems 4

Serial Communication Basics

- Start Data Parity Stop

Send one bit of the
message at a time : . - e . “a . - . 2
Message fields I Message |
— Start bit (one bit)
— Data (LSB first or MSB, and size — 7, 8, 9 bits)
— Optional parity bit is used to make total number of ones in data even or odd
— Stop bit (one or two bits)
All devices on network or link must use same communications parameters
— The speed of communication must be the same as well (300, 600, 1200, 2400,
9600, 14400, 19200, etc.)
More sophisticated network protocols have more information in each message
— Medium access control — when multiple nodes are on bus, they must arbitrate for
permission to transmit
— Addressing information — for which node is this message intended?
— Larger data payload
— Stronger error detection or error correction information
— Request for immediate response (“in-frame”)

e
L 4

‘1 r: ITJZQC \E%I%ATES LEE COLLEGE of ENGINEERING Embedded SyS tems 5

A 4

Bit Rate vs. Baud Rate

Bit Rate: how many data bits are transmitted per second?

Baud Rate: how many symbols are transmitted per second?
— == How many times does the communication channel change state per

second?
— A symbol may be represented by a voltage level, a sine wave’s
frequency or phase, etc.

These may be different
— Extra symbols (channel changes) may be inserted for framing, error
detection, acknowledgment, etc. These reduce the bit rate

— A single symbol might encode more than one bit. This increases the
bit rate.
« E.g. multilevel signaling, quadrature amplitude modulation, phase
amplitude modulation, etc.

. 4
‘1 r: ITJZQC \ZMATES LEE COLLEGE of ENGINEERING Embedded SyS tems
e

Serial Communication Basics

RS232: rules on connector, signals/pins, voltage levels, handshaking, etc.
RS232: Fulfilling All Your Communication Needs, Robert Ashby
Quick Reference for RS485, RS422, RS232 and RS423

Not so quick reference:
The RS232 Standard: A Tutorial with Signal Names and Definitions,
Christopher E. Strangio

Bit vs Baud rates:
http://www.totse.com/en/technology/telecommunications/bits.himl

Yoltage l
425w T
Lpace ipace
Logic '0°
— 43V
Transtion [egich i -
- E;:ff Time
Logic'l' - Mtk
— 25w T

L 4

‘1 rl ITJZQC \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems
e

UART Concepts

UART
— Universal — configurable to fit protocol requirements
— Asynchronous — no clock line needed to de-serialize bits
— Receiver/Transmitter

L 2
‘1 r: [Tj};]eC WATES LEE COLLEGE of ENGINEERING Embedded SyS tems

~——

RS232 Communications Circuit

Example RS-232 buffer (level-shifting) circuit

e Max202/3232 includes
C14 charge pump to generate
S +10 V and -10V from
- i single 5V supply
0.1uF - K
2
\/ \/
DI o UART O:
c13 C17 RS-232C
P1
SBA _LH e | el e™
CT2042228T 0.1uF 0.7uF 6 o
P6 2 1 ~16 w-;? 2M 10 >c 7 2
i -
—Ii1—0
T_Z/Gwcmm - 9 o@ 8 — 310
- 11 >.: 14] a ﬁ: Lo :
P6 3 3 ~14 P6_3M e 9 o
[o 50 HOLE 12 % 13 HOLE i i 7
C13m - : g__..-»-""‘
DI 54] GND V- -8]TEE 747250-4
Up = IO 2504
DOWN = RS5232 MAX202/3232 :
HOLE C16 HOLE
Logic-level signals 2 |1 RS232-level signals
(Vee or Ground) 0.4uF (>3 Vor<-3YV)
L 4
‘Wr, [TI‘};IeCVVILLI_AM STATES LEE COLLEGE of ENGINEERING Embedded Systems

~——

General UART Concegts

UART subsystems
—Two fancy shift registers
 Parallel to serial for
transmit

+ Serial to parallel for __|,;

receive
—Programmable clock
source
* Clock must run at 16x
desired bit rate
—Error detection
» Detect bad stop or
parity bits
» Detect receive buffer
overwrite
—Interrupt generators
» Character received
» Character
transmitted, ready to
send another

IOPOL 0

i=0to 2
SP: Stop bit
PAR: Parity bit

i0i0iDs

| |D7§D6505§D4§D3§Dz§D1§Do] UIRB register

|£)gic reverse circuit + MSB/LSB conversion circm

Data bus high-order bits

Data bus low-order bits

u_ogic reverse circuit + MSB/LSB conversion circuit

[Ds |

| D7 i DsiDsiDaiDsiDz2iDiiDo | UITB register

lllllllllllllllllllllll r Sunghenous tyne

SMD2 to SMDO, STPS, PRYE, IOPOL, CKDIR: UiMR register's bits
UIiERE: UiC1 register's bit

The WILLIAM STATES LEE COLLEGE of ENGINEERING
UNC CHARLOTTE

L 4
N\

Embedded Systems

UART
(8 bits)
UART
(9 bits)

Clock

UARTi transmit register

UART(7 bits)

TxDi

10

Block Diagram of RX62N Serial Comm Interface

a 2]
|
< Module data bus p
7 ~ 7 % £
@ E
AV ¥y
ROR | ToR SCMR BRR
SSR
I \/ SCR —— PCLK
RxDn —» RSR TSR SMR g::gr;?;er le—— PCLK/M4
f SEMH «— PCLK/16
Transmission
and reception le—— PCLK/BA
TxDn < control
Parity error occumence Clock 1
Parity check
External clock
SCKn =
»= TEI
» TXI
+ RXI
[Legend] HE
RSR: Receive shift register
RDR: Receive data register
TSR: Transmit shift register
TDR: Transmit data register
SMR: Seral mode register
SCR: Serial control register
SSR: Serial status register
SCMR: Smart card mode register
BRR: Bit rate register
SEMR: Serial extended mode register

L 2
‘1 r: The WILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SyS tems
——

UNC CHARLOTTE

SCI in UART Mode

To communicate from the RX62N chip, you need to set up several
registers, including:

* Mode There are two primary “Data Registers”
. Spéed « SCIx.RDR (Receive Data Register)
* Parity - SCIx.TDR (Transmit Data Register)
« Stop bits

« Configuration

Channel Register Name Symbol Value after Reset Address

SCI0 Senal mode reqister SMRE 00h 0008 8240h
Bit rate register BRR FFh 0008 8241h
Serial control register SCH 0h 0008 B242h
Transmit data register TDR FFh 0008 8243h
Sernal status register S3H xdh 0008 B244h
Receive data reqgister RDR h Q008 82450
Smart card mode register SCME F2h 0008 B246h
Serial extended mode register SEMR I0h 0008 B247h

. 4
‘1 r: {H}Gz \ZMATES LEE COLLEGE of ENGINEERING Embedded SyS tems
e

Serial Mode Register SSMRZ

b7 b& b5 bd b3 b2 b1 b0
|
CM CHR PE P STOP MP CKS[1:0]
Value after reset: (O 0 0 O] 0 (O 0

SCIx.SMR — Operational values of the UART

Each bit is encoded to make a special meaning
CKS: transmission speed (more later)

MP: Multi processor (set to 0)

STOP: Stop bits

PM: Parity mode

PE: Parity Enable

CHR: Length of data

CM: Communications mode

‘1 r: ITJZec \ZLLALI‘{IIAE\;IT%FATES LEE COLLEGE of ENGINEERING Embedded SyS tems

A 4

Reading a Manual SSMRZ

Bit

Symbol

Bit Name

Function

R/W

b1, b

CK3S[1:0]

Clock Select

b1 b0
00: PCLK clock (n = 0)*'
01: PCLK/4 clock (n = 1)*'
10: PCLK/M6 clock (n = 2)*!
11: PCLK/64 clock (n = 3)*'

RAw=*

b2

MP

Multi-Processor Mode

(Walid only in asynchronous mode)
0: Multi-processor communications function is disabled
1: Multi-processor communications function is enabled

Riw=*

b3

STOP

Stop Bit Length

(Valid only in asynchronous mode)
0: 1 stop bit
1: 2 stop bits

Rw=*

4

PM

Parity Mode

(valid only when the PE bit is 1 in asynchronous mode)
0 Selects even parity
1: Selects odd panty

Rw=*

b5

PE

Parity Enable

(valid only in asynchronous mode)

+ VWhen transmitting

0: Parity bit addition is not performed
1: The parity bit is added

« When receiving

0: Parity bit checking is not perfiormed
1: The parity bit is checked

R

b&

CHR

Character Length

{Valid only in asynchronous mode)
0: Selects 8 bits as the data length a2
1- Selects 7 bits as the data Iength*z‘

R

by

M

Communications Mode

0: Asynchronous mode
1: Clock synchronous mode

R

MNotes:

1. n is the decimal notation of the value of n in BRR (see section 28.2.9, Bit Rate Register (BRR)).
2. In clock synchronous mode, this bit setting is invalid and a fixed data length of 8 hits is used.
3. LSBfirst is fixed and the MSE (bit 7) in TDR is not transmitted in transmission.

4. Writable only when TE in SCR = 0 and RE in SCR = 0 {both serial transmission and reception are disabled).

L 4
N\

The WILLIAM STATES LEE COLLEGE of ENGINEERING

UNC CHARLOTTE

Embedded Systems

14

Setting up the Serial Control Register
We will use SCIO

There are several “control” registers you need to set up
before you can communicate.
— First, you need to set up the speed of your port.
— Select 8 data bits, no parity, one stop bit (8N1)
— Asynchronous mode

What would the byte be set as?

SCI0.SMR.BYTE =

L 2
‘1 rl [Tjgec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems

~——

15

Serial Control Register

b7 b6 b5 bd b3 b2 b1 b0
TIE RIE TE RE MPIE TEIE CKEI[1 0]
!
Value after reset: 0 0 o O 0 0 0 O
Bit Symbol Bit Name Function RW
bi, b0 CKE[1:{0] Clock Enable « For SCID to 8CI13 R
Asynchronous mode
1 b0
0 0: On-chip baud rate generator
The SCKn pin functions as [/O port.
b2 TEIE Transmit End Interrupt Enable 0: A TEI interrupt request is disabled RiW
1: A TEI interrupt request is enabled
b3 MPIE Multi-Processor intemmupt Enable (WValid in asynchronous mode when SMR.MP = 1) RW
0: Normal reception
1: When the data with the multi-processor bit set to 0 is received, the
data is not read, and setling the status flags ORER and FER in
S5R 1o 1 is disabled. When the data with the multi-processaor bit
set to 1 is received, the MPIE bit is automatically cleared io 0, and
nommal reception is resumed.
b4 RE Receive Enahle (0 Serial reception is disabled R+
1: Serial reception is enabled
b5 TE Transmit Enable 0: Serial transmission is disabled R
1: Serial transmission is enabled
33} RIE Receive interrupt Enable 0: RXI and ERI interrupt requests are disabled RAW
1: RXI and ERI interrupt requests are enabled
bT TIE Transmit Intermupt Enable 07 A TXI interrupt request is dizabled RW

12 A TX! interrupt request is enabled

L 4

\1 r, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\ /2

UNC CHARLOTTE

Embedded Systems 16

Serial Control Register — Serial Status Register

Check to see is communications was successful (SCIx.SSR)

b7 k& b5 bd b3 b2 b1 b0
e — ORER FER FER TENC MPB MPET
Value after reset: X ® O (O 0 1 0 0
[Legend] x: Undefined
Bit Symbol Eit Name Function RW
b MPBT Multi-Processor Bit Transfer Sets the mufti-processor bit for adding to the transmission frame RAW
o1 MPE Multi-Processaor Yalue of the multi-processor hit in the reception frame R
b2 TEND Transmit End Flag 0 A character is being transmitted. R
1: Character transfer has been completed.
b3 PER Farity Ermor Flag 0 Mo parity eror occurred RAW*
1: A parity emor has occurred
b4 FER Framing Error Flag 0: No framing error occurred RAW*
1: A framing emor has occurred
b ORER Cwerrun Ermor Flag 0: Mo overrun error occurred RAw*
1. An overrun error has occurred
b7, b6 — {Resenved) The read value is undefined. The write value should always be 1. RAW

L 4

\1 r, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\ /2

UNC CHARLOTTE

Embedded Systems

17

Identifxing Errors

char read sci0O status;

read sciO status = SCI0.SSR.BYTE;

What does it mean if the value holds 0x047?
What does it mean if the value holds 0x0C?

What does it mean if the value holds 0x247?

What does it mean if the value holds 0x207?

‘1 r: ITJZec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems

18

Setting up Speed of the Serial Port

The speed of communications is a combination of
« PCLK

 Bits CKS in the SMR

« The Bit Rate Register (BRR)

Based on formula:

PCLK « 107 B=Dbit rate, N=BRR setting,
N= i onip n=CKS setting

So, if you want to communicate at 38,400 bps, if your PCLK
IS 50 MHz, set n=0 and N=40

SCI0.BRR.BYTE = 40;

‘1 r: ITJZec \QWATES LEE COLLEGE of ENGINEERING Embedded Systems 19

ExamEIe — Change to Slower Clock

What about a slower clock? POLK « 108
N= g
Say, 2400 bps? What do you need to set n and N?

‘1 r: ITJ?;ZC WATES LEE COLLEGE of ENGINEERING Embedded SyS tems 20

Class Exercise — Set up clock

Set up to 115,200, including writing the code for BRR.

‘1 r: [Tj};]eC WATES LEE COLLEGE of ENGINEERING Embedded SyS tems

21

Error rate

The error rate is associated to the settings of n and N, since
you will not get the exact value of xx.0.

So, if you want to communicate at 38,400 bps, if your PCLK
IS 50 MHz, set n=0 and N=40, error is:

PCLK = 106
B s 64 5 2201 s (N1

Error (%) = { -1} 100

L 2
‘1 r: ITJZec \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems
——

22

What is the Maximum SEeed??

Table 258.7 Maximum Bit Rate for Each Operating Frequency (Asynchronous Mode)

Maximum Bit Rate Maximum Bit Rate
PCLK (MHz) (bit/s) n N PCLK (MHz) (bitis) n N
8 250000 1] 17.2032 537600 0 0
0.8304 307200 1] 18 562500 0
10 312500 1] 0 19.6608 614400 0 0
12 375000 1] 0 20 625000 0 0
12288 384000 1] 0 25 F81250 0 0
14 437500 1] 0 30 937500 0 0
16 500000 1] 0 33 1031250 0 0
50 1562500 o 0

Mote: When the ABCS bit in SEMR is set to 1, the bit rate is two times.

L
&
Embedded Systems

\1 r, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\\//Z UNCCHARLOTTE

ExamEIe — Set up Communications

Write a function to set up SCI0 to 115,200 bps, 8 data bits,
odd parity, 1 stop bit:

‘1 r: [Tj};]eC WATES LEE COLLEGE of ENGINEERING Embedded SyS tems

24

ExamEIe — Send/receive data

Write a small function to send the string “Sending data”
through the SCI0 port. Make sure to wait for the previous
char to be transmitted before you send the next char:

‘1 rl [Tjgec WATES LEE COLLEGE of ENGINEERING Embedded SyS tems

25

Serial Communications and Interrupts

Now we have three separate

threads of control in the program Main Program or
— main program (and subroutines other threads
it calls)

— Transmit ISR — executes when
UART is ready to send another
character

— Receive ISR — executes when
UART receives a character

Need a way of buffering information
between threads

— Solution: circular queue with
head and tail pointers

— One for tx, one for rx

I

‘1 r: [Tj};]eC WATES LEE COLLEGE of ENGINEERING Embedded SyS tems 26

~——

get_string, send_string

Code to ImEIement Queues

Enqueue at tail (tail_ptr points to next

free entry), dequeue from head older newer
(head_ptr points to item to remove) data data
#define the queue size to make it easy
to change
One queue per direction / T

— tx ISR unloads tx_q head tail

— rx ISR loads rx_q

Other threads (e.g. main) load tx_g and
unload rx_q

Need to wrap pointer at end of buffer to
make it circular, use % (modulus,
remainder) operator

Queue is empty if size ==

Queue is full if size == Q_SIZE

I !

2
‘1 r: ITJZec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems 27
A4

Defining the Queues

#define Q_SIZE (32)

typedef struct {
unsigned char Data[Q_SIZE];
unsigned int Head; // points to oldest data element
unsigned int Tail; // points to next free space
unsigned int Size; // quantity of elements in queue

} QT;

QT tx_qg, rx_q;

L 2
‘1 r [Tjﬁec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems

' 4
e

28

Initialization and Status Inguiries

void Q_Init(QT * q) {
unsigned int 1i;
for (i=0; i1<Q_SIZE; i++)
g->batal[i] = 0; // to simplify our lives when debugging

g->Head = 0;
g->Tail = 0;
g->Size = 0;

}

int Q_Empty(Q_T * q) {
return g->Size == 0;

}

int Q_Full{Q_T * q) {
return q->Size == Q_SIZE;

}

L 2
‘1 r, &C%ATES LEE COLLEGE of ENGINEERING Embedded SyS tems

Engueue and Degueue

// Q_Enqueue - Called by a UART ISR - put a char on the queue
int Q_Enqueue(Q_T * q, unsigned char d) {
if (!Q_Full(q)) { // what if queue is full?
g->Datal[qg->Tail++] = d;
g->Tail %= Q_SIZE;
g->Size++;
return 1; // success
} else
return 0; // failure
}

// Q_Dequeue-called by a consumer function-take a char from queue
unsigned char Q_Dequeue(Q_T * q) {
unsigned char t=0;
if (1Q_Empty(q)) { // Must check to see if queue is empty 1st
t = q->Data[g->Head];
g->Data[g->Head++] = O; // to simplify debugging, clear
g->Head %= Q_SIZE;
g->Size--;
}

return t;

}

2
‘1 r: ITJZec \ZLLALI‘{IIAE\;IT%FATES LEE COLLEGE of ENGINEERING Embedded SyS tems 30
A4

Serial Peripheral Interface (SPI)

« SPIlbusis ade facto
standard developed by
Motorola

« (Can work with as few

This LSl (master)

RSPCK
MOSI
MISO

SSLO
55L1
S5L2
SS5L3

RSPl slave O

* RSPCK
» MOSI

MISO

*» SSL

as three wires, but more

needed to access additional devices
« Better method to access peripherals

than parallel 1/O.

« Common clock means you can
transmit at 25.0 Mbps

« Intended for very short distances

(i.e. on-board)

« The RX62N has two SPI masters

. 4
‘1 r: ITJZQC \ZMATES LEE COLLEGE of ENGINEERING Embedded SyS tems
e

RSPI slave 1

* RSPCK
» MOSI

MISO

* SSL

RSPI slave 2

* RSPCK
» MOSI

MISO

¥ SSL

RSPl slave 3

* RSPCK
» MOSI

MISO
SSL

31

SPI Details

Serial Clock — RSPCK

*Master Out, Slave in — MOSI (transmission from RX62N)
‘Master In, Slave Out — MISO (transmission from peripheral)
Slave Select — SSLx (select one of the peripheral devices)
We will not investigate Multiple Master modes

This LSI (master) RSPl slave 0
RSPCK » RSPCK
MOSI » MOSI
MISO MISO
SSLO SSL
SSL1
SSL2 SIS
SSL3

2
‘1 r: ITJZec \ZLLALI‘{IIAE\;IT%FATES LEE COLLEGE of ENGINEERING Embedded SyS tems 3
A4

SPI registers
« Serial Peripheral Control Register (SPCR)
« Serial Peripheral Control Register 2 (SPCR2)

« Serial Peripheral Pin Control Register (SPPCR) — set to
0x00

« Slave Select Polarity (SSLP)
« Serial Peripheral Status (SPS)

« Serial Peripheral Data Register (SPDR)

‘1 r: ITJZec \ZLLALI‘{IIAE\;IT%FATES LEE COLLEGE of ENGINEERING Embedded SyS tems

33

Serial Peripheral Control Register (SPCR)

b7 b6 b5 b4 b3 b2 b1 bO
SPRIE SPE SPTIE SPEIE MSTR |MODFEN| TXMD SPMS
Value after reset: 0 0 0 0 0 0 0 0
Bit Symbol Bit Name Description RwW
b0 SPMS RSPl Mode Select 0: 3P| operation (four-wire method) RAN
1: Clock synchronous operation (three-wire method)
b1 TXMD Communications Operating 0: Full-duplex synchronous serial communications R
Mode Select 1: Serial communications consisting of only transmit operations
b2 MODFEN Mode Fault Ermor Detection 0: Disables the detection of mode fault error RAW
Enable 17 Enables the detection of mode fault error
L3 MSTR RSP Master/Slave Mode 0: Slave mode RwW
Select 1: Master mode
b4 SPEIE RSPl Ermor Interrupt Enable 0 Disables the generation of RSPI emor intemupt requests R
1: Enables the generation of RSP error interrupt requests
bb SPTIE RSPl Transmit Interrupt 0: Disahles the generation of RSPI transmit interrupt requests RAN
Enahle 1: Enables the generation of RSP transmit intermupt requests
bé SPE RSP Function Enable 0: Disables the RSPI function RW
1: Enables the RSP function
b7 SPRIE RSPl Receive Interrupt 0: Disahles the generation of RSP| receive interrupt requests RAN
Enable 1: Enables the generation of RSPI receive internupt requests

4

\1 r, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\ /2

UNC CHARLOTTE

Embedded Systems

34

Serial Peripheral Control Register 2 (SPCR2)

b7 b6

b5

b4

b3

b2

b1

b0

FTE

SPIIE

SPOE

SPPE

alue after reset: 0 0

Bit

Symbol

Bit Name

0

Description

0

RW

b0

SPPE

Parity Enable

0: Does not add the parnty bit to transmit data and does not
check the parnty bit of receive data
1: Adds the parity bit to transmit data and checks the panty bit
of receive data (when SPCR.TXMD =0)
Adds the panty hit to transmit data but does not check the
parity bit of receive data (when SPCR.TAMD = 1)

RN

b1

SPOE

Parity Mode

Selecis even panty for use in transmission and recepfion

Selects odd parity for use in transmission and reception

R

b2

SPIE

RSPl Idle Interrupt Enable

Enables the generation of idle interrupt requests

RW

b3

PE

Parity Self-Testing

Disahles the self-diagnosis function of the parity circuit

0:
h
0: Disahles the generaticn of idle interrupt requests
1:
0:
3 f2

Enables the self-diagnosis function of the parity circuit

RAW

b7 to bd

(Reserved)

These bits are aiways read as 0. The write value should

always be 0.

RW

Slave Select Polarity

Value after reset: 0

4

\1 r, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\ /2

UNC CHARLOTTE

Embedded Systems

b6 b5 b4 b3 b2 b1 b0
— — — —_ SSL3P | SSL2P | SSL1P | SSLOP
0 0 0 0 0 0 0

(SSLP) — set these to 0 (active low)

35

Serial Peripheral Bit Rate Register (SPBR)
8 Bit value, used with SPCR

Table 32.4 Relationship between SPER and BRDV[1:0] Bit Settings

BRDV[1:0] Bit Rate
SPBR (n) Bits (N) Division Ratio PCLK=32MHz PCLK=36MHz PCLK=40MHz PCLK =50 MHz
i 0 2 16.0 Mbps* 16.0 Mbps* 20.0 Mbps* 25.0 Mbps*
1] 4 £.00 Mbps 9.00 Mbps 10.0 Mbps 125 Mbps
2 0 B 5.33 Mbps 6.00 Mbps 6.67 Mbps 8.33 Mbps
3 0 8 4.00 Mbps 4.50 Mbps 5.00 Mbps 6.25 Mbps
4 0 10 3.20 Mbps 3.60 Mbps 4.00 Mbps 5.00 Mbps
5 0 12 2.67 Mbps 3.00 Mbps 3.33 Mbps 4.16 Mbps
5 1 24 1.33 Mbps 1.50 Mbps 1.67 Mbps 2 08 Mbps
5 2 48 667 kbps 750 kbps 833 kbps 1.04 Mbps
5 3 96 333 kbps 375 kbps 417 kbps 521 kbps
255 3 4096 7.81 kbps 8.80 kbps 9.75 kbps 12.2 kbps

Mote: * Can be set in this LSI but bit rates satisfying the elecincal characteristics should be used.

e
Embedded Systems

. 4
\1 r, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\\//Z UNCCHARLOTTE

36

Serial Peripheral Command Register (SPCMDXx)

b15 b4 b13 b12 b11 b10 b9 b8
T T T
SCKDEN | SLNDEN | SPNDEN | LSBF SPB[3:0]
1 | 1
Value after reset: 0 0 0 0 0 1 1 1
b7 b6 b5 b4 b3 b2 b1 b0
T T T
SSLKP SSLA[2:0] BRDV[1:0] CPOL CPHA
| | 1
Value after reset: 0 0 0 0 1 1 0 1
Bit Symbol Bit Name Description RW
hi CPHA RSPCK Phase Seftting 0: Data sampling on odd edge, data variation on even edge RAW
1; Data variation on ocdd edoe, data sampling on even edoge
1 CPOL RSPCK Polarty Setting 0: RSPCK = 0 when idle RAW
1: RSPCK = 1 when idle
b3, b2 BRDV[1:0] Bit Rate Division Setting b3 b2 RW

0 0: These bits select the base bit rate

1: These bits select the base bit rate divided by 2

0: These bits select the base bit rate divided by 4

1: These bits select the base bit rate divided by 8

bS b4 RIW

0 D:SsLo

1: 8511

0: 8512

1:85L3

x. — (Setting prohibited)
[Legend] x: Don't care

b7 SSLKP S5L Signal Level Keeping 0: Negates all SSL signals upon completion of transfer RAW
1. Keeps the S5L signal level from the end of transfer until

T T =]

b6tob4 SSLARD] S5L Signal Assertion Setting

bb
0
0
0
0
1

M omk o=a O

the beginning of the next access.

L 2
‘1 rl [Tjgec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems
——

Serial PenEheraI Command Register (SPCMDx)

Symbaol Bit Name Description RW
b11tob8 SPB[30] RSPl Data Length Setting b11b10bS b8 R
0100 to D111: 8 bits
100 0: 9 bits
100 1:10 bits
10 1011 bits
101 1:12 bits
110013 bits
1101:14 bits
11 1 0: 15 bits
111 1:16 bits
000 0: 20 hits
000 1: 24 bits
0010, 0011: 32 bits
b12 LSBF RSPI LSB First 0: M3B first RAwW
1: LSB first
b13 SPNDEN RSPl Next-Access Delay Enable 0: A nexit-access delay of 1 RSPCK + 2 PCLK RMW
1: A next-access delay is equal 1o the setting of the RSP

nexi-access delay register (SPND)
b4 SLNDEN S35L Negation Delay Sefting {: An S5L negation delay of 1 RSPCK R
Enable 1. An S5L negation delay is equal to the sefling of the RSP
slave select negation delay register (3SLNDO)
b15 SCKDEN RSPCK Delay Setting Enable 0: An RSPCK delay of 1 RSPCK Riw
1. An RSPCK delay is equal to the setling of the RSP clock
delay register (SPCKD)

L 2
‘1 r, [Tjﬁec WATES LEE COLLEGE of ENGINEERING Embedded SyS tems

Serial Peripheral Status (SPS)

b7 b5 b4 b3 b2 b1 b0
— — — PERF | MODF | IDLNF | OVRF
Value after reset: X X 0 0 0 0 0
Bit Symbol Bit HName Description R
] OVRF Overrun Ermor Flag : No ovemun emar occurs RO
1; An overrun emor occurs
b1 IDLNF RSP Idie Flag 0: RSP is in the idle state R
1: RSP is in the transfer state
b2 MODF Mode Fault Ermor Flag 0: No mode fault ermor occurs RN
1: A mode fault ermmor occurs
b3 PERF Parity Ermor Flag 0: Mo parity ermor cccurs R
1: A parity ermor occurs
bd — {Reserved) This bit is always read as 0. The write value should always he 0. R
bs — {Reserved) The read value is undefined. The write value should always be 1. R
b6 — (Reserved) This bit is always read as 0. The write value should always he 0. R
bT — {Resenved) The read value is undefined. The write value should always be 1. RN
Mote: * Only 0 can be written to clear the flag after reading 1.

L 4

\1 r, The WILLIAM STATES LEE COLLEGE of ENGINEERING
N\ /2

UNC CHARLOTTE

Embedded Systems

39

Code to set up SPI

void Init_RSPI (void) { RSPIO.SPPCR.BYTE = 0x00;
MSTP (RSPIO) = O; RSPIO.SPBR.BYTE = 0x00;
IOPORT.PFGSPI.BIT.RSPIS = 0; RSPIO.SPDCR.BYTE = 0x00;
PORT.PFGSPI.BIT.RSPCKE = 1; RSPIO.SPCKD.BYTE = 0x00;
IOPORT.PFGSPI.BIT.SSL3E = 0; RSPIO.SSLND.BYTE = 0x00;
IOPORT.PFGSPI.BIT.MOSIE = 1; RSPIO.SPND.BYTE = 0x00;
PORTC.DDR.BIT.B4 = 1; RSPIO.SPCR2.BYTE = 0x00;
PORTC.DR.BIT.B4 = 1; RSPIO.SPCMDO.WORD = 0x0700;
PORTC.DDR.BIT.B7 = 1; RSPIO.SPCR.BYTE = 0x6B;
PORTC.DR.BIT.B7 = 1; RSPIO.SSLP.BYTE = 0x08;
PORTC.DDR.BIT.B6 = 1; RSPIO.SPSCR.BYTE = 0x00;
PORTC.DR.BIT.B6 = 1; }
PORTC.DDR.BIT.B5 = 1;
PORTC.DR.BIT.B5 = 1;

PCIVATBITCLKG-ASSLAL-AET ERXD3 gf SFL-CS [5]
e S e SEE 0 ser core smuscrs
s S | T e

e e e QIR sex nos
PCTAZMCSIRTICTIU-ATCLEE-BMISOA-AET_COL <CMSO2357

L 2
‘1 r: ITJ?;ZC WATES LEE COLLEGE of ENGINEERING Embedded SyS tems

~——

Code to communicate via SPI

void RSPI_Transmit_LWord (intl6_t sLowWord, intl6_t sHighWord) {
PORTC.DR.BIT.B4 = 0;
while (RSPIO.SPSR.BIT.IDLNF) ;
RSPI0.SPDR.WORD.L = sLowWord;
RSPI0O.SPDR.WORD.H = sHighWord;
while (RSPIO.SPSR.BIT.IDLNF);
(void) RSPIO.SPDR.WORD.L;
(void) RSPIO.SPDR.WORD.H;
PORTC.DR.BIT.B4 = 1 ; //CS OFF

4

‘1 r: [Tj};IeC WATES LEE COLLEGE of ENGINEERING Embedded SyS tems
——

12C

Inter-Integrated Circuit

SCL
uis =
. ELE]
-
]
A 13) 3 1
77| SDA/SDUSDIO S VDD_IO [
77| SDO/ALTADD GND [5
—q| RESRVD RESRVD [—
3":—9 MNC x GMD 5
TP2 5 INT2 e GND [
TR0 INT1 - VS
+
w =
o
& ADXL345
LEAT4
C3 = HIGH, I3C MOLCE

TZC ADDR = Ox3A

(0011101x), =—=R/Wn

4

A two line bus for
communicating data at high
speeds

*Multiple devices on the

—er_ same bus with only one
= master controlling the bus
l.. *Needs pull up resistors and

= IS kept at a digital high level
when idle

SCL

SDA

\‘ ’ , The WILLIAM STATES LEE COLLEGE of ENGINEERING
N /4

UNC CHARLOTTE
e

Embedded Systems 42

12C: ProEerties

Modes I2C mode or SM bus mode

Max Transfer Speed Up to 1Mbps (most devices won’t

support speeds beyond 400kbps)
Max. number of devices/slaves 128 (0 to 27bits_1)

connected per bus

Number of wires required for 2

communication (not including ground)

Max. Length of wires[6] 10 meters @ 100kbps
Number of bits per unit transfer 8

(excluding start and stop)

Slave Selection method Through addressing

4
‘1 r: {H}Gz \ZLLAL%ATES LEE COLLEGE of ENGINEERING Embedded Sys tems 43
e

12C: Working

Two wires:

» SCL (Serial Clock): Synchronizing data transfer
on the data line

« SDA (Serial Data): Responsible for transferring
data between devices

* Together they can toggle in a controlled fashion
to indicated certain important conditions that
determine the status of the bus and intentions of
the devices on the bus.

‘1 r: ITJZQC \E%I%ATES LEE COLLEGE of ENGINEERING Embedded SyS tems

44

12C: Working (Contd ...) START CONDITION

« Before any form of data transfer takes place, a device
wanting to transfer data must take control of the bus
(Needs to monitor the bus).

 If the bus is held high, then it is free. A device may issue
a START condition and take control of the bus.

« If a START condition is issued, no other device will
transmit data on the bus (predetermined behavior for all

devices).

SCL A SCL

sDa J D4

START ™ ®)

‘1 r: ITJZec \QWATES LEE COLLEGE of ENGINEERING Embedded SyS tems 45

12C: Working (Contd ...) STOP CONDITION

 When device is ready to give up control of the bus, it
issues a STOP condition

« STOP condition is one in which the SDA line gets pulled
high while the SCL line is high.

» Other conditions: RESTART (combination of a START and

STOP signal)
2CL /\ 2CL
o

(4) :

STOP

‘1 r: ITJZec wﬂm LEE COLLEGE of ENGINEERING Embedded SyS tems 46

12C: Working (Contd ...) After START

« Address the slave device with one byte of data
which consists of a 7 bit address + 1 bit (R/W)

 |If this bit is low, It indicates that the master wants
to write to the slave device; if high, the master
device wishes to read from the slave. This
determines whether the next transactions are
going to be read from or written to the addressed
slave devices.

A ninth bit (clock) is transmitted with each byte of
data transmitted (ACK(Logic 0)/NACK(logic 1) bit).
The slave device must provide an ACK within the
oth cycle to acknowledge receipt of data

‘1 r: ITJZQC \E%I%ATES LEE COLLEGE of ENGINEERING Embedded SyS tems 47

For Real???? Let’s have a look ..

i Agilent Technologies FRI OCT 08 05:46:54 2010

. M R

D,|D9 /‘: l \

[y

‘1 rl ?N% %ATES LEE COLLEGE of ENGINEERING Embedded Sys tems
——

12C: Code: Simple example (START and STOP)

void RiicIni (unsigned char in_SelfAddr) {
SYSTEM.MSTPCRB.BIT.MSTPB21 = 0;

.ICE =
.IICRS
.IICRS
FS =

RIICO.
RIICO.
RIICO.
RIICO.
RIICO.
RIICO.
RIICO.
RIICO.
RIICO.
RIICO.
RIICO.
RIICO.
RIICO.
RIICO.
RIICO.
RIICO.
RIICO.
PORT1.
PORT1.
RIICO.

ICCRLI.
ICCRI.
ICCRI.
SARUO.
SARLO.
ICMRI.
ICBRH.
ICBRL.
ICMR3.
ICIER.
ICIER.
ICIER.
ICIER.
ICIER.
ICIER.
ICIER.
ICIER.

BIT
BIT
BIT
BIT
BYTE
BIT
BIT.
BIT.
BIT
BIT.
BIT
BIT.
BIT.
BIT.
BIT.
BIT.
BIT.

ICR.BIT.B3
ICR.BIT.B2
ICCR1.BIT.ICE =

LTIE

= in_SelfAddr;
.CKS =

BRH =
BRL =

.ACKWP

RIE =

T
T

O.

0;

7.

14

14

void RiicUnIni (void) {
SYSTEM.MSTPCRB.BIT.MSTPB21 = 1;

unsigned char RiicSendStart (void) {
if(RIICO.ICCR1.BIT.ICE) {
while (RIICO.ICCR2.BIT.BBSY);
RITICO.ICCR2.BIT.ST=1;

while (! (RIICO.ICCR2.BIT.BBSY&&RIICO.ICS

R2.BIT.START)) ;
RIICO.ICSR2.BIT.START=0;
return 1;

}

else return 0O;

unsigned char RiicSendStop (void) {
1if(RIICO.ICCR1.BIT.ICE) {
while (RIICO.ICCR2.BIT.BBSY) {

RIICO.ICCR2.BIT.SP=1;

}

return 1;

}

else return O;

}

4

N2

The WILLIAM STATES LEE COLLEGE of ENGINEERING
UNC CHARLOTTE

Embedded Systems

49

12C Code: Reading and writing

unsigned char RiicReadByte (unsigned char unsigned char RiicWriteByte (unsigned char
slave_addr, unsigned char slave_addr, unsigned char data_byte) {
slave_register_num) {

RIICO.ICDRT=slave_addré& (0OxXFE) ;
RiicWriteByte (slave_addr,slave_register while (!RIICO.ICSR2.BIT.TDRE);
_num) ;

RiicSendStop();
RITICO.ICSR2.BIT.STOP=0;
RiicSendStart () ;
while (!RIICO.ICSR2.BIT.TDRE) ;
RIICO.ICDRT=slave_addr]| (0x01);
while (!RIICO.ICSR2.BIT.RDRF) ;
1if(RIICO.ICSR2.BIT.NACKF==0) {
RITICO.ICMR3.BIT.WAIT=1;
RITICO.ICMR3.BIT.ACKBT=1;
read_byte=RIICO.ICDRR;
while (!RIICO.ICSR2.BIT.RDRF) ;
RITICO.ICSR2.BIT.STOP=0;
RITICO.ICCR2.BIT.SP=1;
read_byte=RIICO.ICDRR;
while (!RITICO.ICSR2.BIT.STOP);
return read_byte;
}

else return OxFF;

RIICO.ICDRT=data_byte;

while (!RIICO.ICSR2.BIT.TEND) {
if(RIICO.ICSR2.BIT.NACKF) {
RITICO.ICSR2.BIT.NACKF=0;
return O;
}

}

while (!RIICO.ICSR2.BIT.TDRE) ;

while (!RIICO.ICSR2.BIT.TEND) {
if(RIICO.ICSR2.BIT.NACKF) {
RITICO.ICSR2.BIT.NACKF=0;
return O;
}

}

return 1;

}

L 2
‘1 r: [Tj};]eC WATES LEE COLLEGE of ENGINEERING Embedded SyS tems

~——

I2C Code: the Glorious mainQ

void main (void) {
RiicIni (0x10);
RiicSendStart () ;
RiicWriteByte2 (0x3A, 0x2D, 0x00) ;
RiicSendStop();
RiicSendStart () ;
i=RiicReadByte (0x3A, 0x00) ;
RiicSendStop () ;

RiicUnIni ();

while (1) ;
}
L 2
‘1 rl ITJ‘hN% WATES LEE COLLEGE of ENGINEERING Embedded SyS tems

~——

51

