
U
ser’s M

anual

www.renesas.com

RX Family
User’s Manual: Software

RENESAS 32-Bit MCU
RX Family

June 2010

32

Rev.1.00

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Cover

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Notation in This Manual
The following is a list of the elements of the notation used in this manual.

Classification Notation Meaning
Symbols IMM Immediate value

SIMM Immediate value for sign extension according to the processing size

UIMM Immediate value for zero extension according to the processing size

src Source of an instruction operand

dest Destination of an instruction operand

dsp Displacement of relative addressing

pcdsp Displacement of relative addressing of the program counter

[] Represents indirect addressing

Rn General-purpose register. R0 to R15 are specifiable unless stated
otherwise.

Rs General-purpose register as a source. R0 to R15 are specifiable unless
stated otherwise.

Rs2 Used in the description for the ADD, AND, CMP, MUL, OR, PUSHM, SUB,
and TST instructions. In these instructions, since two general-purpose
registers can be specified for an operand, the first general-purpose register
specified as a source is described as Rs and the second general-purpose
register specified as a source is described as Rs2.

Rd General-purpose register as a destination. R0 to R15 are specifiable unless
stated otherwise.

Rd2 Used in the description for the POPM and RTSD instructions. In these
instructions, since two general-purpose registers can be specified for an
operand, the first general-purpose register specified as a destination is
described as Rd and the second general-purpose register specified as a
destination is described as Rd2.

Rb General-purpose register specified as a base register. R0 to R15 are
specifiable unless stated otherwise.

Ri General-purpose register as an index register. R0 to R15 are specifiable
unless stated otherwise.

Rx Represents a control register. The PC, ISP, USP, INTB, PSW, BPC, BPSW,
FINTV, and FPSW are selectable, although the PC is only selectable as the
src operand of MVFC and PUSHC instructions.

flag Represents a bit (U or I) or flag (O, S, Z, or C) in the PSW.

Values 000b Binary number

0000h Hexadecimal number

Bit length #IMM:8 etc. Represents the effective bit length for the operand symbol.

:1 Indicates an effective length of one bit.

:2 Indicates an effective length of two bits.

:3 Indicates an effective length of three bits.

:4 Indicates an effective length of four bits.

:5 Indicates an effective length of five bits.

:8 Indicates an effective length of eight bits.

:16 Indicates an effective length of 16 bits.

:24 Indicates an effective length of 24 bits.

:32 Indicates an effective length of 32 bits.

Size specifiers MOV.W etc. Indicates the size that an instruction handles.

.B Byte (8 bits) is specified.

.W Word (16 bits) is specified.

.L Longword (32 bits) is specified.

Branch distance
specifiers

BRA.A etc. Indicates the length of the valid bits to represent the distance to the branch
relative destination.

.S 3-bit PC forward relative is specified. The range of valid values is 3 to 10.

.B 8-bit PC relative is specified. The range of valid values is –128 to 127.

.W 16-bit PC relative is specified. The range of valid values is –32768 to 32767.

.A 24-bit PC relative is specified. The range of valid values is –8388608 to
8388607.

.L 32-bit PC relative is specified. The range of valid values is –2147483648 to
2147483647.

Size extension
specifiers added to
memory operands

dsp:16[Rs].UB etc. Indicates the size of a memory operand and the type of extension. If the
specifier is omitted, the memory operand is handled as longword.

.B Byte (8 bits) is specified. The extension is sign extension.

.UB Byte (8 bits) is specified. The extension is zero extension.

.W Word (16 bits) is specified. The extension is sign extension.

.UW Word (16 bits) is specified. The extension is zero extension.

.L Longword (32 bits) is specified.

Operations (Operations in this manual are written in accord with C language syntax. The following is the
notation in this manual.)

= Assignment operator. The value on the right is assigned to the variable on
the left.

– Indicates negation as a unary operator or a "difference" as a binary operator.

+ Indicates "sum" as a binary operator.

* Indicates a pointer or a "product" as a binary operator.

/ Indicates "quotient" as a binary operator.

% Indicates "remainder" as a binary operator.
~ Indicates bit-wise "NOT" as a unary operator.

& Indicates bit-wise "AND" as a binary operator.

| Indicates bit-wise "OR" as a binary operator.

^ Indicates bit-wise "Exclusive OR" as a binary operator.

; Indicates the end of a statement.

{ } Indicates the start and end of a complex sentence. Multiple statements can
be put in { }.

if (expression)
statement 1 else
statement 2

Indicates an if-statement. The expression is evaluated; statement 1 is
executed if the result is true and statement 2 is executed if the result is false.

for (statement 1;
expression;
statement 2)
statement 3

Indicates a for-statement. After executing statement 1 and then evaluating
the expression, statement 3 is executed if the result is true. After statement 3
is executed the first time, the expression is evaluated after executing
statement 2.

do statement while
(expression);

Indicates a do-statement. As long as the expression is true, the statement is
executed. Regardless of whether the expression is true or false, the
statement is executed at least once.

while (expression)
statement

Indicates a while-statement. As long as the expression is true, the statement
is executed.

Classification Notation Meaning

Operations ==, != Comparison operators. "==" means "is equal to" and "!=" means "is not
equal to".

>, < Comparison operators. ">" means "greater than" and "<" means "less than".

>=, <= Comparison operators. The condition includes "==" as well as ">" or "<".

&& Logical operator. Indicates the "AND" of the conditions to the left and right of
the operator.

|| Logical operator. Indicates the "OR" of the conditions to the left and right of
the operator.

<<, >> Shift operators, respectively indicating leftward and rightward shifts.

tmp, tmp0, tmp1,
tmp2, tmp3

Temporary register

! Logical NOT, that is, inversion of the boolean value of a variable or
expression.

Floating point
number

NaN Not a number

Floating-point
standard

SNaN Signaling NaN

QNaN Quiet NaN

Classification Notation Meaning

List of Instructions for RX Family... 8
List of Instructions Classified in Alphabetical Order ... 8
List of Instructions Classified by Type... 12

Section 1 CPU Functions .. 17
1.1 Features ..17
1.2 Register Set of the CPU ..18

1.2.1 General-Purpose Registers (R0 to R15) ..19
1.2.2 Control Registers ...19

1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP) .. 20
1.2.2.2 Interrupt Table Register (INTB)... 20
1.2.2.3 Program Counter (PC).. 20
1.2.2.4 Processor Status Word (PSW).. 21
1.2.2.5 Backup PC (BPC)... 23
1.2.2.6 Backup PSW (BPSW) .. 23
1.2.2.7 Fast Interrupt Vector Register (FINTV)... 23
1.2.2.8 Floating-Point Status Word (FPSW).. 24

1.2.3 Accumulator (ACC) ..26
1.3 Floating-Point Exceptions ..27

1.3.1 Overflow ..27
1.3.2 Underflow ..27
1.3.3 Inexact ...27
1.3.4 Division-by-Zero ...28
1.3.5 Invalid Operation ...28
1.3.6 Unimplemented Processing ...29

1.4 Processor Mode ..30
1.4.1 Supervisor Mode ..30
1.4.2 User Mode ...30
1.4.3 Privileged Instruction ..30
1.4.4 Switching Between Processor Modes ..30

1.5 Data Types ..31
1.5.1 Integer ..31
1.5.2 Floating-Point ..31
1.5.3 Bitwise Operations ..32
1.5.4 Strings ..32

1.6 Data Arrangement ..33
1.6.1 Data Arrangement in Registers ..33
1.6.2 Data Arrangement in Memory ...33

1.7 Vector Table ...34
1.7.1 Fixed Vector Table ..34
1.7.2 Relocatable Vector Table ..35

1.8 Address Space ..36

Section 2 Addressing Modes... 37
2.1 Guide to This Section ...38
2.2 Addressing Modes ..39

2.2.1 Ranges for Immediate Values ..43

Section 3 Instruction Descriptions .. 44
3.1 Guide to This Section ...44
3.2 Instructions in Detail ..50

Section 4 Instruction Code.. 173
4.1 Guide to This Section ...173
4.2 Instruction Code Described in Detail ...176

Contents

Section 5 Exceptions... 256
5.1 Types of Exception ...256

5.1.1 Undefined Instruction Exception ...257
5.1.2 Privileged Instruction Exception ...257
5.1.3 Access Exception ...257
5.1.4 Floating-Point Exceptions ...257
5.1.5 Reset ..257
5.1.6 Non-Maskable Interrupt ..257
5.1.7 Interrupts ..257
5.1.8 Unconditional Trap ..257

5.2 Exception Handling Procedure ...258
5.3 Acceptance of Exceptions ..260

5.3.1 Timing of Acceptance and Saved PC Value ...260
5.3.2 Vector and Site for Preserving the PC and PSW ...261

5.4 Hardware Processing for Accepting and Returning from Exceptions ..262
5.5 Hardware Pre-processing ...263

5.5.1 Undefined Instruction Exception ...263
5.5.2 Privileged Instruction Exception ...263
5.5.3 Access Exception ...263
5.5.4 Floating-Point Exceptions ...263
5.5.5 Reset ..263
5.5.6 Non-Maskable Interrupt ..264
5.5.7 Interrupts ..264
5.5.8 Unconditional Trap ..264

5.6 Return from Exception Handling Routines ..265
5.7 Order of Priority for Exceptions ...265

Index ... 266

REVISION HISTORY... 268

REJ09B0435-0100 Rev.1.00 Page 8 of 278
June 11, 2010

RX Family List of Instructions for RX Family

Under development Preliminary document
Specifications in this document are tentative and subject to change.

List of Instructions for RX Family
List of Instructions Classified in Alphabetical Order

Mnemonic Function

Instruction
Described in Detail
(on Page)

Instruction Code
Described in Detail
(on Page)

ABS Absolute value 51 177

ADC Addition with carry 52 178

ADD Addition without carry 53 179

AND Logical AND 55 181

BCLR Clearing a bit 57 183

BCnd BGEU Relative conditional branch 58 185

BC 58 185

BEQ 58 185

BZ 58 185

BGTU 58 185

BPZ 58 185

BGE 58 185

BGT 58 185

BO 58 185

BLTU 58 185

BNC 58 185

BNE 58 185

BNZ 58 185

BLEU 58 185

BN 58 185

BLE 58 185

BLT 58 185

BNO 58 185

BMCnd BMGEU Conditional bit transfer 59 187

BMC 59 187

BMEQ 59 187

BMZ 59 187

BMGTU 59 187

BMPZ 59 187

BMGE 59 187

BMGT 59 187

BMO 59 187

BMLTU 59 187

BMNC 59 187

BMNE 59 187

BMNZ 59 187

BMLEU 59 187

BMN 59 187

BMLE 59 187

BMLT 59 187

BMNO 59 187

REJ09B0435-0100 Rev.1.00 Page 9 of 278
June 11, 2010

RX Family List of Instructions for RX Family

Under development Preliminary document
Specifications in this document are tentative and subject to change.

BNOT Inverting a bit 61 188

BRA Unconditional relative branch 62 190

BRK Unconditional trap 63 191

BSET Setting a bit 64 191

BSR Relative subroutine branch 65 193

BTST Testing a bit 66 194

CLRPSW Clear a flag or bit in the PSW 67 196

CMP Comparison 68 197

DIV Signed division 69 199

DIVU Unsigned division 71 201

EMUL Signed multiplication 73 202

EMULU Unsigned multiplication 75 203

FADD Floating-point addition 77 204

FCMP Floating-point comparison 79 205

FDIV Floating-point division 82 206

FMUL Floating-point multiplication 84 207

FSUB Floating-point subtraction 87 208

FTOI Floating point to integer conversion 90 209

INT Software interrupt 93 209

ITOF Integer to floating-point conversion 94 210

JMP Unconditional jump 96 211

JSR Jump to a subroutine 97 211

MACHI Multiply-Accumulate the high-order word 98 212

MACLO Multiply-Accumulate the low-order word 99 212

MAX Selecting the highest value 100 213

MIN Selecting the lowest value 101 214

MOV Transferring data 102 215

MOVU Transfer unsigned data 105 220

MUL Multiplication 107 221

MULHI Multiply the high-order word 109 223

MULLO Multiply the low-order word 110 223

MVFACHI Move the high-order longword from
accumulator

111 224

MVFACMI Move the middle-order longword from
accumulator

112 224

MVFC Transfer from a control register 113 225

MVTACHI Move the high-order longword to accumulator 114 225

MVTACLO Move the low-order longword to accumulator 115 226

MVTC Transfer to a control register 116 226

MVTIPL*
(privileged instruction)

Interrupt priority level setting 117 227

NEG Two’s complementation 118 228

NOP No operation 119 228

NOT Logical complementation 120 229

Mnemonic Function

Instruction
Described in Detail
(on Page)

Instruction Code
Described in Detail
(on Page)

REJ09B0435-0100 Rev.1.00 Page 10 of 278
June 11, 2010

RX Family List of Instructions for RX Family

Under development Preliminary document
Specifications in this document are tentative and subject to change.

OR Logical OR 121 230

POP Restoring data from stack to register 123 231

POPC Restoring a control register 124 232

POPM Restoring multiple registers from the stack 125 232

PUSH Saving data on the stack 126 233

PUSHC Saving a control register 127 234

PUSHM Saving multiple registers 128 234

RACW Round the accumulator word 129 235

REVL Endian conversion 131 235

REVW Endian conversion 132 236

RMPA Multiply-and-accumulate operation 133 236

ROLC Rotation with carry to left 135 237

RORC Rotation with carry to right 136 237

ROTL Rotation to left 137 238

ROTR Rotation to right 138 238

ROUND Conversion from floating-point to integer 139 239

RTE
(privileged instruction)

Return from the exception 142 239

RTFI
(privileged instruction)

Return from the fast interrupt 143 240

RTS Returning from a subroutine 144 240

RTSD Releasing stack frame and returning from
subroutine

145 240

SAT Saturation of signed 32-bit data 147 241

SATR Saturation of signed 64-bit data for RMPA 148 241

SBB Subtraction with borrow 149 242

SCCnd SCGEU Condition setting 150 243

SCC 150 243

SCEQ 150 243

SCZ 150 243

SCGTU 150 243

SCPZ 150 243

SCGE 150 243

SCGT 150 243

SCO 150 243

SCLTU 150 243

SCNC 150 243

SCNE 150 243

SCNZ 150 243

SCLEU 150 243

SCN 150 243

SCLE 150 243

SCLT 150 243

SCNO 150 243

Mnemonic Function

Instruction
Described in Detail
(on Page)

Instruction Code
Described in Detail
(on Page)

REJ09B0435-0100 Rev.1.00 Page 11 of 278
June 11, 2010

RX Family List of Instructions for RX Family

Under development Preliminary document
Specifications in this document are tentative and subject to change.

Note: * The MVTIPL instruction is not available in products of the RX610 Group.

SCMPU String comparison 152 243

SETPSW Setting a flag or bit in the PSW 153 244

SHAR Arithmetic shift to the right 154 245

SHLL Logical and arithmetic shift to the left 155 246

SHLR Logical shift to the right 156 247

SMOVB Transferring a string backward 157 248

SMOVF Transferring a string forward 158 248

SMOVU Transferring a string 159 248

SSTR Storing a string 160 249

STNZ Transfer with condition 161 249

STZ Transfer with condition 162 250

SUB Subtraction without borrow 163 251

SUNTIL Searching for a string 164 252

SWHILE Searching for a string 166 252

TST Logical test 168 253

WAIT
(privileged instruction)

Waiting 169 254

XCHG Exchanging values 170 254

XOR Logical exclusive or 172 255

Mnemonic Function

Instruction
Described in Detail
(on Page)

Instruction Code
Described in Detail
(on Page)

REJ09B0435-0100 Rev.1.00 Page 12 of 278
June 11, 2010

RX Family List of Instructions for RX Family

Under development Preliminary document
Specifications in this document are tentative and subject to change.

List of Instructions Classified by Type

Instruction
Type Mnemonic Function

Instruction
Described in
Detail
(on Page)

Instruction
Code Described
in Detail
(on Page)

Arithmetic/logic
instructions

ABS Absolute value 51 177

ADC Addition with carry 52 178

ADD Addition without carry 53 179

AND Logical AND 55 181

CMP Comparison 68 197

DIV Signed division 69 199

DIVU Unsigned division 71 201

EMUL Signed multiplication 73 202

EMULU Unsigned multiplication 75 203

MAX Selecting the highest value 100 213

MIN Selecting the lowest value 101 214

MUL Multiplication 107 221

NEG Two’s complementation 118 228

NOP No operation 119 228

NOT Logical complementation 120 229

OR Logical OR 121 230

RMPA Multiply-and-accumulate operation 133 236

ROLC Rotation with carry to left 135 237

RORC Rotation with carry to right 136 237

ROTL Rotation to left 137 238

ROTR Rotation to right 138 238

SAT Saturation of signed 32-bit data 147 241

SATR Saturation of signed 64-bit data for RMPA 148 241

SBB Subtraction with borrow 149 242

SHAR Arithmetic shift to the right 154 245

SHLL Logical and arithmetic shift to the left 155 246

SHLR Logical shift to the right 156 247

SUB Subtraction without borrow 163 251

TST Logical test 168 253

XOR Logical exclusive or 172 255

Floating-point
operation
instructions

FADD Floating-point addition 77 204

FCMP Floating-point comparison 79 205

FDIV Floating-point division 82 206

FMUL Floating-point multiplication 84 207

FSUB Floating-point subtraction 87 208

FTOI Floating point to integer conversion 90 209

ITOF Integer to floating-point conversion 94 210

ROUND Conversion from floating-point to integer 139 239

REJ09B0435-0100 Rev.1.00 Page 13 of 278
June 11, 2010

RX Family List of Instructions for RX Family

Under development Preliminary document
Specifications in this document are tentative and subject to change.

Data transfer
instructions

MOV Transferring data 102 215

MOVU Transfer unsigned data 105 220

POP Restoring data from stack to register 123 231

POPC Restoring a control register 124 232

POPM Restoring multiple registers from the stack 125 232

PUSH Saving data on the stack 126 233

PUSHC Saving a control register 127 234

PUSHM Saving multiple registers 128 234

REVL Endian conversion 131 235

REVW Endian conversion 132 236

SCCnd SCGEU Condition setting 150 243

SCC 150 243

SCEQ 150 243

SCZ 150 243

SCGTU 150 243

SCPZ 150 243

SCGE 150 243

SCGT 150 243

SCO 150 243

SCLTU 150 243

SCNC 150 243

SCNE 150 243

SCNZ 150 243

SCLEU 150 243

SCN 150 243

SCLE 150 243

SCLT 150 243

SCNO 150 243

STNZ Transfer with condition 161 249

STZ Transfer with condition 162 250

XCHG Exchanging values 170 254

Instruction
Type Mnemonic Function

Instruction
Described in
Detail
(on Page)

Instruction
Code Described
in Detail
(on Page)

RX Family Section 5

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 14 of 278
June 11, 2010

Branch
instructions

BCnd BGEU Relative conditional branch 58 185

BC 58 185

BEQ 58 185

BZ 58 185

BGTU 58 185

BPZ 58 185

BGE 58 185

BGT 58 185

BO 58 185

BLTU 58 185

BNC 58 185

BNE 58 185

BNZ 58 185

BLEU 58 185

BN 58 185

BLE 58 185

BLT 58 185

BNO 58 185

BRA Unconditional relative branch 62 190

BSR Relative subroutine branch 65 193

JMP Unconditional jump 96 211

JSR Jump to a subroutine 97 211

RTS Returning from a subroutine 144 240

RTSD Releasing stack frame and returning from
subroutine

145 240

Instruction
Type Mnemonic Function

Instruction
Described in
Detail
(on Page)

Instruction
Code Described
in Detail
(on Page)

RX Family Section 5

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 15 of 278
June 11, 2010

Bit
manipulation
instructions

BCLR Clearing a bit 57 183

BMCnd BMGEU Conditional bit transfer 59 187

BMC 59 187

BMEQ 59 187

BMZ 59 187

BMGTU 59 187

BMPZ 59 187

BMGE 59 187

BMGT 59 187

BMO 59 187

BMLTU 59 187

BMNC 59 187

BMNE 59 187

BMNZ 59 187

BMLEU 59 187

BMN 59 187

BMLE 59 187

BMLT 59 187

BMNO 59 187

BNOT Inverting a bit 61 188

BSET Setting a bit 64 191

BTST Testing a bit 66 194

String
manipulation
instructions

SCMPU String comparison 152 243

SMOVB Transferring a string backward 157 248

SMOVF Transferring a string forward 158 248

SMOVU Transferring a string 159 248

SSTR Storing a string 160 249

SUNTIL Searching for a string 164 252

SWHILE Searching for a string 166 252

System
manipulation
instructions

BRK Unconditional trap 63 191

CLRPSW Clear a flag or bit in the PSW 67 196

INT Software interrupt 93 209

MVFC Transfer from a control register 113 225

MVTC Transfer to a control register 116 226

MVTIPL*
(privileged instruction)

Interrupt priority level setting 117 227

RTE
(privileged instruction)

Return from the exception 142 239

RTFI
(privileged instruction)

Return from the fast interrupt 143 240

SETPSW Setting a flag or bit in the PSW 153 244

WAIT
(privileged instruction)

Waiting 169 254

Instruction
Type Mnemonic Function

Instruction
Described in
Detail
(on Page)

Instruction
Code Described
in Detail
(on Page)

RX Family Section 5

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 16 of 278
June 11, 2010

Note: * The MVTIPL instruction is not available in products of the RX610 Group.

DSP
instructions

MACHI Multiply-Accumulate the high-order word 98 212

MACLO Multiply-Accumulate the low-order word 99 212

MULHI Multiply the high-order word 109 223

MULLO Multiply the low-order word 110 223

MVFACHI Move the high-order longword from
accumulator

111 224

MVFACMI Move the middle-order longword from
accumulator

112 224

MVTACHI Move the high-order longword to
accumulator

114 225

MVTACLO Move the low-order longword to
accumulator

115 226

RACW Round the accumulator word 129 235

Instruction
Type Mnemonic Function

Instruction
Described in
Detail
(on Page)

Instruction
Code Described
in Detail
(on Page)

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 17 of 278
June 11, 2010

Section 1 CPU Functions

The RX CPU has short formats for frequently used instructions, facilitating the development of efficient programs that
take up less memory. Moreover, some instructions are executable in one clock cycle, and this realizes high-speed
arithmetic processing. The CPU has 73 basic instructions, 8 floating-point operation instructions, and 9 DSP instructions,
for a total of 90 instructions. It has 10 addressing modes, with register-register operations, register-memory operations,
and bitwise operations included. Data transfer between memory locations is also possible. An internal multiplier is
included for high-speed multiplication.

1.1 Features

• High instruction execution rate: One instruction in one clock cycle
• Address space: 4-Gbyte linear addresses
• Register set of the CPU

General purpose: Sixteen 32-bit registers
Control: Nine 32-bit registers
Accumulator: One 64-bit register

• Basic instructions: 73
Relative branch instructions to suit branch distances
Variable-length instruction format (lengths from one to eight bytes)
Short formats are provided for frequently used instructions.

• Floating-point operation instructions : 8
• DSP instructions : 9

Supports 16-bit × 16-bit multiplication and multiply-and-accumulate operations.
Rounds the data in the accumulator.

• Addressing modes: 10
• Processor modes

Supports a supervisor mode and a user mode.
• Floating-point operation unit

Supports single precision (32-bit) floating-point.
Supports data types and exceptions conforming to the IEEE754 standard.

• Memory protection unit (as an optional function)
• Data arrangement

Selectable as little endian or big endian

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 18 of 278
June 11, 2010

1.2 Register Set of the CPU

The RX CPU has sixteen general-purpose registers, nine control registers, and one accumulator used for DSP
instructions.

Figure 1.1 Register Set of the CPU

Note: * The stack pointer (SP) can be the interrupt stack pointer (ISP) or user stack pointer (USP),
according to the value of the U bit in the PSW.

USP (User stack pointer)
ISP (Interrupt stack pointer)

INTB (Interrupt table register)

PC (Program counter)

PSW (Processor status word)

BPC (Backup PC)

BPSW (Backup PSW)

FINTV (Fast interrupt vector register)

FPSW (Floating-point status word)

R15
R14
R13
R12
R11
R10
R9
R8
R7
R6
R5
R4
R3
R2
R1
R0 (SP) *

General-purpose register

Control register

b31 b0

b31 b0

DSP instruction register

b63 b0

ACC (Accumulator)

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 19 of 278
June 11, 2010

1.2.1 General-Purpose Registers (R0 to R15)

This CPU has sixteen general-purpose registers (R0 to R15). R1 to R15 can be used as data register or address register.

R0, a general-purpose register, also functions as the stack pointer (SP). The stack pointer is switched to operate as the
interrupt stack pointer (ISP) or user stack pointer (USP) by the value of the stack pointer select bit (U) in the processor
status word (PSW).

1.2.2 Control Registers

This CPU has the following nine control registers.

• Interrupt stack pointer (ISP)
• User stack pointer (USP)
• Interrupt table register (INTB)
• Program counter (PC)
• Processor status word (PSW)
• Backup PC (BPC)
• Backup PSW (BPSW)
• Fast interrupt vector register (FINTV)
• Floating-point status word (FPSW)

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 20 of 278
June 11, 2010

1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)

The stack pointer (SP) can be either of two types, the interrupt stack pointer (ISP) or the user stack pointer (USP).
Whether the stack pointer operates as the ISP or USP depends on the value of the stack pointer select bit (U) in the
processor status word (PSW).

Set the ISP or USP to a multiple of four, as this reduces the numbers of cycles required to execute interrupt sequences
and instructions entailing stack manipulation.

1.2.2.2 Interrupt Table Register (INTB)

The interrupt table register (INTB) specifies the address where the relocatable vector table starts.

1.2.2.3 Program Counter (PC)

The program counter (PC) indicates the address of the instruction being executed.

b31

ISP

b31

USP

0 0

Value after reset: 0

b0

b0

Value after reset:

b31 b0

Value after reset: Undefined

b31 b0

Value after reset: Reset vector (Contents of addresses FFFFFFFCh to FFFFFFFFh)

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 21 of 278
June 11, 2010

1.2.2.4 Processor Status Word (PSW)

Reserved
Bit Symbol Bit Name Description R/W
b0 C Carry flag 0: No carry has occurred.

1: A carry has occurred.
R/W

b1 Z Zero flag 0: Result is non-zero.
1: Result is 0.

R/W

b2 S Sign flag 0: Result is a positive value or 0.
1: Result is a negative value.

R/W

b3 O Overflow flag 0: No overflow has occurred.
1: An overflow has occurred.

R/W

b15 to
b4

— Reserved When writing, write 0 to these bits. The value
read is always 0.

R/W

b16 I*1 Interrupt enable bit 0: Interrupt disabled.
1: Interrupt enabled.

R/W

b17 U*1 Stack pointer select bit 0: Interrupt stack pointer (ISP) is selected.
1: User stack pointer (USP) is selected.

R/W

b19, b18 — Reserved When writing, write 0 to these bits. The value
read is always 0.

R/W

b20 PM*1,*2,*3 Processor mode select bit 0: Supervisor mode is selected.
1: User mode is selected.

R/W

b23 to
b21

— Reserved When writing, write 0 to these bits. The value
read is always 0.

R/W

b27 to
b24

IPL[3:0]
*1,*4

Processor interrupt priority level b27 b24
0 0 0 0: Priority level 0 (lowest)
0 0 0 1: Priority level 1
0 0 1 0: Priority level 2
0 0 1 1: Priority level 3
0 1 0 0: Priority level 4
0 1 0 1: Priority level 5
0 1 1 0: Priority level 6
0 1 1 1: Priority level 7
1 0 0 0: Priority level 8
1 0 0 1: Priority level 9
1 0 1 0: Priority level 10
1 0 1 1: Priority level 11
1 1 0 0: Priority level 12
1 1 0 1: Priority level 13
1 1 1 0: Priority level 14
1 1 1 1: Priority level 15 (highest)

R/W

C—— — — — — — — — — — — O S Z

00 0 0 0 0 0 0 0 0 0 0 0 0 0

b4b15 b8 b7 b3 b2 b1

0

b0b14 b13 b12 b11 b10 b9 b6 b5

IPL[3:0]— —— — — — — PM — — U I

0 0000 0 00 00 0 0 0 0 0 0

b31 b26b27* b23b25 b24 b21 b20 b19 b18 b17 b16b30 b29 b28 b22

Value after reset:

Value after reset:

Note : * Since the interrupt priority levels are from 0 to 7 for the RX610 Group, bit 27 is reserved. Writing to bit 27 is ineffective.

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 22 of 278
June 11, 2010

Notes: 1. In user mode, writing to the IPL[3:0], PM, U, and I bits by an MVTC or POPC instruction is ignored. Writing to
the IPL[3:0] bits by an MVTIPL instruction generates a privileged instruction exception.

2. In supervisor mode, writing to the PM bit by an MVTC or POPC instruction is ignored, but writing to the other
bits is possible.

3. Switching from supervisor mode to user mode requires execution of an RTE instruction after having set the PM
bit in the PSW saved on the stack to 1 or executing an RTFI instruction after having set the PM bit in the
backup PSW (BPSW) to 1.

4. Since the interrupt priority levels are from 0 to 7 for the RX610 Group, bit 27 is reserved. Writing to bit 27 is
ineffective.

The processor status word (PSW) indicates results of instruction execution or the state of the CPU.

C flag (Carry flag)

This flag indicates whether a carry, borrow, or shift-out has occurred as the result of an operation.

Z flag (Zero flag)

This flag indicates that the result of an operation was 0.

S flag (Sign flag)

This flag indicates that the result of an operation was negative.

O flag (Overflow flag)

This flag indicates that an overflow occurred during an operation.

I bit (Interrupt enable bit)

This bit enables interrupt requests. When an exception is accepted, the value of this bit becomes 0.

U bit (Stack pointer select bit)

This bit specifies the stack pointer as either the ISP or USP. When an exception request is accepted, this bit is set to 0.
When the processor mode is switched from supervisor mode to user mode, this bit is set to 1.

PM bit (Processor mode select bit)

This bit specifies the operating mode of the processor. When an exception is accepted, the value of this bit becomes 0.

IPL[3:0] bits (Processor interrupt priority level)

The IPL[3:0] bits specify the processor interrupt priority level as one of sixteen levels from zero to fifteen, where priority
level zero is the lowest and priority level fifteen the highest. When the priority level of a requested interrupt is higher
than the processor interrupt priority level, the interrupt is enabled. Setting the IPL[3:0] bits to level 15 (Fh) disables all
interrupt requests. The IPL[3:0] bits are set to level 15 (Fh) when a non-maskable interrupt is generated. When interrupts
in general are generated, the bits are set to the priority levels of accepted interrupts.

b31 to
b28

— Reserved When writing, write 0 to these bits. The value
read is always 0.

R/W
Bit Symbol Bit Name Description R/W

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 23 of 278
June 11, 2010

1.2.2.5 Backup PC (BPC)

The backup PC (BPC) is provided to speed up response to interrupts. After a fast interrupt has been generated, the
contents of the program counter (PC) are saved in the BPC.

1.2.2.6 Backup PSW (BPSW)

The backup PSW (BPSW) is provided to speed up response to interrupts. After a fast interrupt has been generated, the
contents of the processor status word (PSW) are saved in the BPSW. The allocation of bits in the BPSW corresponds to
that in the PSW.

1.2.2.7 Fast Interrupt Vector Register (FINTV)

The fast interrupt vector register (FINTV) is provided to speed up response to interrupts. The FINTV register specifies a
branch destination address when a fast interrupt has been generated.

b31 b0

Value after reset: Undefined

b31 b0

Value after reset: Undefined

b31 b0

Value after reset: Undefined

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 24 of 278
June 11, 2010

1.2.2.8 Floating-Point Status Word (FPSW)

Bit Symbol Bit Name Description R/W
b1, b0 RM[1:0] Floating-point rounding-mode

setting bits
b1 b0
0 0: Round to the nearest value
0 1: Round towards 0
1 0: Round towards +∞

1 1: Round towards –∞

R/W

b2 CV Invalid operation cause flag 0: No invalid operation has been encountered.
1: Invalid operation has been encountered.

R/(W)*1

b3 CO Overflow cause flag 0: No overflow has occurred.
1: Overflow has occurred.

R/(W)*1

b4 CZ Division-by-zero cause flag 0: No division-by-zero has occurred.
1: Division-by-zero has occurred.

R/(W)*1

b5 CU Underflow cause flag 0: No underflow has occurred.
1: Underflow has occurred.

R/(W)*1

b6 CX Inexact cause flag 0: No inexact exception has been generated.
1: Inexact exception has been generated.

R/(W)*1

b7 CE Unimplemented processing cause
flag

0: No unimplemented processing has been
encountered.

1: Unimplemented processing has been
encountered.

R/(W)*1

b8 DN 0 flush bit of denormalized number 0: A denormalized number is handled as a
denormalized number.

1: A denormalized number is handled as 0.*2

R/W

b9 — Reserved When writing, write 0 to this bit. The value read
is always 0.

R/W

b10 EV Invalid operation exception enable
bit

0: Invalid operation exception is masked.
1: Invalid operation exception is enabled.

R/W

b11 EO Overflow exception enable bit 0: Overflow exception is masked.
1: Overflow exception is enabled.

R/W

b12 EZ Division-by-zero exception enable
bit

0: Division-by-zero exception is masked.
1: Division-by-zero exception is enabled.

R/W

b13 EU Underflow exception enable bit 0: Underflow exception is masked.
1: Underflow exception is enabled.

R/W

b14 EX Inexact exception enable bit 0: Inexact exception is masked.
1: Inexact exception is enabled.

R/W

b25 to
b15

— Reserved When writing, write 0 to these bits. The value
read is always 0.

R/W

b26 FV*3 Invalid operation flag 0: No invalid operation has been encountered.
1: Invalid operation has been encountered.*8

R/W

CZ— EX EU EZ EO EV — DN CE CX CU CO CV RM[1:0]

00 0 0 0 0 0 0 1 0 0 0 0 0 0

b4b15 b8 b7 b3 b2 b1

0

b0b14 b13 b12 b11 b10 b9 b6 b5

FS FOFZFX FU — — — — —

0 0000 0 00 00 0 0 0 0 0 0

b31 b26b27 b23b25 b24 b21 b20 b19 b18 b17 b16b30 b29 b28 b22

FV — — — — —

Value after reset:

Value after reset:

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 25 of 278
June 11, 2010

Notes: 1. When 0 is written to the bit, the bit is set to 0; the bit remains the previous value when 1 is written.
2. Positive denormalized numbers are treated as +0, negative denormalized numbers as –0.
3. When the EV bit is set to 0, the FV flag is enabled.
4. When the EO bit is set to 0, the FO flag is enabled.
5. When the EZ bit is set to 0, the FZ flag is enabled.
6. When the EU bit is set to 0, the FU flag is enabled.
7. When the EX bit is set to 0, the FX flag is enabled.
8. Once the bit has been set to 1, this value is retained until it is cleared to 0 by software.

The floating-point status word (FPSW) indicates the results of floating-point operations. In products that do not support
floating-point instructions, the value "00000000h" is always read out and writing to these bits does not affect operations.

When an exception handling enable bit (Ej) enables the exception handling (Ej = 1), the corresponding Cj flag indicates
the cause. If the exception handling is masked (Ej = 0), check the Fj flag at the end of a series of processing. The Fj flag
is the accumulation type flag (j = X, U, Z, O, or V).

RM[1:0] bits (Floating-point rounding-mode setting bits)

These bits specify the floating-point rounding-mode.

Explanation of Floating-Point Rounding Modes

(1) Rounding to the nearest value is specified as the default mode and returns the most accurate value.

(2) Modes such as rounding towards 0, rounding towards +∞, and rounding towards –∞ are used to ensure precision
when interval arithmetic is employed.

CV flag (Invalid operation cause flag), CO flag (Overflow cause flag), CZ flag (Division-by-zero cause flag),
CU flag (Underflow cause flag), CX flag (Inexact cause flag), and CE flag (Unimplemented processing cause flag)

Floating-point exceptions include the five specified in the IEEE754 standard, namely overflow, underflow, inexact,
division-by-zero, and invalid operation. For a further floating-point exception that is generated upon detection of
unimplemented processing, the corresponding flag (CE) is set to 1.

• The bit that has been set to 1 is cleared to 0 when the FPU instruction is executed.
• When 0 is written to the bit by the MVTC and POPC instructions, the bit is set to 0; the bit retains the previous value

when 1 is written by the instruction.

b27 FO*4 Overflow flag 0: No overflow has occurred.
1: Overflow has occurred.*8

R/W

b28 FZ*5 Division-by-zero flag 0: No division-by-zero has occurred.
1: Division-by-zero has occurred.*8

R/W

b29 FU*6 Underflow flag 0: No underflow has occurred.
1: Underflow has occurred.*8

R/W

b30 FX*7 Inexact flag 0: No inexact exception has been generated.
1: Inexact exception has been generated.*8

R/W

b31 FS Floating-point error summary flag This bit reflects the logical OR of the FU, FZ,
FO, and FV flags.

R

• Rounding to the nearest value (the default behavior): An inexact result is rounded to the available value that is closest
to the result which would be obtained with an infinite number of
digits. If two available values are equally close, rounding is to the
even alternative.

• Rounding towards 0: An inexact result is rounded to the smallest available absolute value; i.e., in the direction of zero
(simple truncation).

• Rounding towards +∞: An inexact result is rounded to the nearest available value in the direction of positive infinity.
• Rounding towards –∞: An inexact result is rounded to the nearest available value in the direction of negative infinity.

Bit Symbol Bit Name Description R/W

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 26 of 278
June 11, 2010

DN bit (0 flush bit of denormalized number)

When this bit is set to 0, a denormalized number is handled as a denormalized number.
When this bit is set to 1, a denormalized number is handled as 0.

EV bit (Invalid operation exception enable bit), EO bit (Overflow exception enable bit),
EZ bit (Division-by-zero exception enable bit), EU bit (Underflow exception enable bit), and
EX bit (Inexact exception enable bit)

When any of five floating-point exceptions specified in the IEEE754 standard is generated by the FPU instruction, the bit
decides whether the CPU will start handling the exception. When the bit is set to 0, the exception handling is masked;
when the bit is set to 1, the exception handling is enabled.

FV flag (Invalid operation flag), FO flag (Overflow flag), FZ flag (Division-by-zero flag),
FU flag (Underflow flag), and FX flag (Inexact flag)

While the exception handling enable bit (Ej) is 0 (exception handling is masked), if any of five floating-point exceptions
specified in the IEEE754 standard is generated, the corresponding bit is set to 1.

• When Ej is 1 (exception handling is enabled), the value of the flag remains.
• When the corresponding flag is set to 1, it remains 1 until it is cleared to 0 by software. (Accumulation flag)

FS flag (Floating-point error summary flag)

This bit reflects the logical OR of the FU, FZ, FO, and FV flags.

1.2.3 Accumulator (ACC)

The accumulator (ACC) is a 64-bit register used for DSP instructions. The accumulator is also used for the multiply and
multiply-and-accumulate instructions; EMUL, EMULU, FMUL, MUL, and RMPA, in which case the prior value in the
accumulator is modified by execution of the instruction.

Use the MVTACHI and MVTACLO instructions for writing to the accumulator. The MVTACHI and MVTACLO
instructions write data to the higher-order 32 bits (bits 63 to 32) and the lower-order 32 bits (bits 31 to 0), respectively.

Use the MVFACHI and MVFACMI instructions for reading data from the accumulator. The MVFACHI and MVFACMI
instructions read data from the higher-order 32 bits (bits 63 to 32) and the middle 32 bits (bits 47 to 16), respectively.

b63

Value after reset: Undefined

b48 b47 b32 b31 b16 b15 b0

Range for reading and writing
by MVTACHI and MVFACHI Range for writing by MVTACLO

Range for reading by MVFACMI

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 27 of 278
June 11, 2010

1.3 Floating-Point Exceptions

Floating-point exceptions include the five specified in the IEEE754 standard, namely overflow, underflow, inexact,
division-by-zero, and invalid operation, and a further floating-point exception that is generated on the detection of
unimplemented processing. The following is an outline of the events that cause floating-point exceptions.

1.3.1 Overflow

An overflow occurs when the absolute value of the result of an arithmetic operation is greater than the range of values
that can be represented in the floating-point format. Table 1.1 lists the results of operations when an overflow exception
occurs.

Note: An inexact exception will be generated when an overflow error occurs while EO = 0.

1.3.2 Underflow

An underflow occurs when the absolute value of the result of an arithmetic operation is smaller than the range of
normalized values that can be represented in the floating-point format. (However, this does not apply when the result is
0.) Table 1.2 lists the results of operations when an underflow exception occurs.

1.3.3 Inexact

An inexact exception occurs when the result of a hypothetical calculation with infinite precision differs from the actual
result of the operation. Table 1.3 lists the conditions leading to an inexact exception and the results of operations.

Notes: 1. An inexact exception will not be generated when an underflow error occurs.
2. An inexact exception will not be generated when an overflow exception occurs while overflow exceptions are

enabled, regardless of the rounding generation.

Table 1.1 Operation Results When an Overflow Exception Has Occurred

Floating-Point Rounding Mode Sign of Result
Operation Result (Value in the Destination Register)
EO = 0 EO = 1

Rounding towards –∞ + +MAX No change
– –∞

Rounding towards +∞ + +∞

– –MAX
Rounding towards 0 + +MAX

– –MAX
Rounding to the nearest value + +∞

– –∞

Table 1.2 Operation Results When an Underflow Exception Has Occurred

Operation Result (Value in the Destination Register)
EU = 0 EU = 1
DN = 0: No change. (An unimplemented processing exception is generated.) No change
DN = 1: The value of 0 is returned.

Table 1.3 Conditions Leading to an Inexact Exception and the Operation Results

Occurrence Condition
Operation Result (Value in the Destination Register)

EX = 0 EX = 1
An overflow exception has occurred
while overflow exceptions are masked.

Refer to table 1.1, Operation Results When an
Overflow Exception Has Occurred

No change

Rounding has been produced. Value after rounding

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 28 of 278
June 11, 2010

1.3.4 Division-by-Zero

Dividing a non-zero finite number by zero produces a division-by-zero exception. Table 1.4 lists the results of operations
that have led to a division-by-zero exception.

Note that a division-by zero exception does not occur in the following situations.

1.3.5 Invalid Operation

Executing an invalid operation produces an invalid exception. Table 1.5 lists the conditions leading to an invalid
exception and the results of operations.

Legend

Table 1.4 Operation Results When a Division-by Zero Exception Has Occurred

Dividend
Operation Result (Value in the Destination Register)

EZ = 0 EZ = 1
Non-zero finite number ±∞ (the sign bit is the logical exclusive or of the sign

bits of the divisor and dividend)
No change

Dividend Result
0 An invalid operation exception is generated.
∞ No exception is generated. The result is ∞.

Denormalized number (DN = 0) An unimplemented processing exception is generated.
QNaN No exception is generated. The result is QNaN.
SNaN An invalid operation exception is generated.

Table 1.5 Conditions Leading to an Invalid Exception and the Operation Results

Occurrence Condition
Operation Result (Value in the Destination Register)

EV = 0 EV = 1
Operation on SNaN operands QNaN No change
+∞+(–∞), +∞–(+∞), –∞–(–∞)
0 × ∞

0 ÷ 0, ∞ ÷ ∞

Overflow in integer conversion or attempting
integer conversion of NaN or ∞ when
executing FTOI or ROUND instruction

The return value is 7FFFFFFFh when the sign bit
before conversion was 0 and 80000000h when the
sign bit before conversion was 1.

Comparison of SNaN operands No destination

NaN (Not a Number): Not a Number
SNaN (Signaling NaN): SNaN is a kind of NaN where the most significant bit in the mantissa part is 0.

Using an SNaN as a source operand in an operation generates an invalid operation. Using
an SNaN as the initial value of a variable facilitates the detection of bugs in programs. Note
that the hardware will not generate an SNaN.

QNaN (Quiet NaN): QNaN is a kind of NaN where the most significant bit in the mantissa part is 1.
Using a QNaN as a source operand in an operation (except in a comparison or format
conversion) does not generate an invalid operation. Since a QNaN is propagated through
operations, just checking the result without performing exception handling enables the
debugging of programs. Note that hardware operations can generate a QNaN.

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 29 of 278
June 11, 2010

Table 1.6 lists the rules for generating QNaNs as the results of operations.

Note: The SNaN is converted into a QNaN while the most significant bit in the mantissa part is 1.

1.3.6 Unimplemented Processing

An unimplemented processing exception occurs when DN = 0 and a denormalized number is given as an operand, or
when an underflow exception is generated as the result of an operation with DN = 0. An unimplemented processing
exception will not occur with DN = 1.
There is no enable bit to mask an unimplemented processing exception, so this processing exception cannot be masked.
The destination register remains as is.

Table 1.6 Rules for Generating QNaNs

Source Operands Operation Result (Value in the Destination Register)
An SNaN and a QNaN The SNaN source operand converted into a QNaN
Two SNaNs dest converted into a QNaN
Two QNaNs dest
An SNaN and a real value The SNaN source operand converted into a QNaN
A QNaN and a real value The QNaN source operand
Neither source operand is an NaN and an invalid
operation exception is generated

7FFFFFFFh

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 30 of 278
June 11, 2010

1.4 Processor Mode

The RX CPU supports two processor modes, supervisor and user. These processor modes and the memory protection
function enable the realization of a hierarchical CPU resource protection and memory protection mechanism. Each
processor mode imposes a level on rights of access to memory and the instructions that can be executed. Supervisor
mode carries greater rights than user mode. The initial state after a reset is supervisor mode.

1.4.1 Supervisor Mode

In supervisor mode, all CPU resources are accessible and all instructions are available. However, writing to the processor
mode select bit (PM) in the processor status word (PSW) by executing an MVTC or POPC instruction will be ignored.
For details on how to write to the PM bit, refer to 1.2.2.4, Processor Status Word (PSW).

1.4.2 User Mode

In user mode, write access to the CPU resources listed below is restricted. The restriction applies to any instruction
capable of write access.

• Some bits (bits IPL[3:0], PM, U, and I) in the processor status word (PSW)
• Interrupt stack pointer (ISP)
• Interrupt table register (INTB)
• Backup PSW (BPSW)
• Backup PC (BPC)
• Fast interrupt vector register (FINTV)

1.4.3 Privileged Instruction

Privileged instructions can only be executed in supervisor mode. Executing a privileged instruction in user mode
produces a privileged instruction exception. Privileged instructions include the RTFI, MVTIPL, RTE, and WAIT
instructions.

1.4.4 Switching Between Processor Modes

Manipulating the processor mode select bit (PM) in the processor status word (PSW) switches the processor mode.
However, rewriting the PM bit by executing an MVTC or POPC instruction is prohibited. Switch the processor mode by
following the procedures described below.

(1) Switching from user mode to supervisor mode
After an exception has been generated, the PM bit in the PSW is set to 0 and the CPU switches to supervisor mode.
The hardware pre-processing is executed in supervisor mode. The state of the processor mode before the exception
was generated is retained in the PM bit in the copy of the PSW that is saved on the stack.

(2) Switching from supervisor mode to user mode
Executing an RTE instruction when the value of the copy of the PM bit in the PSW that has been preserved on the
stack is "1" or an RTFI instruction when the value of the copy of the PM bit in the PSW that has been preserved in the
backup PSW (BPSW) is "1" causes a transition to user mode. In the transition to user mode, the value of the stack
pointer designation bit (the U bit in the PSW) becomes "1".

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 31 of 278
June 11, 2010

1.5 Data Types

The RX CPU can handle four types of data: integer, floating-point, bit, and string.

1.5.1 Integer

An integer can be signed or unsigned. For signed integers, negative values are represented by two's complements.

Figure 1.2 Integer

1.5.2 Floating-Point

Floating-point support is for the single-precision floating-point type specified in IEEE754; operands of this type can be
used in eight floating-point operation instructions: FADD, FCMP, FDIV, FMUL, FSUB, FTOI, ITOF, and ROUND.

Figure 1.3 Floating-Point

The floating-point format supports the values listed below.

• 0 < E < 255 (normal numbers)
• E = 0 and F = 0 (signed zero)
• E = 0 and F > 0 (denormalized numbers)*
• E = 255 and F = 0 (infinity)
• E = 255 and F > 0 (NaN: Not-a-Number)
Note: * The number is treated as 0 when the DN bit in the FPSW is 1. When the DN bit is 0, an unimplemented

processing exception is generated.

Unsigned longword (32-bit) integer

Signed longword (32-bit) integer

Unsigned word (16-bit) integer

Signed word (16-bit) integer

Unsigned byte (8-bit) integer

Signed byte (8-bit) integer

Legend
S: Signed bit

b31 b0

b31 b0

b15 b0

b15 b0

b7 b0

b7 b0
S

S

S

Single-precision
floating-point

b31 b0
S E F

Legend
S: Sign (1 bit)
E: Exponent (8 bits)
F: Mantissa (23 bits)

Value = (-1)S×(1+F×2-23)×2(E-127)

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 32 of 278
June 11, 2010

1.5.3 Bitwise Operations

Five bit-manipulation instructions are provided for bitwise operations: BCLR, BMCnd, BNOT, BSET, and BTST.

A bit in a register is specified as the destination register and a bit number in the range from 31 to 0.

A bit in memory is specified as the destination address and a bit number from 7 to 0. The addressing modes available to
specify addresses are register indirect and register relative.

Figure 1.4 Bit

1.5.4 Strings

The string data type consists of an arbitrary number of consecutive byte (8-bit), word (16-bit), or longword (32-bit) units.
Seven string manipulation instructions are provided for use with strings: SCMPU, SMOVB, SMOVF, SMOVU, SSTR,
SUNTIL, and SWHILE.

Figure 1.5 String

Register
b31 b0

#bit, Rn
(bit: 31 to 0, n: 0 to 15)

b7 b0
#bit, mem
(bit: 7 to 0)

Memory

Example
#30,R1 (register R1, bit 30)

#2,[R2] (address [R2], bit 2)
Example

String of byte (8-bit) data
8

String of word (16-bit) data
16

String of longword (32-bit) data
32

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 33 of 278
June 11, 2010

1.6 Data Arrangement

1.6.1 Data Arrangement in Registers

Figure 1.6 shows the relation between the sizes of registers and bit numbers.

Figure 1.6 Data Arrangement in Registers

1.6.2 Data Arrangement in Memory

Data in memory have three sizes; byte (8-bit), word (16-bit), and longword (32-bit). The data arrangement is selectable
as little endian or big endian. Figure 1.7 shows the arrangement of data in memory.

Figure 1.7 Data Arrangement in Memory

Longword (32-bit) data
b31 b0

b15 b0

b7 b0

Word (16-bit) data

Byte (8-bit) data

MSB LSB

1-bit data

(Little endian)

Address L

Byte data

Word data Address M
Address M+1

Address N
Address N+1
Address N+2
Address N+3

Longword data

Data type

b7 b0

LSBMSB

Data imageAddress

7 6 5 4 3 2 1 0

LSB

LSB

MSB

MSB

b7 b0

LSBMSB

7 6 5 4 3 2 1 0

LSB

LSB

MSB

MSB

(Big endian)
Data image

Address L

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 34 of 278
June 11, 2010

1.7 Vector Table

There are two types of vector table: fixed and relocatable. Each vector in the vector table consists of four bytes and
specifies the address where the corresponding exception handling routine starts.

1.7.1 Fixed Vector Table

The fixed vector table is allocated to a fixed address range. The individual vectors for the privileged instruction
exception, access exception, undefined instruction exception, floating-point exception, non-maskable interrupt, and reset
are allocated to addresses in the range from FFFFFF80h to FFFFFFFFh. Figure 1.8 shows the fixed vector table.

Figure 1.8 Fixed Vector Table

(Reserved)

(Reserved)

(Reserved)

(Reserved)

(Reserved)

(Reserved)

Access exception

(Reserved)

(Reserved)

FFFFFFDCh

FFFFFFFCh

FFFFFFE0h

FFFFFFE4h

FFFFFFE8h

FFFFFFECh

FFFFFFF0h

FFFFFFF4h

FFFFFFF8h

Privileged instruction exception

Undefined instruction exception

Floating-point exception

LSB

Non-maskable interrupt

Reset

FFFFFFD0h

FFFFFFD4h

FFFFFFD8h

MSB

FFFFFFCCh

FFFFFF 80h

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 35 of 278
June 11, 2010

1.7.2 Relocatable Vector Table

The address where the relocatable vector table is placed can be adjusted. The table is a 1,024-byte region that contains all
vectors for unconditional traps and interrupts and starts at the address (IntBase) specified in the interrupt table register
(INTB). Figure 1.9 shows the relocatable vector table.

Each vector in the relocatable vector table has a vector number from 0 to 255. Each of the INT instructions, which act as
the sources of unconditional traps, is allocated to the vector that has the same number as that of the instruction itself
(from 0 to 255). The BRK instruction is allocated to the vector with number 0. Furthermore, vector numbers within the
set from 0 to 255 may also be allocated to other interrupt sources on a per-product basis.

Figure 1.9 Relocatable Vector Table

INTB

0IntBase+4

IntBase
b31 b0

IntBase+8

255
IntBase+1020

Interrupt vectors are
allocated in this order.

1
2

RX Family Section 1 CPU Functions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 36 of 278
June 11, 2010

1.8 Address Space

The address space of the RX CPU is the 4 Gbyte range from address 0000 0000h to address FFFF FFFFh. Program and
data regions taking up to a total of 4 Gbytes are linearly accessible. The address space of the RX-CPU is depicted in
figure 1.10. For all regions, the designation may differ with the product and operating mode. For details, see the
hardware manuals for the respective products.

Figure 1.10 Address Space

00000000h

FFFFFFFFh

Data regions/
Program regions
(4 Gbytes, linear)

RX Family Section 2 Addressing Modes

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 37 of 278
June 11, 2010

Section 2 Addressing Modes

The following is a description of the notation and operations of each addressing mode.

There are ten types of addressing mode.

• Immediate
• Register direct
• Register indirect
• Register relative
• Post-increment register indirect
• Pre-decrement register indirect
• Indexed register indirect
• Control register direct
• PSW direct
• Program counter relative

RX Family Section 2 Addressing Modes

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 38 of 278
June 11, 2010

2.1 Guide to This Section

The following sample shows how the information in this section is presented.

(1) Name

The name of the addressing mode is given here.

(2) Symbolic notation

This notation represents the addressing mode.
:8 or :16 represents the number of valid bits just before an instruction in this addressing mode is executed. This symbolic
notation is added in the manual to represent the number of valid bits, and is not included in the actual program.

(3) Description

The operation and effective address range are described here.

(4) Operation diagram

The operation of the addressing mode is illustrated here.

Register Relative
dsp:5[Rn]
(Rn = R0 to R7)

dsp:8[Rn]
(Rn = R0 to R15)

dsp:16[Rn]
(Rn = R0 to R15)

The effective address of the operand is the
least significant 32 bits of the sum of the
displacement (dsp) value, after zero-
extension to 32 bits and multiplication by 1,
2, or 4 according to the specification (see
the diagram at right), and the value in the
specified register. The range of valid
addresses is from 00000000h to
FFFFFFFFh. dsp:n represents an n-bit long
displacement value. The following mode can
be specified:
dsp:5[Rn] (Rn = R0 to R7),
dsp:8[Rn] (Rn = R0 to R15), and
dsp:16[Rn] (Rn = R0 to R15).
dsp:5[Rn] (Rn = R0 to R7) is used only with
MOV and MOVE instructions.

addressRn address

dsp ×

• Instruction that takes a size specifier
 .B : × 1
 .W : × 2
 .L : × 4
• Instruction that takes a size extension specifier
 .B/.UB : × 1
 .W/.UW : × 2
 .L : × 4

+

Register
Memory

Direction of
address
incrementing

(1)

(2)

(3)

(4)

RX Family Section 2 Addressing Modes

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 39 of 278
June 11, 2010

2.2 Addressing Modes

Immediate
#IMM:1
#IMM:3
#UIMM:4
#IMM:5

#IMM:1
The operand is the 1-bit immediate value
indicated by #IMM. This addressing mode is
used to specify the source for the RACW
instruction.

#IMM:3
The operand is the 3-bit immediate value
indicated by #IMM. This addressing mode is
used to specify the bit number for the bit
manipulation instructions: BCLR, BMCnd,
BNOT, BSET, and BTST.

#IMM:4
The operand is the 4-bit immediate value
indicated by #IMM. This addressing mode is
used to specify the interrupt priority level for
the MVTIPL instruction.

#UIMM:4
The operand is the 4-bit immediate value
indicated by #UIMM after zero extension to
32 bits. This addressing mode is used to
specify sources for ADD, AND, CMP, MOV,
MUL, OR, and SUB instructions.

#IMM:5
The operand is the 5-bit immediate value
indicated by #IMM. This addressing mode is
used in the following ways:

- to specify the bit number for the bit-
manipulation instructions: BCLR,
BMCnd, BNOT, BSET, and BTST;

- to specify the number of bit places of
shifting in certain arithmetic/logic
instructions: SHAR, SHLL, and SHLR;
and

- to specify the number of bit places of
rotation in certain arithmetic/logic
instructions: ROTL and ROTR.

b31 b0
Zero extension#UIMM:4

b3b4

b0b4
#IMM:5

b0b2
#IMM:3

b0
#IMM:1

#IMM:4
b0b3

RX Family Section 2 Addressing Modes

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 40 of 278
June 11, 2010

Immediate
#IMM:8
#SIMM:8
#UIMM:8
#IMM:16
#SIMM:16
#SIMM:24
#IMM:32

The operand is the value specified by the
immediate value. In addition, the operand
will be the result of zero-extending or sign-
extending the immediate value when it is
specified by #UIMM or #SIMM. #IMM:n,
#UIMM:n, and #SIMM:n represent n-bit long
immediate values.
For the range of IMM, refer to section 2.2.1,
Ranges for Immediate Values.

Register Direct
Rn
(Rn = R0 to R15)

The operand is the specified register. In
addition, the Rn value is transferred to the
program counter (PC) when this addressing
mode is used with JMP and JSR
instructions. The range of valid addresses is
from 00000000h to FFFFFFFFh. Rn (Rn =
R0 to R15) can be specified.

Register Indirect
[Rn]
(Rn = R0 to R15)

The value in the specified register is the
effective address of the operand. The range
of valid addresses is from 00000000h to
FFFFFFFFh. [Rn] (Rn = R0 to R15) can be
specified.

Register Relative
dsp:5[Rn]
(Rn = R0 to R7)

dsp:8[Rn]
(Rn = R0 to R15)

dsp:16[Rn]
(Rn = R0 to R15)

The effective address of the operand is the
least significant 32 bits of the sum of the
displacement (dsp) value, after zero-
extension to 32 bits and multiplication by 1,
2, or 4 according to the specification (see
the diagram at right), and the value in the
specified register. The range of valid
addresses is from 00000000h to
FFFFFFFFh. dsp:n represents an n-bit long
displacement value. The following mode can
be specified:
dsp:5[Rn] (Rn = R0 to R7),
dsp:8[Rn] (Rn = R0 to R15), and
dsp:16[Rn] (Rn = R0 to R15).
dsp:5[Rn] (Rn = R0 to R7) is used only with
MOV and MOVE instructions.

When the size specifier is W

When the size specifier is L

When the size specifier is B

#IMM:32

#SIMM:24

#SIMM:16

#SIMM:8

#UIMM:8

#IMM:16

#UIMM:8

#SIMM:8

#IMM:8
b7 b0

Sign extension
b7 b0b15 b8

Zero extension
b7 b0b15 b8

b0b15

Zero extension
b0b31 b7b8

Sign extension
b0b31 b7b8

Sign extension
b0b31 b15b16

Sign extension
b23 b0b31 b24

b31 b0b31

Registerb31 b0

Rn

PC

Rn

Register
Memory

Register

Direction of
address
incrementing

address
Register

Rn

Memory

Direction of
address
incrementing

addressRn address

dsp ×

• Instruction that takes a size specifier
 .B : × 1
 .W : × 2
 .L : × 4
• Instruction that takes a size extension specifier
 .B/.UB : × 1
 .W/.UW : × 2
 .L : × 4

+

Register
Memory

Direction of
address
incrementing

RX Family Section 2 Addressing Modes

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 41 of 278
June 11, 2010

Post-increment Register Indirect
[Rn+]
(Rn = R0 to R15)

The value in the specified register is the
effective address of the operand. The range
of valid addresses is from 00000000h to
FFFFFFFFh. After the operation, 1, 2, or 4 is
added to the value in the specified register
according to the size specifier: .B, .W, or .L.
This addressing mode is used with MOV and
MOVU instructions.

Pre-decrement Register Indirect
[–Rn]
(Rn = R0 to R15)

According to the size specifier: .B, .W, or .L,
1, 2, or 4 is subtracted from the value in the
specified register. The value after the
operation is the effective address of the
operand. The range of valid addresses is
from 00000000h to FFFFFFFFh. This
addressing mode is used with MOV and
MOVU instructions.

Indexed Register Indirect
[Ri,Rb]
(Ri = R0 to R15,
Rb = R0 to R15)

The effective address of the operand is the
least significant 32 bits of the sum of the
value in the index register (Ri), multiplied by
1, 2, or 4 according to the size specifier: .B,
.W, or .L, and the value in the base register
(Rb). The range of valid addresses is from
00000000h to FFFFFFFFh. This addressing
mode is used with MOV and MOVU
instructions.

Control Register Direct
PC
ISP
USP
INTB
PSW
BPC
BPSW
FINTV
FPSW

The operand is the specified control register.
This addressing mode is used with MVFC,
MVTC, POPC, and PUSHC instructions.
The PC is only selectable as the src operand
of MVFC and PUSHC instructions.

PSW Direct
C
Z
S
O
I
U

The operand is the specified flag or bit. This
addressing mode is used with CLRPSW and
SETPSW instructions.

addressRn (1)

+(3)

(2)

(2)

Memory

When the size specifier is .B: + 1
When the size specifier is .W: + 2
When the size specifier is .L: + 4

Register

Direction of
address
incrementing

addressRn address

(1)

–(4)

(2)

(3)

When the size specifier is .B: – 1
When the size specifier is .W: – 2
When the size specifier is .L: – 4

Memory

Register

Direction of
address
incrementing

address
Base register

Rb

(1)

(1)

(2)

+

Index register
Ri

address

(2) (3)×
When the size specifier is .B: × 1
When the size specifier is .W: × 2
When the size specifier is .L: × 4

Memory

Direction of
address
incrementing

Register

FPSW
b31 b0

FINTV
b0b31

BPSW
b31 b0

BPC
b0b31

PSW
b31 b0

INTB
b0b31

USP
b31 b0

ISP
b31 b0

PC
b0b31

IPL[3:0] PM U I
b31 b24 b23 b16

O S Z C
b15 b8 b7 b0

PSW

PSW

RX Family Section 2 Addressing Modes

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 42 of 278
June 11, 2010

Program Counter Relative
pcdsp:3 When the branch distance specifier is .S, the

effective address is the least significant 32
bits of the unsigned sum of the value in the
program counter (PC) and the displacement
(pcdsp) value. The range of the branch is
from 3 to 10. The range of valid addresses is
from 00000000h to FFFFFFFFh. This
addressing mode is used with BCnd (where
Cnd==EQ/Z or NE/NZ) and BRA
instructions.

pcdsp:8
pcdsp:16
pcdsp:24

When the branch distance specifier is .B, .W,
or .A, the effective address is the signed
sum of the value in the program counter
(PC) and the displacement (pcdsp) value.
The range of pcdsp depends on the branch
distance specifier.
For .B: –128 ≤ pcdsp:8 ≤ 127
For .W: –32768 ≤ pcdsp:16 ≤ 32767
For .A: –8388608 ≤ pcdsp:24 ≤ 8388607
The range of valid addresses is from
00000000h to FFFFFFFFh. When the
branch distance specifier is .B, this
addressing mode is used with BCnd and
BRA instructions. When the branch distance
specifier is .W, this addressing mode is used
with BCnd (where Cnd==EQ/Z or NE/NZ),
BRA, and BSR instructions. When the
branch distance specifier is .A, this
addressing mode is used with BRA and BSR
instructions.

Rn
(Rn = R0 to R15)

The effective address is the signed sum of
the value in the program counter (PC) and
the Rn value. The range of the Rn value is
from –2147483648 to 2147483647. The
range of valid addresses is from 00000000h
to FFFFFFFFh. This addressing mode is
used with BRA(.L) and BSR(.L) instructions.

Branch instruction

pcdsp

+

PC

Label

Register
Memory

Direction of
address
incrementing

Branch instruction

pcdsp

PC

pcdsp

When the pcdsp value is negative

+

+

When the pcdsp value is positive

Label

Register

Memory

Label

Direction of
address
incrementing

Branch instructionPC

When the Rn value is negative

Rn

Rn

+

+

Register

Memory

Register

Register

When the Rn value is positive

Direction of
address
incrementing

RX Family Section 2 Addressing Modes

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 43 of 278
June 11, 2010

2.2.1 Ranges for Immediate Values

Ranges for immediate values are listed in table 2.1.

Unless specifically stated otherwise in descriptions of the various instructions under section 3.2, Instructions in Detail,
ranges for immediate values are as listed below.

Notes: 1. The RX Family assembler from Renesas converts instruction codes with immediate values to have the optimal
numbers of bits.

2. The RX Family assembler from Renesas is capable of depicting hexadecimal notation as a 32-bit notation. For
example "-127" in decimal notation, i.e. "-7Fh" in hexadecimal, can be expressed as "0FFFFFF81h".

3. For the ranges of immediate values for INT and RTSD instructions, see the relevant descriptions under section
3.2, Instructions in Detail.

Table 2.1 Ranges for Immediate Values
IMM In Decimal Notation In Hexadecimal Notation
IMM:1 1 or 2 1h or 2h
IMM:3 0 to 7 0h to 7h
IMM:4 0 to 15 0h to 0Fh
UIMM:4 0 to 15 0h to 0Fh
IMM:5 0 to 31 0h to 1Fh
IMM:8 -128 to 255 -80h to 0FFh
UIMM:8 0 to 255 0h to 0FFh
SIMM:8 -128 to 127 -80h to 7Fh
IMM:16 -32768 to 65535 -8000h to 0FFFFh
SIMM:16 -32768 to 32767 -8000h to 7FFFh
SIMM:24 -8388608 to 8388607 -800000h to 7FFFFFh
IMM:32 -2147483648 to 4294967295 -80000000h to 0FFFFFFFFh

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 44 of 278
June 11, 2010

Section 3 Instruction Descriptions

3.1 Guide to This Section

This section describes the functionality of each instruction by showing syntax, operation, function, src/dest to be selected,
flag change, and description example.

The following shows how to read this section by using an actual page as an example.

ABS Absolute value
ABSolute

Arithmetic/logic instruction
Instruction Code

Page: 177
Syntax
(1) ABS dest
(2) ABS src, dest

Operation
(1) if (dest < 0)

dest = -dest;
(2) if (src < 0)

dest = -src;
else
dest = src;

Function
(1) This instruction takes the absolute value of dest and places the result in dest.
(2) This instruction takes the absolute value of src and places the result in dest.

Flag Change

Instruction Format

Description Example
ABS R2
ABS R1, R2

Flag Change Condition
C �
Z � The flag is set when dest is 0 after the operation; otherwise it is cleared.
S � The flag is set when the MSB of dest after the operation is 1; otherwise it is cleared.
O � (1) The flag is set if dest before the operation was 80000000h; otherwise it is cleared.

(2) The flag is set if src before the operation was 80000000h; otherwise it is cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

(1) ABS dest L � Rd 2
(2) ABS src, dest L Rs Rd 3

(1)

(7)

(6)

(5)

(4)

(8)

(9)

(3)
(2)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 45 of 278
June 11, 2010

(1) Mnemonic

Indicates the mnemonic name of the instruction explained on the given page. The center column gives a simple
description of the operation and the full name of the instruction.

(2) Instruction Type

Indicates the type of instruction.

(3) Instruction Code

Indicates the page in which instruction code is listed.

Refer to this page for instruction code.

(4) Syntax

Indicates the syntax of the instruction using symbols.

(a) Mnemonic

Describes the mnemonic.

(b) Size specifier .size

For data-transfer instructions, some string-manipulation instructions, and the RMPA instruction, a size specifier can be
added to the end of the mnemonic. This determines the size of the data to be handled as follows.

.B Byte (8 bits)

.W Word (16 bits)

.L Longword (32 bits)

(c) Operand src, dest

Describes the operand.

src Source operand
dest Destination operand

(5) Operation

Describes the operation performed by the instruction. A C-language-style notation is used for the descriptions of
operations.

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 46 of 278
June 11, 2010

(a) Data type

signed char Signed byte (8-bit) integer
signed short Signed word (16-bit) integer
signed long Signed longword (32-bit) integer
signed long long Signed long longword (64-bit) integer
unsigned char Unsigned byte (8-bit) integer
unsigned short Unsigned word (16-bit) integer
unsigned long Unsigned longword (32-bit) integer
unsigned long long Unsigned long longword (64-bit) integer
float Single-precision floating point

(b) Pseudo-functions

register(n): Returns register Rn, where n is the register number (n: 0 to 15).
register_num(Rn): Returns register number n for Rn.

(c) Special notation

Rn[i+7:i]: Indicates the unsigned byte integer for bits (i + 7) to i of Rn.
(n: 0 to 15, i: 24, 16, 8, or 0)

Rm:Rn: Indicates the virtual 64-bit register for two connected registers.
(m, n: 0 to 15. Rm is allocated to bits 63 to 32, Rn to bits 31 to 0.)

Rl:Rm:Rn: Indicates the virtual 96-bit register for three connected registers.
(l, m, n: 0 to 15. Rl is allocated to bits 95 to 64, Rm to bits 63 to 32, and Rn
to bits 31 to 0.)

{byte3, byte2, byte1, byte0}: Indicates the unsigned longword integer for four connected unsigned byte
integers.

(6) Function

Explains the function of the instruction and precautions to be taken when using it.

(7) Flag Change

Indicates changes in the states of flags (O, S, Z, and C) in the PSW. For floating-point instructions, changes in the states of
flags (FX, FU, FZ, FO, FV, CE, CX, CU, CZ, CO, and CV) in the FPSW are also indicated.

The symbols in the table mean the following:

−: The flag does not change.
√: The flag changes depending on condition.

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 47 of 278
June 11, 2010

(8) Instruction Format

Indicates the instruction format.

(a) Registers

Rs, Rs2, Rd, Rd2, Ri, and Rb mean that R0 to R15 are specifiable unless stated otherwise.

(b) Control registers

Rx indicates that the PC, ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW are selectable, although the PC is
only selectable as the src operand of MVFC and PUSHC instructions.

(c) Flag and bit

"flag" indicates that a bit (U or I) or a flag (O, S, Z, or C) in the PSW is specifiable.

Instruction Format

Processing
Size

Operand Code Size
(Byte)Syntax src src2 dest

(1) AND src, dest L #UIMM:4 � Rd 2
L #SIMM:8 � Rd 3
L #SIMM:16 � Rd 4
L #SIMM:24 � Rd 5
L #IMM:32 � Rd 6
L Rs � Rd 2
L [Rs].memex � Rd 2 (memex == UB)

3 (memex != UB)
L dsp:8[Rs].memex* � Rd 3 (memex == UB)

4 (memex != UB)
L dsp:16[Rs].memex* � Rd 4 (memex == UB)

5 (memex != UB)
(2) AND src, src2, dest L Rs Rs2 Rd 3

(f)

(a)

(d)

(e)

Instruction Format

Processing
Size

Operand Code Size
(Byte)Syntax src dest*

MVTC src, dest L #SIMM:8 Rx 4
L #SIMM:16 Rx 5
L #SIMM:24 Rx 6
L #IMM:32 Rx 7
L Rs Rx 3

(b)

Instruction Format
Operand Code Size

Syntax dest (Byte)
SETPSW dest flag 2(c)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 48 of 278
June 11, 2010

(d) Immediate value

#IMM:n, #UIMM:n, and #SIMM:n indicate n-bit immediate values. When extension is necessary, UIMM specifies
zero extension and SIMM specifies sign extension.

(e) Size extension specifier (.memex) appended to a memory operand

The sizes of memory operands and forms of extension are specified as follows. Each instruction with a size-extension
specifier is expanded accordingly and then executed at the corresponding processing size.

If the extension specifier is omitted, byte size is assumed for bit-manipulation instructions and longword size is
assumed for other instructions.

(f) Processing size

The processing size indicates the size for transfer or calculation within the CPU.

(9) Description Example

Shows a description example for the instruction.

memex Size Extension
B Byte Sign extension
UB Byte Zero extension
W Word Sign extension
UW Word Zero extension
L Longword None

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 49 of 278
June 11, 2010

The following explains the syntax of BCnd, BRA, and BSR instructions by using the BRA instruction as an actual
example.

(4) Syntax

Indicates the syntax of the instruction using symbols.

(a) Mnemonic

Describes the mnemonic.

(b) Branch distance specifier .length

For branch or jump instructions, a branch distance specifier can be added to the end of the mnemonic. This determines
the number of bits to be used to represent the relative distance value for the branch.

.S 3-bit PC forward relative specification. Valid values are 3 to 10.

.B 8-bit PC relative specification. Valid values are –128 to 127.

.W 16-bit PC relative specification. Valid values are –32768 to 32767.

.A 24-bit PC relative specification. Valid values are –8388608 to 8388607.

.L 32-bit PC relative specification. Valid values are –2147483648 to 2147483647.

BRA Unconditional relative branch
BRanch Always

Branch instruction
Instruction Code

Page: 190
Syntax
BRA(.length) src

Operation
PC = PC + src;

Function
• This instruction executes a relative branch to destination address specified by src.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
BRA label1
BRA.A label2
BRA R1
BRA.L R2

Note: For the RX Family assembler manufactured by Renesas Technology Corp., enter a destination address specified
by a label or an effective address as the displacement value (pcdsp:3, pcdsp:8, pcdsp:16, pcdsp:24). The value of
the specified address minus the address where the instruction is allocated will be stored in the pcdsp section of the
instruction.

Description Example
BRA label
BRA 1000h

Operand Code Size
(Byte)Syntax Length src Range of pcdsp/Rs

BRA(.length) src S pcdsp:3 3 � pcdsp � 10 1
B pcdsp:8 –128 � pcdsp � 127 2
W pcdsp:16 –32768 � pcdsp � 32767 3
A pcdsp:24 –8388608 � pcdsp � 8388607 4
L Rs –2147483648 � Rs � 2147483647 2

(4)
(a)

(b)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 50 of 278
June 11, 2010

3.2 Instructions in Detail

The following pages give details of the individual instructions for the RX Family.

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 51 of 278
June 11, 2010

ABS Absolute value
ABSolute

Arithmetic/logic instruction
Instruction Code

Page: 177
Syntax
(1) ABS dest
(2) ABS src, dest

Operation
(1) if (dest < 0)

dest = -dest;
(2) if (src < 0)

dest = -src;
else
dest = src;

Function
(1) This instruction takes the absolute value of dest and places the result in dest.
(2) This instruction takes the absolute value of src and places the result in dest.

Flag Change

Instruction Format

Description Example
ABS R2
ABS R1, R2

Flag Change Condition
C −
Z √ The flag is set when dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set when the MSB of dest after the operation is 1; otherwise it is cleared.
O √ (1) The flag is set if dest before the operation was 80000000h; otherwise it is cleared.

(2) The flag is set if src before the operation was 80000000h; otherwise it is cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

(1) ABS dest L − Rd 2
(2) ABS src, dest L Rs Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 52 of 278
June 11, 2010

ADC Addition with carry
ADd with Carry

Arithmetic/logic instruction
Instruction Code

Page: 178
Syntax
ADC src, dest

Operation
dest = dest + src + C;

Function
• This instruction adds dest, src, and the C flag and places the result in dest.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 × 24)
can be specified; with dsp:16, values from 0 to 262140 (65535 × 4) can be specified. The value divided by 4 will
be stored in the instruction code.

Description Example
ADC #127, R2
ADC R1, R2
ADC [R1], R2

Flag Change Condition
C √ The flag is set if an unsigned operation produces an overflow; otherwise it is cleared.
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O √ The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

ADC src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].L Rd 4
L dsp:8[Rs].L* Rd 5
L dsp:16[Rs].L* Rd 6

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 53 of 278
June 11, 2010

ADD Addition without carry
ADD

Arithmetic/logic instruction
Instruction Code

Page: 179
Syntax
(1) ADD src, dest
(2) ADD src, src2, dest

Operation
(1) dest = dest + src;
(2) dest = src + src2;

Function
(1) This instruction adds dest and src and places the result in dest.
(2) This instruction adds src and src2 and places the result in dest.

Flag Change
Flag Change Condition
C √ The flag is set if an unsigned operation produces an overflow; otherwise it is cleared.
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O √ The flag is set if a signed operation produces an overflow; otherwise it is cleared.

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 54 of 278
June 11, 2010

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example
ADD #15, R2
ADD R1, R2
ADD [R1], R2
ADD [R1].UB, R2
ADD #127, R1, R2
ADD R1, R2, R3

Processing
Size

Operand Code Size
(Byte)Syntax src src2 dest

(1) ADD src, dest L #UIMM:4 − Rd 2
L #SIMM:8 − Rd 3
L #SIMM:16 − Rd 4
L #SIMM:24 − Rd 5
L #IMM:32 − Rd 6
L Rs − Rd 2
L [Rs].memex − Rd 2 (memex == UB)

3 (memex != UB)
L dsp:8[Rs].memex* − Rd 3 (memex == UB)

4 (memex != UB)
L dsp:16[Rs].memex* − Rd 4 (memex == UB)

5 (memex != UB)
(2) ADD src, src2, dest L #SIMM:8 Rs Rd 3

L #SIMM:16 Rs Rd 4
L #SIMM:24 Rs Rd 5
L #IMM:32 Rs Rd 6
L Rs Rs2 Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 55 of 278
June 11, 2010

AND Logical AND
AND

Arithmetic/logic instruction
Instruction Code

Page: 181
Syntax
(1) AND src, dest
(2) AND src, src2, dest

Operation
(1) dest = dest & src;
(2) dest = src & src2;

Function
(1) This instruction logically ANDs dest and src and places the result in dest.
(2) This instruction logically ANDs src and src2 and places the result in dest.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Flag Change Condition
C −
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O −

Processing
Size

Operand Code Size
(Byte)Syntax src src2 dest

(1) AND src, dest L #UIMM:4 − Rd 2
L #SIMM:8 − Rd 3
L #SIMM:16 − Rd 4
L #SIMM:24 − Rd 5
L #IMM:32 − Rd 6
L Rs − Rd 2
L [Rs].memex − Rd 2 (memex == UB)

3 (memex != UB)
L dsp:8[Rs].memex* − Rd 3 (memex == UB)

4 (memex != UB)
L dsp:16[Rs].memex* − Rd 4 (memex == UB)

5 (memex != UB)
(2) AND src, src2, dest L Rs Rs2 Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 56 of 278
June 11, 2010

Description Example
AND #15, R2
AND R1, R2
AND [R1], R2
AND [R1].UW, R2
AND R1, R2, R3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 57 of 278
June 11, 2010

BCLR Clearing a bit
Bit CLeaR

Bit manipulation instruction
Instruction Code

Page: 183
Syntax
BCLR src, dest

Operation
(1) When dest is a memory location:

unsigned char dest;
dest &= ˜(1 << (src & 7));

(2) When dest is a register:
register unsigned long dest;
dest &= ˜(1 << (src & 31));

Function
• This instruction clears the bit of dest, which is specified by src.
• The immediate value given as src is the number (position) of the bit.

The range for IMM:3 operands is 0 ≤ IMM:3 ≤ 7. The range for IMM:5 is 0 ≤ IMM:5 ≤ 31.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
BCLR #7, [R2]
BCLR R1, [R2]
BCLR #31, R2
BCLR R1, R2

Processing
Size

Operand Code Size
(Byte)Syntax src dest

(1) BCLR src, dest B #IMM:3 [Rd].B 2
B #IMM:3 dsp:8[Rd].B 3
B #IMM:3 dsp:16[Rd].B 4
B Rs [Rd].B 3
B Rs dsp:8[Rd].B 4
B Rs dsp:16[Rd].B 5

(2) BCLR src, dest L #IMM:5 Rd 2
L Rs Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 58 of 278
June 11, 2010

BCnd Relative conditional branch
Branch Conditionally BCnd

Branch instruction
Instruction Code

Page: 185
Syntax
BCnd(.length) src

Operation
if (Cnd)
PC = PC + src;

Function
• This instruction makes the flow of relative branch to the location indicated by src when the condition specified by

Cnd is true; if the condition is false, branching does not proceed.
• The following table lists the types of BCnd.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
BC label1
BC.B label2

Note: For the RX Family assembler manufactured by Renesas Technology Corp., enter a destination address specified
by a label or an effective address as the displacement value (pcdsp:3, pcdsp:8, pcdsp:16). The value of the
specified address minus the address where the instruction is allocated will be stored in the pcdsp section of the
instruction.

Description Example
BC label
BC 1000h

BCnd Condition Expression BCnd Condition Expression
BGEU,
BC

C == 1 Equal to or greater than/
C flag is 1

≤ BLTU,
BNC

C == 0 Less than/
C flag is 0

>

BEQ,
BZ

Z == 1 Equal to/Z flag is 1 = BNE,
BNZ

Z == 0 Not equal to/Z flag is 0 ≠

BGTU C & ˜Z == 1 Greater than < BLEU C & ˜Z == 0 Equal to or less than ≥
BPZ S == 0 Positive or zero 0 ≤ BN S == 1 Negative 0 >
BGE S ^ O == 0 Equal to or greater than

as signed integer
≤ BLE (S ^ O) |

Z == 1
Equal to or less than as
signed integer

≥

BGT (S ^ O) |
Z == 0

Greater than as signed
integer

< BLT S ^ O == 1 Less than as signed
integer

>

BO O == 1 O flag is 1 BNO O == 0 O flag is 0

Length
Operand Code Size

(Byte)Syntax src Range of pcdsp
(1) BEQ.S src S pcdsp:3 3 ≤ pcdsp ≤ 10 1
(2) BNE.S src S pcdsp:3 3 ≤ pcdsp ≤ 10 1
(3) BCnd.B src B pcdsp:8 –128 ≤ pcdsp ≤ 127 2
(4) BEQ.W src W pcdsp:16 –32768 ≤ pcdsp ≤ 32767 3
(5) BNE.W src W pcdsp:16 –32768 ≤ pcdsp ≤ 32767 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 59 of 278
June 11, 2010

BMCnd Conditional bit transfer
Bit Move Conditional BMCnd

Bit manipulation instruction
Instruction Code

Page: 187
Syntax
BMCnd src, dest

Operation
(1) When dest is a memory location:

unsigned char dest;
if (Cnd)
dest |= (1 << (src & 7));

else
dest &= ˜(1 << (src & 7));

(2) When dest is a register:
register unsigned long dest;
if (Cnd)
dest |= (1 << (src & 31));

else
dest &= ˜(1 << (src & 31));

Function
• This instruction moves the truth-value of the condition specified by Cnd to the bit of dest, which is specified by src;

that is, 1 or 0 is transferred to the bit if the condition is true or false, respectively.
• The following table lists the types of BMCnd.

• The immediate value given as src is the number (position) of the bit.
The range for IMM:3 operands is 0 ≤ IMM:3 ≤ 7. The range for IMM:5 is 0 ≤ IMM:5 ≤ 31.

Flag Change
• This instruction does not affect the states of flags.

BMCnd Condition Expression BMCnd Condition Expression
BMGEU,
BMC

C == 1 Equal to or greater than/
C flag is 1

≤ BMLTU,
BMNC

C == 0 Less than/
C flag is 0

>

BMEQ,
BMZ

Z == 1 Equal to/Z flag is 1 = BMNE,
BMNZ

Z == 0 Not equal to/Z flag is 0 ≠

BMGTU C & ˜Z == 1 Greater than < BMLEU C & ˜Z == 0 Equal to or less than ≥
BMPZ S == 0 Positive or zero 0 ≤ BMN S == 1 Negative 0 >
BMGE S ^ O == 0 Equal to or greater than

as signed integer
≤ BMLE (S ^ O) |

Z == 1
Equal to or less than as
signed integer

≥

BMGT (S ^ O) |
Z == 0

Greater than as signed
integer

< BMLT S ^ O == 1 Less than as signed
integer

>

BMO O == 1 O flag is 1 BMNO O == 0 O flag is 0

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 60 of 278
June 11, 2010

Instruction Format

Description Example
BMC #7, [R2]
BMZ #31, R2

Processing
Size

Operand Code Size
(Byte)Syntax src dest

(1) BMCnd src, dest B #IMM:3 [Rd].B 3
B #IMM:3 dsp:8[Rd].B 4
B #IMM:3 dsp:16[Rd].B 5

(2) BMCnd src, dest L #IMM:5 Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 61 of 278
June 11, 2010

BNOT Inverting a bit
Bit NOT

Bit manipulation instruction
Instruction Code

Page: 188
Syntax
BNOT src, dest

Operation
(1) When dest is a memory location:

unsigned char dest;
dest ^= (1 << (src & 7));

(2) When dest is a register:
register unsigned long dest;
dest ^= (1 << (src & 31));

Function
• This instruction inverts the value of the bit of dest, which is specified by src, and places the result into the specified

bit.
• The immediate value given as src is the number (position) of the bit.

The range for IMM:3 operands is 0 ≤ IMM:3 ≤ 7. The range for IMM:5 is 0 ≤ IMM:5 ≤ 31.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
BNOT #7, [R2]
BNOT R1, [R2]
BNOT #31, R2
BNOT R1, R2

Processing
Size

Operand Code Size
(Byte)Syntax src dest

(1) BNOT src, dest B #IMM:3 [Rd].B 3
B #IMM:3 dsp:8[Rd].B 4
B #IMM:3 dsp:16[Rd].B 5
B Rs [Rd].B 3
B Rs dsp:8[Rd].B 4
B Rs dsp:16[Rd].B 5

(2) BNOT src, dest L #IMM:5 Rd 3
L Rs Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 62 of 278
June 11, 2010

BRA Unconditional relative branch
BRanch Always

Branch instruction
Instruction Code

Page: 190
Syntax
BRA(.length) src

Operation
PC = PC + src;

Function
• This instruction executes a relative branch to destination address specified by src.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
BRA label1
BRA.A label2
BRA R1
BRA.L R2

Note: For the RX Family assembler manufactured by Renesas Technology Corp., enter a destination address specified
by a label or an effective address as the displacement value (pcdsp:3, pcdsp:8, pcdsp:16, pcdsp:24). The value of
the specified address minus the address where the instruction is allocated will be stored in the pcdsp section of the
instruction.

Description Example
BRA label
BRA 1000h

Operand Code Size
(Byte)Syntax Length src Range of pcdsp/Rs

BRA(.length) src S pcdsp:3 3 ≤ pcdsp ≤ 10 1
B pcdsp:8 –128 ≤ pcdsp ≤ 127 2
W pcdsp:16 –32768 ≤ pcdsp ≤ 32767 3
A pcdsp:24 –8388608 ≤ pcdsp ≤ 8388607 4
L Rs –2147483648 ≤ Rs ≤ 2147483647 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 63 of 278
June 11, 2010

BRK Unconditional trap
BReaK

System manipulation instruction
Instruction Code

Page: 191
Syntax
BRK

Operation
tmp0 = PSW;
U = 0;
I = 0;
PM = 0;
tmp1 = PC + 1;
PC = *IntBase;
SP = SP - 4;
*SP = tmp0;
SP = SP - 4;
*SP = tmp1;

Function
• This instruction generates an unconditional trap of number 0.
• This instruction causes a transition to supervisor mode and clears the PM bit in the PSW.
• This instruction clears the U and I bits in the PSW.
• The address of the instruction next to the executed BRK instruction is saved.

Flag Change
• This instruction does not affect the states of flags.
• The state of the PSW before execution of this instruction is preserved on the stack.

Instruction Format

Description Example
BRK

Syntax Code Size (Byte)
BRK 1

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 64 of 278
June 11, 2010

BSET Setting a bit
Bit SET

Bit manipulation instruction
Instruction Code

Page: 191
Syntax
BSET src, dest

Operation
(1) When dest is a memory location:

unsigned char dest;
dest |= (1 << (src & 7));

(2) When dest is a register:
register unsigned long dest;
dest |= (1 << (src & 31));

Function
• This instruction sets the bit of dest, which is specified by src.
• The immediate value given as src is the number (position) of the bit.

The range for IMM:3 operands is 0 ≤ IMM:3 ≤ 7. The range for IMM:5 is 0 ≤ IMM:5 ≤ 31.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
BSET #7, [R2]
BSET R1, [R2]
BSET #31, R2
BSET R1, R2

Processing
Size

Operand Code Size
(Byte)Syntax src dest

(1) BSET src, dest B #IMM:3 [Rd].B 2
B #IMM:3 dsp:8[Rd].B 3
B #IMM:3 dsp:16[Rd].B 4
B Rs [Rd].B 3
B Rs dsp:8[Rd].B 4
B Rs dsp:16[Rd].B 5

(2) BSET src, dest L #IMM:5 Rd 2
L Rs Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 65 of 278
June 11, 2010

BSR Relative subroutine branch
Branch to SubRoutine

Branch instruction
Instruction Code

Page: 193
Syntax
BSR(.length) src

Operation
SP = SP - 4;
*SP = (PC + n) *;
PC = PC + src;

Notes: 1. (PC + n) is the address of the instruction following the BSR instruction.
2. "n" indicates the code size. For details, refer to "Instruction Format".

Function
• This instruction executes a relative branch to destination address specified by src.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
BSR label1
BSR.A label2
BSR R1
BSR.L R2

Note: For the RX Family assembler manufactured by Renesas Technology Corp., enter a destination address specified
by a label or an effective address as the displacement value (pcdsp:16, pcdsp:24). The value of the specified
address minus the address where the instruction is allocated will be stored in the pcdsp section of the instruction.

Description Example
BSR label
BSR 1000h

Operand Code Size
(Byte)Syntax Length src Range of pcdsp/Rs

BSR(.length) src W pcdsp:16 –32768 ≤ pcdsp ≤ 32767 3
A pcdsp:24 –8388608 ≤ pcdsp ≤ 8388607 4
L Rs –2147483648 ≤ Rs ≤ 2147483647 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 66 of 278
June 11, 2010

BTST Testing a bit
Bit TeST

Bit manipulation instruction
Instruction Code

Page: 194
Syntax
BTST src, src2

Operation
(1) When src2 is a memory location:

unsigned char src2;
Z = ˜((src2 >> (src & 7)) & 1);
C = ((src2 >> (src & 7)) & 1);

(2) When src2 is a register:
register unsigned long src2;
Z = ˜((src2 >> (src & 31)) & 1);
C = ((src2 >> (src & 31)) & 1);

Function
• This instruction moves the inverse of the value of the bit of scr2, which is specified by src, to the Z flag and the

value of the bit of scr2, which is specified by src, to the C flag.
• The immediate value given as src is the number (position) of the bit.

The range for IMM:3 operands is 0 ≤ IMM:3 ≤ 7. The range for IMM:5 is 0 ≤ IMM:5 ≤ 31.

Flag Change

Instruction Format

Description Example
BTST #7, [R2]
BTST R1, [R2]
BTST #31, R2
BTST R1, R2

Flag Change Condition
C √ The flag is set if the specified bit is 1; otherwise it is cleared.
Z √ The flag is set if the specified bit is 0; otherwise it is cleared.
S −
O −

Processing
Size

Operand Code Size
(Byte)Syntax src src2

(1) BTST src, src2 B #IMM:3 [Rs2].B 2
B #IMM:3 dsp:8[Rs2].B 3
B #IMM:3 dsp:16[Rs2].B 4
B Rs [Rs2].B 3
B Rs dsp:8[Rs2].B 4
B Rs dsp:16[Rs2].B 5

(2) BTST src, src2 L #IMM:5 Rs2 2
L Rs Rs2 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 67 of 278
June 11, 2010

CLRPSW Clear a flag or bit in the PSW
CLeaR flag in PSW

System manipulation instruction
Instruction Code

Page: 196
Syntax
CLRPSW dest

Operation
dest = 0;

Function
• This instruction clears the O, S, Z, or C flag, which is specified by dest, or the U or I bit.
• In user mode, writing to the U or I bit is ignored. In supervisor mode, all flags and bits can be written to.

Flag Change

Note: * The specified flag becomes 0.

Instruction Format

Description Example
CLRPSW C
CLRPSW Z

Flag Change Condition
C *

Z *

S *

O *

Operand
Code Size (Byte)Syntax dest

CLRPSW dest flag 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 68 of 278
June 11, 2010

CMP Comparison
CoMPare

Arithmetic/logic instruction
Instruction Code

Page: 197
Syntax
CMP src, src2

Operation
src2 - src;

Function
• This instruction changes the states of flags in the PSW to reflect the result of subtracting src from src2.

Flag Change

Instruction Format

Notes: 1. Values from 0 to 127 are always specified as the instruction code for zero extension.
2. For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual

value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example
CMP #7, R2
CMP R1, R2
CMP [R1], R2

Flag Change Condition
C √ The flag is set if an unsigned operation does not produce an overflow; otherwise it is cleared.
Z √ The flag is set if the result of the operation is 0; otherwise it is cleared.
S √ The flag is set if the MSB of the result of the operation is 1; otherwise it is cleared.
O √ The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src src2

CMP src, src2 L #UIMM:4 Rs 2
L #UIMM:8*1 Rs 3
L #SIMM:8*1 Rs 3
L #SIMM:16 Rs 4
L #SIMM:24 Rs 5
L #IMM:32 Rs 6
L Rs Rs2 2
L [Rs].memex Rs2 2 (memex == UB)

3 (memex != UB)
L dsp:8[Rs].memex*2 Rs2 3 (memex == UB)

4 (memex != UB)
L dsp:16[Rs].memex*2 Rs2 4 (memex == UB)

5 (memex != UB)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 69 of 278
June 11, 2010

DIV Signed division
DIVide

Arithmetic/logic instruction
Instruction Code

Page: 199
Syntax
DIV src, dest

Operation
dest = dest / src;

Function
• This instruction divides dest by src as signed values and places the quotient in dest. The quotient is rounded

towards 0.
• The calculation is performed in 32 bits and the result is placed in 32 bits.
• The value of dest is undefined when the divisor (src) is 0 or when overflow is generated after the operation.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Flag Change Condition
C −
Z −
S −
O √ This flag is set if the divisor (src) is 0 or the calculation is –2147483648 / –1; otherwise it is

cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

DIV src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == UB)

4 (memex != UB)
L dsp:8[Rs].memex* Rd 4 (memex == UB)

5 (memex != UB)
L dsp:16[Rs].memex* Rd 5 (memex == UB)

6 (memex != UB)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 70 of 278
June 11, 2010

Description Example
DIV #10, R2
DIV R1, R2
DIV [R1], R2
DIV 3[R1].B, R2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 71 of 278
June 11, 2010

DIVU Unsigned division
DIVide Unsigned

Arithmetic/logic instruction
Instruction Code

Page: 201
Syntax
DIVU src, dest

Operation
dest = dest / src;

Function
• This instruction divides dest by src as unsigned values and places the quotient in dest. The quotient is rounded

towards 0.
• The calculation is performed in 32 bits and the result is placed in 32 bits.
• The value of dest is undefined when the divisor (src) is 0.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Flag Change Condition
C −
Z −
S −
O √ The flag is set if the divisor (src) is 0; otherwise it is cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

DIVU src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == UB)

4 (memex != UB)
L dsp:8[Rs].memex* Rd 4 (memex == UB)

5 (memex != UB)
L dsp:16[Rs].memex* Rd 5 (memex == UB)

6 (memex != UB)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 72 of 278
June 11, 2010

Description Example
DIVU #10, R2
DIVU R1, R2
DIVU [R1], R2
DIVU 3[R1].UB, R2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 73 of 278
June 11, 2010

EMUL Signed multiplication
Extended MULtiply, signed

Arithmetic/logic instruction
Instruction Code

Page: 202
Syntax
EMUL src, dest

Operation
dest2:dest = dest * src;

Function
• This instruction multiplies dest by src, treating both as signed values.
• The calculation is performed on src and dest as 32-bit operands to obtain a 64-bit result, which is placed in the

register pair, dest2:dest (R(n+1):Rn).
• Any of the 15 general registers (Rn (n: 0 to 14)) is specifiable for dest.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined.

Flag Change
• This instruction does not affect the states of flags.

Register Specified for dest Registers Used for 64-Bit Extension
R0 R1:R0
R1 R2:R1
R2 R3:R2
R3 R4:R3
R4 R5:R4
R5 R6:R5
R6 R7:R6
R7 R8:R7
R8 R9:R8
R9 R10:R9
R10 R11:R10
R11 R12:R11
R12 R13:R12
R13 R14:R13
R14 R15:R14

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 74 of 278
June 11, 2010

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example
EMUL #10, R2
EMUL R1, R2
EMUL [R1], R2
EMUL 8[R1].W, R2

Processing
Size

Operand Code Size
(Byte)Syntax src dest

EMUL src, dest L #SIMM:8 Rd (Rd=R0 to R14) 4
L #SIMM:16 Rd (Rd=R0 to R14) 5
L #SIMM:24 Rd (Rd=R0 to R14) 6
L #IMM:32 Rd (Rd=R0 to R14) 7
L Rs Rd (Rd=R0 to R14) 3
L [Rs].memex Rd (Rd=R0 to R14) 3 (memex == UB)

4 (memex != UB)
L dsp:8[Rs].memex* Rd (Rd=R0 to R14) 4 (memex == UB)

5 (memex != UB)
L dsp:16[Rs].memex* Rd (Rd=R0 to R14) 5 (memex == UB)

6 (memex != UB)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 75 of 278
June 11, 2010

EMULU Unsigned multiplication
Extended MULtiply, Unsigned

Arithmetic/logic instruction
Instruction Code

Page: 203
Syntax
EMULU src, dest

Operation
dest2:dest = dest * src;

Function
• This instruction multiplies dest by src, treating both as unsigned values.
• The calculation is performed on src and dest as 32-bit operands to obtain a 64-bit result, which is placed in the

register pair, dest2:dest (R(n+1):Rn).
• Any of the 15 general registers (Rn (n: 0 to 14)) is specifiable for dest.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined.

Flag Change
• This instruction does not affect the states of flags.

Register Specified for dest Registers Used for 64-Bit Extension
R0 R1:R0
R1 R2:R1
R2 R3:R2
R3 R4:R3
R4 R5:R4
R5 R6:R5
R6 R7:R6
R7 R8:R7
R8 R9:R8
R9 R10:R9
R10 R11:R10
R11 R12:R11
R12 R13:R12
R13 R14:R13
R14 R15:R14

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 76 of 278
June 11, 2010

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example
EMULU #10, R2
EMULU R1, R2
EMULU [R1], R2
EMULU 8[R1].UW, R2

Processing
Size

Operand Code Size
(Byte)Syntax src dest

EMULU src, dest L #SIMM:8 Rd (Rd=R0 to R14) 4
L #SIMM:16 Rd (Rd=R0 to R14) 5
L #SIMM:24 Rd (Rd=R0 to R14) 6
L #IMM:32 Rd (Rd=R0 to R14) 7
L Rs Rd (Rd=R0 to R14) 3
L [Rs].memex Rd (Rd=R0 to R14) 3 (memex == UB)

4 (memex != UB)
L dsp:8[Rs].memex* Rd (Rd=R0 to R14) 4 (memex == UB)

5 (memex != UB)
L dsp:16[Rs].memex* Rd (Rd=R0 to R14) 5 (memex == UB)

6 (memex != UB)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 77 of 278
June 11, 2010

FADD Floating-point addition
Floating-point ADD

Floating-point operation instruction
Instruction Code

Page: 204
Syntax
FADD src, dest

Operation
dest = dest + src;

Function
• This instruction adds the single-precision floating-point numbers stored in dest and src and places the result in dest.

Rounding of the result is in accord with the setting of the RM[1:0] bits in the FPSW.
• Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.
• The operation result is +0 when the sum of src and dest of the opposite signs is exactly 0 except in the case of a

rounding mode towards –∞. The operation result is –0 when the rounding mode is towards –∞.

Flag Change

Note: The FX, FU, FO, and FV flags do not change if any of the exception enable bits EX, EU, EO, and EV is 1. The S
and Z flags do not change when an exception is generated.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 × 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 × 4) can be specified. The value divided by 4 will
be stored in the instruction code.

Flag Change Condition
C −
Z √ The flag is set if the result of the operation is +0 or –0; otherwise it is cleared.
S √ The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O −
CV √ The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO √ The flag is set if an overflow exception is generated; otherwise it is cleared.
CZ √ The value of the flag is always 0.
CU √ The flag is set if an underflow exception is generated; otherwise it is cleared.
CX √ The flag is set if an inexact exception is generated; otherwise it is cleared.
CE √ The flag is set if an unimplemented processing is generated; otherwise it is cleared.
FV √ The flag is set if an invalid operation exception is generated, and otherwise left unchanged.
FO √ The flag is set if an overflow exception is generated, and otherwise left unchanged.
FZ −
FU √ The flag is set if an underflow exception is generated, and otherwise left unchanged.
FX √ The flag is set if an inexact exception is generated, and otherwise left unchanged.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

FADD src, dest L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].L Rd 3
L dsp:8[Rs].L* Rd 4
L dsp:16[Rs].L* Rd 5

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 78 of 278
June 11, 2010

Possible Exceptions
Unimplemented processing
Invalid operation
Overflow
Underflow
Inexact

Description Example
FADD R1, R2
FADD [R1], R2

Supplementary Description
• The following tables show the correspondences between src and dest values and the results of operations when DN

= 0 and DN = 1.

When DN = 0

When DN = 1

Note: * The result is –0 when the rounding mode is set to rounding towards –∞ and +0 in other rounding modes.

src
Normalized +0 –0 +∞ –∞ Denormalized QNaN SNaN

dest Normalized Sum
+0 +0 * –∞

–0 * –0
+∞ +∞

Invalid
operation

–∞ –∞
Invalid

operation –∞

Denormalized Unimplemented
processing

QNaN QNaN
SNaN Invalid

operation

src
Normalized +0,

+Denormalized
–0,

–Denormalized
+∞ –∞ QNaN SNaN

dest Normalized Sum Normalized
+0,

+Denormalized
Normalized

+0 * –∞

–0,
–Denormalized * –0

+∞ +∞
Invalid

operation
–∞ –∞

Invalid
operation –∞

QNaN QNaN
SNaN Invalid

operation

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 79 of 278
June 11, 2010

FCMP Floating-point comparison
Floating-point CoMPare

Floating-point operation instruction
Instruction Code

Page: 205
Syntax
FCMP src, src2

Operation
src2 - src;

Function
• This instruction compares the single-precision floating numbers stored in src2 and src and changes the states of

flags according to the result.
• Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

Flag Change

Note: The FV flag does not change if the exception enable bit EV is 1. The O, S, and Z flags do not change when an
exception is generated.

Flag Change Condition
C −
Z √ The flag is set if src2 == src; otherwise it is cleared.
S √ The flag is set if src2 < src; otherwise it is cleared.
O √ The flag is set if an ordered classification based on the comparison result is impossible;

otherwise it is cleared.
CV √ The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO √ The value of the flag is always 0.
CZ √ The value of the flag is always 0.
CU √ The value of the flag is always 0.
CX √ The value of the flag is always 0.
CE √ The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV √ The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO −
FZ −
FU −
FX −

Flag
Condition O S Z
src2 > src 0 0 0
src2 < src 0 1 0
src2 == src 0 0 1
Ordered classification impossible 1 0 0

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 80 of 278
June 11, 2010

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 × 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 × 4) can be specified. The value divided by 4 will
be stored in the instruction code.

Possible Exceptions
Unimplemented processing
Invalid operation

Description Example
FCMP R1, R2
FCMP [R1], R2

Supplementary Description
• The following tables show the correspondences between src and src2 values and the results of operations when DN

= 0 and DN = 1.
(>: src2 > src, <: src2 < src, =: src2 == src)

When DN = 0

Processing
Size

Operand Code Size
(Byte)Syntax src src2

FCMP src, src2 L #IMM:32 Rs2 7
L Rs Rs2 3
L [Rs].L Rs2 3
L dsp:8[Rs].L* Rs2 4
L dsp:16[Rs].L* Rs2 5

src
Normalized +0 –0 +∞ –∞ Denormalized QNaN SNaN

src2 Normalized Comparison

>
+0

=
<

–0
+∞ > =
–∞ < =

Denormalized Unimplemented
processing

QNaN Ordered
classification
impossible

SNaN Invalid operation
(Ordered classification

impossible)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 81 of 278
June 11, 2010

When DN = 1
src

Normalized +0,
+Denormalized

–0,
–Denormalized

+∞ –∞ QNaN SNaN

src2 Normalized Comparison

>

+0,
+Denormalized

=
<

–0,
–Denormalized

+∞ > =
–∞ < =

QNaN Ordered
classification
impossible

SNaN Invalid operation
(Ordered classification

impossible)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 82 of 278
June 11, 2010

FDIV Floating-point division
Floating-point DIVide

Floating-point operation instruction
Instruction Code

Page: 206
Syntax
FDIV src, dest

Operation
dest = dest / src;

Function
• This instruction divides the single-precision floating-point number stored in dest by that stored in src and places the

result in dest. Rounding of the result is in accord with the setting of the RM[1:0] bits in the FPSW.
• Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

Flag Change

Note: The FX, FU, FZ, FO, and FV flags do not change if any of the exception enable bits EX, EU, EZ, EO, and EV is 1.
The S and Z flags do not change when an exception is generated.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 × 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 × 4) can be specified. The value divided by 4 will
be stored in the instruction code.

Flag Change Condition
C −
Z √ The flag is set if the result of the operation is +0 or –0; otherwise it is cleared.
S √ The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O −
CV √ The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO √ The flag is set if an overflow exception is generated; otherwise it is cleared.
CZ √ The flag is set if a division-by-zero exception is generated; otherwise it is cleared.
CU √ The flag is set if an underflow exception is generated; otherwise it is cleared.
CX √ The flag is set if an inexact exception is generated; otherwise it is cleared.
CE √ The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV √ The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO √ The flag is set if an overflow exception is generated; otherwise it does not change.
FZ √ The flag is set if a division-by-zero exception is generated; otherwise it does not change.
FU √ The flag is set if an underflow exception is generated; otherwise it does not change.
FX √ The flag is set if an inexact exception is generated; otherwise it does not change.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

FDIV src, dest L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].L Rd 3
L dsp:8[Rs].L* Rd 4
L dsp:16[Rs].L* Rd 5

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 83 of 278
June 11, 2010

Possible Exceptions
Unimplemented processing
Invalid operation
Overflow
Underflow
Inexact
Division-by-zero

Description Example
FDIV R1, R2
FDIV [R1], R2

Supplementary Description
• The following tables show the correspondences between src and dest values and the results of operations when DN

= 0 and DN = 1.

When DN = 0

When DN = 1

src
Normalized +0 –0 +∞ –∞ Denormalized QNaN SNaN

dest Normalized Division Division-by-zero 0
+0

0 Invalid operation
+0 –0

–0 –0 +0
+∞

∞
+∞ –∞

Invalid operation
–∞ –∞ +∞

Denormalized Unimplemented
processing

QNaN QNaN
SNaN Invalid

operation

src
Normalized +0,

+Denormalized
–0,

–Denormalized
+∞ –∞ QNaN SNaN

dest Normalized Division Division-by-zero 0
+0,

+Denormalized
0 Invalid operation

+0 –0

–0,
–Denormalized –0 +0

+∞
∞

+∞ –∞
Invalid operation

–∞ –∞ +∞

QNaN QNaN
SNaN Invalid

operation

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 84 of 278
June 11, 2010

FMUL Floating-point multiplication
Floating-point MULtiply

Floating-point operation instruction
Instruction Code

Page: 207
Syntax
FMUL src, dest

Operation
dest = dest * src;

Function
• This instruction multiplies the single-precision floating-point number stored in dest by that stored in src and places

the result in dest. Rounding of the result is in accord with the setting of the RM[1:0] bits in the FPSW.
• Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined.

Flag Change

Note: The FX, FU, FO, and FV flags do not change if any of the exception enable bits EX, EU, EO, and EV is 1. The S
and Z flags do not change when an exception is generated.

Flag Change Condition
C −
Z √ The flag is set if the result of the operation is +0 or –0; otherwise it is cleared.
S √ The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O −
CV √ The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO √ The flag is set if an overflow exception is generated; otherwise it is cleared.
CZ √ The value of the flag is always 0.
CU √ The flag is set if an underflow exception is generated; otherwise it is cleared.
CX √ The flag is set if an inexact exception is generated; otherwise it is cleared.
CE √ The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV √ The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO √ The flag is set if an overflow exception is generated; otherwise it does not change.
FZ −
FU √ The flag is set if an underflow exception is generated; otherwise it does not change.
FX √ The flag is set if an inexact exception is generated; otherwise it does not change.

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 85 of 278
June 11, 2010

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 × 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 × 4) can be specified. The value divided by 4 will
be stored in the instruction code.

Possible Exceptions
Unimplemented processing
Invalid operation
Overflow
Underflow
Inexact

Description Example
FMUL R1, R2
FMUL [R1], R2

Supplementary Description
• The following tables show the correspondences between src and dest values and the results of operations when DN

= 0 and DN = 1.

When DN = 0

Processing
Size

Operand Code Size
(Byte)Syntax src dest

FMUL src, dest L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].L Rd 3
L dsp:8[Rs].L* Rd 4
L dsp:16[Rs].L* Rd 5

src
Normalized +0 –0 +∞ –∞ Denormalized QNaN SNaN

dest Normalized Multiplication ∞

+0 +0 –0
Invalid operation

–0 –0 +0
+∞

∞ Invalid operation
+∞ –∞

–∞ –∞ +∞

Denormalized Unimplemented
processing

QNaN QNaN
SNaN Invalid

operation

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 86 of 278
June 11, 2010

When DN = 1
src

Normalized +0,
+Denormalized

–0,
–Denormalized

+∞ –∞ QNaN SNaN

dest Normalized Multiplication ∞

+0,
+Denormalized +0 –0

Invalid operation
–0,

–Denormalized –0 +0

+∞
∞ Invalid operation

+∞ –∞

–∞ –∞ +∞

QNaN QNaN
SNaN Invalid

operation

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 87 of 278
June 11, 2010

FSUB Floating-point subtraction
Floating-point SUBtract

Floating-point operation instruction
Instruction Code

Page: 208
Syntax
FSUB src, dest

Operation
dest = dest - src;

Function
• This instruction subtracts the single-precision floating-point number stored in src from that stored in dest and

places the result in dest. Rounding of the result is in accord with the setting of the RM[1:0] bits in the FPSW.
• Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.
• The operation result is +0 when subtracting src from dest with both the same signs is exactly 0 except in the case of

a rounding mode towards –∞. The operation result is –0 when the rounding mode is towards –∞.

Flag Change

Note: The FX, FU, FO, and FV flags do not change if any of the exception enable bits EX, EU, EO, and EV is 1. The S
and Z flags do not change when an exception is generated.

Flag Change Condition
C −
Z √ The flag is set if the result of the operation is +0 or –0; otherwise it is cleared.
S √ The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O −
CV √ The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO √ The flag is set if an overflow exception is generated; otherwise it is cleared.
CZ √ The value of the flag is always 0.
CU √ The flag is set if an underflow exception is generated; otherwise it is cleared.
CX √ The flag is set if an inexact exception is generated; otherwise it is cleared.
CE √ The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV √ The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO √ The flag is set if an overflow exception is generated; otherwise it does not change.
FZ −
FU √ The flag is set if an underflow exception is generated; otherwise it does not change.
FX √ The flag is set if an inexact exception is generated; otherwise it does not change.

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 88 of 278
June 11, 2010

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 × 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 × 4) can be specified. The value divided by 4 will
be stored in the instruction code.

Possible Exceptions
Unimplemented processing
Invalid operation
Overflow
Underflow
Inexact

Description Example
FSUB R1, R2
FSUB [R1], R2

Supplementary Description
• The following tables show the correspondences between src and dest values and the results of operations when DN

= 0 and DN = 1.

When DN = 0

Processing
Size

Operand Code Size
(Byte)Syntax src dest

FSUB src, dest L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].L Rd 3
L dsp:8[Rs].L* Rd 4
L dsp:16[Rs].L* Rd 5

src
Normalized +0 –0 +∞ –∞ Denormalized QNaN SNaN

dest Normalized Subtraction

+∞
+0 * +0 –∞

–0 –0 *
+∞ +∞

Invalid
operation

–∞ –∞
Invalid

operation
Denormalized Unimplemented

processing
QNaN QNaN
SNaN Invalid

operation

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 89 of 278
June 11, 2010

When DN = 1

Note: * The result is –0 when the rounding mode is set to rounding towards –∞ and +0 in other rounding modes.

src
Normalized +0,

+Denormalized
–0,

–Denormalized
+∞ –∞ QNaN SNaN

dest Normalized Subtraction

–∞
+∞

+0,
+Denormalized * +0

–0,
–Denormalized –0 *

+∞ +∞ Invalid
operation

–∞ –∞
Invalid

operation
QNaN QNaN
SNaN Invalid

operation

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 90 of 278
June 11, 2010

FTOI Floating point to integer conversion
Float TO Integer

Floating-point operation instruction
Instruction Code

Page: 209
Syntax
FTOI src, dest

Operation
dest = (signed long) src;

Function
• This instruction converts the single-precision floating-point number stored in src into a signed longword (32-bit)

integer and places the result in dest.
• The result is always rounded towards 0, regardless of the setting of the RM[1:0] bits in the FPSW.

Flag Change

Note: The FX and FV flags do not change if any of the exception enable bits EX and EV is 1. The S and Z flags do not
change when an exception is generated.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 × 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 × 4) can be specified. The value divided by 4 will
be stored in the instruction code.

Flag Change Condition
C −
Z √ The flag is set if the result of the operation is 0; otherwise it is cleared.
S √ The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O −
CV √ The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO √ The value of the flag is always 0.
CZ √ The value of the flag is always 0.
CU √ The value of the flag is always 0.
CX √ The flag is set if an inexact exception is generated; otherwise it is cleared.
CE √ The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV √ The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO −
FZ −
FU −
FX √ The flag is set if an inexact exception is generated; otherwise it does not change.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

FTOI src, dest L Rs Rd 3
L [Rs].L Rd 3
L dsp:8[Rs].L* Rd 4
L dsp:16[Rs].L* Rd 5

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 91 of 278
June 11, 2010

Possible Exceptions
Unimplemented processing
Invalid operation
Inexact

Description Example
FTOI R1, R2
FTOI [R1], R2

Supplementary Description
• The following tables show the correspondences between src and dest values and the results of operations when DN

= 0 and DN = 1.

When DN = 0

Notes: 1. An inexact exception occurs when the result is rounded.
2. No invalid operation exception occurs when src = CF000000h.

src Value (exponent is shown without bias) dest Exception
src ≥ 0 +∞ When an invalid operation exception is

generated with the EV bit = 1: No change
Invalid operation
exception

127 ≥ Exponent ≥ 31 Other cases: 7FFFFFFFh
30 ≥ Exponent ≥ –126 00000000h to 7FFFFF80h None*1

+Denormalized number No change Unimplemented
processing exception

+0 00000000h None
src < 0 –0

–Denormalized number No change Unimplemented
processing exception

30 ≥ Exponent ≥ –126 00000000h to 80000080h None*1

127 ≥ Exponent ≥ 31 When an invalid operation exception is
generated with the EV bit = 1: No change

Invalid operation
exception*2

–∞ Other cases: 80000000h
NaN QNaN When an invalid operation exception is

generated with the EV bit = 1: No change
Invalid operation
exception

Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 92 of 278
June 11, 2010

When DN = 1

Notes: 1. An inexact exception occurs when the result is rounded.
2. No invalid operation exception occurs when src = CF000000h.

src Value (exponent is shown without bias) dest Exception
src ≥ 0 +∞ When an invalid operation exception is

generated with the EV bit = 1: No change
Invalid operation
exception

127 ≥ Exponent ≥ 31 Other cases: 7FFFFFFFh
30 ≥ Exponent ≥ –126 00000000h to 7FFFFF80h None*1

+0, +Denormalized number 00000000h None
src < 0 –0, –Denormalized number

30 ≥ Exponent ≥ –126 00000000h to 80000080h None*1

127 ≥ Exponent ≥ 31 When an invalid operation exception is
generated with the EV bit = 1: No change

Invalid operation
exception*2

–∞ Other cases: 80000000h
NaN QNaN When an invalid operation exception is

generated with the EV bit = 1: No change
Invalid operation
exception

Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 93 of 278
June 11, 2010

INT Software interrupt
INTerrupt

System manipulation instruction
Instruction Code

Page: 209
Syntax
INT src

Operation
tmp0 = PSW;
U = 0;
I = 0;
PM = 0;
tmp1 = PC + 3;
PC = *(IntBase + src * 4);
SP = SP - 4;
*SP = tmp0;
SP = SP - 4;
*SP = tmp1;

Function
• This instruction generates the unconditional trap which corresponds to the number specified as src.
• The INT instruction number (src) is in the range 0 ≤ src ≤ 255.
• This instruction causes a transition to supervisor mode, and clears the PM bit in the PSW to 0.
• This instruction clears the U and I bits in the PSW to 0.

Flag Change
• This instruction does not affect the states of flags.
• The state of the PSW before execution of this instruction is preserved on the stack.

Instruction Format

Description Example
INT #0

Operand Code Size
(Byte)Syntax src

INT src #IMM:8 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 94 of 278
June 11, 2010

ITOF Integer to floating-point conversion
Integer TO Floating-point

Floating-point operation instruction
Instruction Code

Page: 210
Syntax
ITOF src, dest

Operation
dest = (float) src;

Function
• This instruction converts the signed longword (32-bit) integer stored in src into a single-precision floating-point

number and places the result in dest. Rounding of the result is in accord with the setting of the RM[1:0] bits in the
FPSW. 00000000h is handled as +0 regardless of the rounding mode.

Flag Change

Note: The FX flag does not change if the exception enable bit EX is 1. The S and Z flags do not change when an
exception is generated.

Flag Change Condition
C −
Z √ The flag is set if the result of the operation is +0; otherwise it is cleared.
S √ The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O −
CV √ The value of the flag is always 0.
CO √ The value of the flag is always 0.
CZ √ The value of the flag is always 0.
CU √ The value of the flag is always 0.
CX √ The flag is set if an inexact exception is generated; otherwise it is cleared.
CE √ The value of the flag is always 0.
FV −
FO −
FZ −
FU −
FX √ The flag is set if an inexact exception is generated; otherwise it does not change.

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 95 of 278
June 11, 2010

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Possible Exceptions
Inexact

Description Example
ITOF R1, R2
ITOF [R1], R2
ITOF 16[R1].L, R2

Processing
Size

Operand Code Size
(Byte)Syntax src dest

ITOF src, dest L Rs Rd 3
L [Rs].memex Rd 3 (memex == UB)

4 (memex != UB)
L dsp:8[Rs].memex* Rd 4 (memex == UB)

5 (memex != UB)
L dsp:16[Rs].memex* Rd 5 (memex == UB)

6 (memex != UB)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 96 of 278
June 11, 2010

JMP Unconditional jump
JuMP

Branch instruction
Instruction Code

Page: 211
Syntax
JMP src

Operation
PC = src;

Function
• This instruction branches to the instruction specified by src.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
JMP R1

Operand Code Size
(Byte)Syntax src

JMP src Rs 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 97 of 278
June 11, 2010

JSR Jump to a subroutine
Jump SubRoutine

Branch instruction
Instruction Code

Page: 211
Syntax
JSR src

Operation
SP = SP - 4;
SP = (PC + 2);

PC = src;

Note: * (PC + 2) is the address of the instruction following the JSR instruction.

Function
• This instruction causes the flow of execution to branch to the subroutine specified by src.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
JSR R1

Operand Code Size
(Byte)Syntax src

JSR src Rs 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 98 of 278
June 11, 2010

MACHI Multiply-Accumulate the high-order word
Multiply-ACcumulate HIgh-order word

DSP instruction
Instruction Code

Page: 212
Syntax
MACHI src, src2

Operation
signed short tmp1, tmp2;
signed long long tmp3;
tmp1 = (signed short) (src >> 16);
tmp2 = (signed short) (src2 >> 16);
tmp3 = (signed long) tmp1 * (signed long) tmp2;
ACC = ACC + (tmp3 << 16);

Function
• This instruction multiplies the higher-order 16 bits of src by the higher-order 16 bits of src2, and adds the result to

the value in the accumulator (ACC). The addition is performed with the least significant bit of the result of
multiplication corresponding to bit 16 of ACC. The result of addition is stored in ACC. The higher-order 16 bits of
src and the higher-order 16 bits of src2 are treated as signed integers.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MACHI R1, R2

Operand Code Size
(Byte)Syntax src src2

MACHI src, src2 Rs Rs2 3

×

+

Higher-order 16 bits
b15b16b31 b0

src

Higher-order 16 bits src2

0 Result of multiplicationSign extension

ACC value before executing the
MACHI instruction

ACC value after executing the
MACHI instruction

b15b16b31 b0b32b47b48b63

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 99 of 278
June 11, 2010

MACLO Multiply-Accumulate the low-order word
Multiply-ACcumulate LOw-order word

DSP instruction
Instruction Code

Page: 212
Syntax
MACLO src, src2

Operation
signed short tmp1, tmp2;
signed long long tmp3;
tmp1 = (signed short) src;
tmp2 = (signed short) src2;
tmp3 = (signed long) tmp1 * (signed long) tmp2;
ACC = ACC + (tmp3 << 16);

Function
• This instruction multiplies the lower-order 16 bits of src by the lower-order 16 bits of src2, and adds the result to

the value in the accumulator (ACC). The addition is performed with the least significant bit of the result of
multiplication corresponding to bit 16 of ACC. The result of addition is stored in ACC. The lower-order 16 bits of
src and the lower-order 16 bits of src2 are treated as signed integers.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MACLO R1, R2

Operand Code Size
(Byte)Syntax src src2

MACLO src, src2 Rs Rs2 3

Lower-order 16 bits
b15b16b31 b0

src

Lower-order 16 bits src2

0 Result of multiplicationSign extension

ACC value before executing the
MACLO instruction

ACC value after executing the
MACLO instruction

b15b16b31 b0b32b47b48b63

×

+

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 100 of 278
June 11, 2010

MAX Selecting the highest value
MAXimum value select

Arithmetic/logic instruction
Instruction Code

Page: 213
Syntax
MAX src, dest

Operation
if (src > dest)
dest = src;

Function
• This instruction compares src and dest as signed values and places whichever is greater in dest.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example
MAX #10, R2
MAX R1, R2
MAX [R1], R2
MAX 3[R1].B, R2

Processing
Size

Operand Code Size
(Byte)Syntax src dest

MAX src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == UB)

4 (memex != UB)
L dsp:8[Rs].memex* Rd 4 (memex == UB)

5 (memex != UB)
L dsp:16[Rs].memex* Rd 5 (memex == UB)

6 (memex != UB)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 101 of 278
June 11, 2010

MIN Selecting the lowest value
MINimum value select

Arithmetic/logic instruction
Instruction Code

Page: 214
Syntax
MIN src, dest

Operation
if (src < dest)
dest = src;

Function
• This instruction compares src and dest as signed values and places whichever is smaller in dest.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example
MIN #10, R2
MIN R1, R2
MIN [R1], R2
MIN 3[R1].B, R2

Processing
Size

Operand Code Size
(Byte)Syntax src dest

MIN src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == UB)

4 (memex != UB)
L dsp:8[Rs].memex* Rd 4 (memex == UB)

5 (memex != UB)
L dsp:16[Rs].memex* Rd 5 (memex == UB)

6 (memex != UB)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 102 of 278
June 11, 2010

MOV Transferring data
MOVe

Data transfer instruction
Instruction Code

Page: 215
Syntax
MOV.size src, dest

Operation
dest = src;

Function
• This instruction transfers src to dest as listed in the following table.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

src dest Function
Immediate value Register Transfers the immediate value to the register. When the immediate value is

specified in less than 32 bits, it is transferred to the register after being zero-
extended if specified as #UIMM and sign-extended if specified as #SIMM.

Immediate value Memory location Transfers the immediate value to the memory location in the specified size.
When the immediate value is specified with a width in bits smaller than the
specified size, it is transferred to the memory location after being zero-extended
if specified as #UIMM and sign-extended if specified as #SIMM.

Register Register Transfers the data in the source register (src) to the destination register (dest).
When the size specifier is .B, the data is transferred to the register (dest) after
the byte of data in the LSB of the register (src) has been sign-extended to form
a longword of data. When the size specifier is .W, the data is transferred to the
register (dest) after the word of data from the LSB end of the register (src) has
bee sign-extended to form a longword of data.

Register Memory location Transfers the data in the register to the memory location. When the size
specifier is .B, the byte of data in the LSB of the register is transferred. When
the size specifier is .W, the word of data from the LSB end of the register is
transferred.

Memory location Register Transfers the data at the memory location to the register. When the size
specifier is .B or .W, the data at the memory location are sign-extended to form
a longword, which is transferred to the register.

Memory location Memory location Transfers the data with the specified size at the source memory location (src) to
the specified size at the destination memory location (dest).

 Size
Processing
Size

Operand Code Size
(Byte)Syntax src dest

MOV.size src, dest Store (short format)
B/W/L size Rs

(Rs = R0 to R7)
dsp:5[Rd]*1
(Rd = R0 to R7)

2

Load (short format)
B/W/L L dsp:5[Rs]*1

(Rs = R0 to R7)
Rd
(Rd = R0 to R7)

2

Set immediate value to register (short format)
L L #UIMM:4 Rd 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 103 of 278
June 11, 2010

MOV.size src, dest Set immediate value to memory location (short format)
B B #IMM:8 dsp:5[Rd]*1

(Rd = R0 to R7)
3

W/L size #UIMM:8 dsp:5[Rd]*1
(Rd = R0 to R7)

3

Set immediate value to register
L L #UIMM:8*2 Rd 3
L L #SIMM:8*2 Rd 3
L L #SIMM:16 Rd 4
L L #SIMM:24 Rd 5
L L #IMM:32 Rd 6
Data transfer between registers (sign extension)
B/W L Rs Rd 2
Data transfer between registers (no sign extension)
L L Rs Rd 2
Set immediate value to memory location
B B #IMM:8 [Rd] 3
B B #IMM:8 dsp:8[Rd]*1 4
B B #IMM:8 dsp:16[Rd]*1 5
W W #SIMM:8 [Rd] 3
W W #SIMM:8 dsp:8[Rd]*1 4
W W #SIMM:8 dsp:16[Rd]*1 5
W W #IMM:16 [Rd] 4
W W #IMM:16 dsp:8[Rd]*1 5
W W #IMM:16 dsp:16[Rd]*1 6
L L #SIMM:8 [Rd] 3
L L #SIMM:8 dsp:8[Rd]*1 4
L L #SIMM:8 dsp:16 [Rd]*1 5
L L #SIMM:16 [Rd] 4
L L #SIMM:16 dsp:8[Rd]*1 5
L L #SIMM:16 dsp:16 [Rd]*1 6
L L #SIMM:24 [Rd] 5
L L #SIMM:24 dsp:8[Rd]*1 6
L L #SIMM:24 dsp:16 [Rd]*1 7
L L #IMM:32 [Rd] 6
L L #IMM:32 dsp:8[Rd]*1 7
L L #IMM:32 dsp:16 [Rd]*1 8
Load
B/W/L L [Rs] Rd 2
B/W/L L dsp:8[Rs]*1 Rd 3
B/W/L L dsp:16[Rs]*1 Rd 4
B/W/L L [Ri, Rb] Rd 3
Store
B/W/L size Rs [Rd] 2
B/W/L size Rs dsp:8[Rd]*1 3
B/W/L size Rs dsp:16[Rd]*1 4
B/W/L size Rs [Ri, Rb] 3

 Size
Processing
Size

Operand Code Size
(Byte)Syntax src dest

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 104 of 278
June 11, 2010

Notes: 1. For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W, or by 4 when the specifier is .L) as the
displacement value (dsp:5, dsp:8, dsp:16). With dsp:5, values from 0 to 62 (31 × 2) can be specified when the
size specifier is .W, or values from 0 to 124 (31 × 4) when the specifier is .L. With dsp:8, values from 0 to 510
(255 × 2) can be specified when the size specifier is .W, or values from 0 to 1020 (255 × 4) when the specifier is
.L. With dsp:16, values from 0 to 131070 (65535 × 2) can be specified when the size specifier is .W, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

2. For values from 0 to 127, an instruction code for zero extension is always selected.
3. In cases of store with post-increment and store with pre-decrement, if the same register is specified for Rs and

Rd, the value before updating the address is transferred as the source.
4. In cases of load with post-increment and load with pre-decrement, if the same register is specified for Rs and

Rd, the data transferred from the memory location are saved in Rd.

Description Example
MOV.L #0, R2
MOV.L #128:8, R2
MOV.L #-128:8, R2
MOV.L R1, R2
MOV.L #0, [R2]
MOV.W [R1], R2
MOV.W R1, [R2]
MOV.W [R1, R2], R3
MOV.W R1, [R2, R3]
MOV.W [R1], [R2]
MOV.B R1, [R2+]
MOV.B [R1+], R2
MOV.B R1, [-R2]
MOV.B [-R1], R2

MOV.size src, dest Data transfer between memory locations
B/W/L size [Rs] [Rd] 2
B/W/L size [Rs] dsp:8[Rd]*1 3
B/W/L size [Rs] dsp:16[Rd]*1 4
B/W/L size dsp:8[Rs]*1 [Rd] 3
B/W/L size dsp:8[Rs]*1 dsp:8[Rd]*1 4
B/W/L size dsp:8[Rs]*1 dsp:16[Rd]*1 5
B/W/L size dsp:16[Rs]*1 [Rd] 4
B/W/L size dsp:16[Rs]*1 dsp:8[Rd]*1 5
B/W/L size dsp:16[Rs]*1 dsp:16[Rd]*1 6
Store with post-increment*3

B/W/L size Rs [Rd+] 3
Store with pre-decrement*3

B/W/L size Rs [–Rd] 3
Load with post-increment*4

B/W/L L [Rs+] Rd 3
Load with pre-decrement*4

B/W/L L [–Rs] Rd 3

 Size
Processing
Size

Operand Code Size
(Byte)Syntax src dest

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 105 of 278
June 11, 2010

MOVU Transfer unsigned data
MOVe Unsigned data

Data transfer instruction
Instruction Code

Page: 220
Syntax
MOVU.size src, dest

Operation
dest = src;

Function
• This instruction transfers src to dest as listed in the following table.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Notes: 1. For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W) as the displacement value (dsp:5, dsp:8, dsp:16).
With dsp:5, values from 0 to 62 (31 × 2) can be specified when the size specifier is .W. With dsp:8, values from
0 to 510 (255 × 2) can be specified when the size specifier is .W. With dsp:16, values from 0 to 131070 (65535
× 2) can be specified when the size specifier is .W. The value divided by 2 will be stored in the instruction code.

2. In cases of load with post-increment and load with pre-decrement, if the same register is specified for Rs and
Rd, the data transferred from the memory location are saved in Rd.

src dest Function
Register Register Transfers the byte or word of data from the LSB in the source register (src) to

the destination register (dest), after zero-extension to form a longword data.
Memory location Register Transfers the byte or word of data at the memory location to the register, after

zero-extension to form a longword data.

 Size
Processing
Size

Operand Code Size
(Byte)Syntax src dest

MOVU.size src, dest Load (short format)
B/W L dsp:5[Rs]*1

(Rs = R0 to R7)
Rd
(Rd = R0 to R7)

2

Data transfer between registers (zero extension)
B/W L Rs Rd 2
Load
B/W L [Rs] Rd 2
B/W L dsp:8[Rs]*1 Rd 3
B/W L dsp:16[Rs]*1 Rd 4
B/W L [Ri, Rb] Rd 3
Load with post-increment*2

B/W L [Rs+] Rd 3
Load with pre-decrement*2

B/W L [–Rs] Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 106 of 278
June 11, 2010

Description Example
MOVU.W 2[R1], R2
MOVU.W R1, R2
MOVU.B [R1+], R2
MOVU.B [-R1], R2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 107 of 278
June 11, 2010

MUL Multiplication
MULtiply

Arithmetic/logic instruction
Instruction Code

Page: 221
Syntax
(1) MUL src, dest
(2) MUL src, src2, dest

Operation
(1) dest = src * dest;
(2) dest = src * src2;

Function
(1) This instruction multiplies src and dest and places the result in dest.

• The calculation is performed in 32 bits and the lower-order 32 bits of the result are placed.
• The operation result will be the same whether a singed or unsigned multiply is executed.

(2) This instruction multiplies src and src2 and places the result in dest.
• The calculation is performed in 32 bits and the lower-order 32 bits of the result are placed.
• The operation result will be the same whether a singed or unsigned multiply is executed.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier .L. The value divided by 2 or 4 will be stored in the instruction
code.

Processing
Size

Operand Code Size
(Byte)Syntax src src2 dest

(1) MUL src, dest L #UIMM:4 − Rd 2
L #SIMM:8 − Rd 3
L #SIMM:16 − Rd 4
L #SIMM:24 − Rd 5
L #IMM:32 − Rd 6
L Rs − Rd 2
L [Rs].memex − Rd 2 (memex == UB)

3 (memex != UB)
L dsp:8[Rs].memex* − Rd 3 (memex == UB)

4 (memex != UB)
L dsp:16[Rs].memex* − Rd 4 (memex == UB)

5 (memex != UB)
(2) MUL src, src2, dest L Rs Rs2 Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 108 of 278
June 11, 2010

Description Example
MUL #10, R2
MUL R1, R2
MUL [R1], R2
MUL 4[R1].W, R2
MUL R1, R2, R3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 109 of 278
June 11, 2010

MULHI Multiply the high-order word
MULtiply HIgh-order word

DSP instruction
Instruction Code

Page: 223
Syntax
MULHI src, src2

Operation
signed short tmp1, tmp2;
signed long long tmp3;
tmp1 = (signed short) (src >> 16);
tmp2 = (signed short) (src2 >> 16);
tmp3 = (signed long) tmp1 * (signed long) tmp2;
ACC = (tmp3 << 16);

Function
• This instruction multiplies the higher-order 16 bits of src by the higher-order 16 bits of src2, and stores the result in

the accumulator (ACC). When the result is stored, the least significant bit of the result corresponds to bit 16 of
ACC, and the section corresponding to bits 63 to 48 of ACC is sign-extended. Moreover, bits 15 to 0 of ACC are
cleared to 0. The higher-order 16 bits of src and the higher-order 16 bits of src2 are treated as signed integers.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MULHI R1, R2

Operand Code Size
(Byte)Syntax src src2

MULHI src, src2 Rs Rs2 3

Higher-order 16 bits
b15b16b31 b0

src

Higher-order 16 bits src2

0
b15b16b31 b0b32b47b48b63

ACC value after executing the
MULHI instructionSign-extended

×

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 110 of 278
June 11, 2010

MULLO Multiply the low-order word
MULtiply LOw-order word

DSP instruction
Instruction Code

Page: 223
Syntax
MULLO src, src2

Operation
signed short tmp1, tmp2;
signed long long tmp3;
tmp1 = (signed short) src;
tmp2 = (signed short) src2;
tmp3 = (signed long) tmp1 * (signed long) tmp2;
ACC = (tmp3 << 16);

Function
• This instruction multiplies the lower-order 16 bits of src by the lower-order 16 bits of src2, and stores the result in

the accumulator (ACC). When the result is stored, the least significant bit of the result corresponds to bit 16 of
ACC, and the section corresponding to bits 63 to 48 of ACC is sign-extended. Moreover, bits 15 to 0 of ACC are
cleared to 0. The lower-order 16 bits of src and the lower-order 16 bits of src2 are treated as signed integers.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MULLO R1, R2

Operand Code Size
(Byte)Syntax src src2

MULLO src, src2 Rs Rs2 3

Lower-order 16 bits
b15b16b31 b0

src

Lower-order 16 bits src2

0
b15b16b31 b0b32b47b48b63

ACC value after executing the
MULLO instructionSign-extended

×

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 111 of 278
June 11, 2010

MVFACHI Move the high-order longword from
accumulator

MoVe From ACcumulator HIgh-order
longword

DSP instruction
Instruction Code

Page: 224
Syntax
MVFACHI dest

Operation
dest = (signed long) (ACC >> 32);

Function
• This instruction moves the higher-order 32 bits of the accumulator (ACC) to dest.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MVFACHI R1

Operand Code Size
(Byte)Syntax dest

MVFACHI dest Rd 3

b31 b0b32b63
ACC

dest
b0b31

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 112 of 278
June 11, 2010

MVFACMI Move the middle-order longword from
accumulator

MoVe From ACcumulator MIddle-order
longword

DSP instruction
Instruction Code

Page: 224
Syntax
MVFACMI dest

Operation
dest = (signed long) (ACC >> 16);

Function
• This instruction moves the contents of bits 47 to 16 of the accumulator (ACC) to dest.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MVFACMI R1

Operand Code Size
(Byte)Syntax dest

MVFACMI dest Rd 3

ACC

dest
b0b31

b15b16b31 b0b32b47b48b63

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 113 of 278
June 11, 2010

MVFC Transfer from a control register
MoVe From Control register

System manipulation instruction
Instruction Code

Page: 225
Syntax
MVFC src, dest

Operation
dest = src;

Function
• This instruction transfers src to dest.
• When the PC is specified as src, this instruction pushes its own address onto the stack.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * Selectable src: Registers PC, ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW

Description Example
MVFC USP, R1

Processing
Size

Operand Code Size
(Byte)Syntax src* dest

MVFC src, dest L Rx Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 114 of 278
June 11, 2010

MVTACHI Move the high-order longword
to accumulator

MoVe To ACcumulator HIgh-order
longword

DSP instruction
Instruction Code

Page: 225
Syntax
MVTACHI src

Operation
ACC = (ACC & 00000000FFFFFFFFh) | ((signed long long)src << 32);

Function
• This instruction moves the contents of src to the higher-order 32 bits (bits 63 to 32) of the accumulator (ACC).

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MVTACHI R1

Operand Code Size
(Byte)Syntax src

MVTACHI src Rs 3

b31 b0b32b63
ACC

src
b0b31

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 115 of 278
June 11, 2010

MVTACLO Move the low-order longword
to accumulator

MoVe To ACcumulator LOw-order
longword

DSP instruction
Instruction Code

Page: 226
Syntax
MVTACLO src

Operation
ACC = (ACC & FFFFFFFF00000000h) | src;

Function
• This instruction moves the contents of src to the lower-order 32 bits (bits 31 to 0) of the accumulator (ACC).

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MVTACLO R1

Operand Code Size
(Byte)Syntax src

MVTACLO src Rs 3

b31 b0b32b63
ACC

src
b0b31

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 116 of 278
June 11, 2010

MVTC Transfer to a control register
MoVe To Control register

System manipulation instruction
Instruction Code

Page: 226
Syntax
MVTC src, dest

Operation
dest = src;

Function
• This instruction transfers src to dest.
• In user mode, writing to the ISP, INTB, BPC, BPSW, and FINTV, and the IPL[3:0], PM, U, and I bits in the PSW is

ignored. In supervisor mode, writing to the PM bit in the PSW is ignored.

Flag Change

Note: * The flag changes only when dest is the PSW.

Instruction Format

Note: * Selectable dest: Registers ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW
Note that the PC cannot be specified as dest.

Description Example
MVTC #0FFFFF000h, INTB
MVTC R1, USP

Flag Change Condition
C *

Z *

S *

O *

Processing
Size

Operand Code Size
(Byte)Syntax src dest*

MVTC src, dest L #SIMM:8 Rx 4
L #SIMM:16 Rx 5
L #SIMM:24 Rx 6
L #IMM:32 Rx 7
L Rs Rx 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 117 of 278
June 11, 2010

MVTIPL Interrupt priority level setting
MoVe To Interrupt Priority Level

System manipulation instruction
Instruction Code

Page: 227
Syntax
MVTIPL src

Operation
IPL = src;

Function
• This instruction transfers src to the IPL[3:0] bits in the PSW.
• This instruction is a privileged instruction. Attempting to execute this instruction in user mode generates a

privileged instruction exception.
• The value of src is an unsigned integer in the range 0 ≤ src ≤ 15.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
MVTIPL #2

Note: The MVTIPL instruction is not available in products of the RX610 Group. Use the MVTC instruction to write
interrupt priority levels to the processor interrupt-priority level (IPL[2:0]) bits in the processor status word (PSW).

Operand Code Size
(Byte)Syntax src

MVTIPL src #IMM:4 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 118 of 278
June 11, 2010

NEG Two’s complementation
NEGate

Arithmetic/logic instruction
Instruction Code

Page: 228
Syntax
(1) NEG dest
(2) NEG src, dest

Operation
(1) dest = -dest;
(2) dest = -src;

Function
(1) This instruction arithmetically inverts (takes the two's complement of) dest and places the result in dest.
(2) This instruction arithmetically inverts (takes the two's complement of) src and places the result in dest.

Flag Change

Instruction Format

Description Example
NEG R1
NEG R1, R2

Flag Change Condition
C √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O √ (1) The flag is set if dest before the operation was 80000000h; otherwise it is cleared.

(2) The flag is set if src before the operation was 80000000h; otherwise it is cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

(1) NEG dest L − Rd 2
(2) NEG src, dest L Rs Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 119 of 278
June 11, 2010

NOP No operation
No OPeration

Arithmetic/logic instruction
Instruction Code

Page: 228
Syntax
NOP

Operation
/* No operation */

Function
• This instruction executes no process. The operation will be continued from the next instruction.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
NOP

Syntax Code Size (Byte)
NOP 1

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 120 of 278
June 11, 2010

NOT Logical complementation
NOT

Arithmetic/logic instruction
Instruction Code

Page: 229
Syntax
(1) NOT dest
(2) NOT src, dest

Operation
(1) dest = ˜dest;
(2) dest = ˜src;

Function
(1) This instruction logically inverts dest and places the result in dest.
(2) This instruction logically inverts src and places the result in dest.

Flag Change

Instruction Format

Description Example
NOT R1
NOT R1, R2

Flag Change Condition
C −
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1 ; otherwise it is cleared.
O −

Processing
Size

Operand Code Size
(Byte)Syntax src dest

(1) NOT dest L − Rd 2
(2) NOT src, dest L Rs Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 121 of 278
June 11, 2010

OR Logical OR
OR

Arithmetic/logic instruction
Instruction Code

Page: 230
Syntax
(1) OR src, dest
(2) OR src, src2, dest

Operation
(1) dest = dest | src;
(2) dest = src | src2;

Function
(1) This instruction takes the logical OR of dest and src and places the result in dest.
(2) This instruction takes the logical OR of src and src2 and places the result in dest.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Flag Change Condition
C −
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1 ; otherwise it is cleared.
O −

Processing
Size

Operand Code Size
(Byte)Syntax src src2 dest

(1) OR src, dest L #UIMM:4 − Rd 2
L #SIMM:8 − Rd 3
L #SIMM:16 − Rd 4
L #SIMM:24 − Rd 5
L #IMM:32 − Rd 6
L Rs − Rd 2
L [Rs].memex − Rd 2 (memex == UB)

3 (memex != UB)
L dsp:8[Rs].memex* − Rd 3 (memex == UB)

4 (memex != UB)
L dsp:16[Rs].memex* − Rd 4 (memex == UB)

5 (memex != UB)
(2) OR src, src2, dest L Rs Rs2 Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 122 of 278
June 11, 2010

Description Example
OR #8, R1
OR R1, R2
OR [R1], R2
OR 8[R1].L, R2
OR R1, R2, R3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 123 of 278
June 11, 2010

POP Restoring data from stack to register
POP data from the stack

Data transfer instruction
Instruction Code

Page: 231
Syntax
POP dest

Operation
tmp = *SP;
SP = SP + 4;
dest = tmp;

Function
• This instruction restores data from the stack and transfers it to dest.
• The stack pointer in use is specified by the U bit in the PSW.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
POP R1

Processing
Size

Operand Code Size
(Byte)Syntax dest

POP dest L Rd 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 124 of 278
June 11, 2010

POPC Restoring a control register
POP Control register

Data transfer instruction
Instruction Code

Page: 232
Syntax
POPC dest

Operation
tmp = *SP;
SP = SP + 4;
dest = tmp;

Function
• This instruction restores data from the stack and transfers it to the control register specified as dest.
• The stack pointer in use is specified by the U bit in the PSW.
• In user mode, writing to the ISP, INTB, BPC, BPSW, and FINTV, and the IPL[3:0], PM, U, and I bits in the PSW is

ignored. In supervisor mode, writing to the PM bit in the PSW is ignored.

Flag Change

Note: * The flag changes only when dest is the PSW.

Instruction Format

Note: * Selectable dest: Registers ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW
Note that the PC cannot be specified as dest.

Description Example
POPC PSW

Flag Change Condition
C *

Z *

S *

O *

Processing
Size

Operand Code Size
(Byte)Syntax dest*

POPC dest L Rx 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 125 of 278
June 11, 2010

POPM Restoring multiple registers from the stack
POP Multiple registers

Data transfer instruction
Instruction Code

Page: 232
Syntax
POPM dest-dest2

Operation
signed char i;
for (i = register_num(dest); i <= register_num(dest2); i++) {
tmp = *SP;
SP = SP + 4;
register(i) = tmp;

}

Function
• This instruction restores values from the stack to the block of registers in the range specified by dest and dest2.
• The range is specified by first and last register numbers. Note that the condition (first register number < last register

number) must be satisfied.
• R0 cannot be specified.
• The stack pointer in use is specified by the U bit in the PSW.
• Registers are restored from the stack in the following order:

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
POPM R1-R3
POPM R4-R8

Processing
Size

Operand Code Size
(Byte)Syntax dest dest2

POPM dest-dest2 L Rd
(Rd = R1 to R14)

Rd2
(Rd2 = R2 to R15)

2

Restoration is in sequence from R1.

R15 R13R14 R12 R2 R1

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 126 of 278
June 11, 2010

PUSH Saving data on the stack
PUSH data onto the stack

Data transfer instruction
Instruction Code

Page: 233
Syntax
PUSH.size src

Operation
tmp = src;
SP = SP - 4 *;
*SP = tmp;

Note: * SP is always decremented by 4 even when the size specifier (.size) is .B or .W. The higher-order 24 and 16 bits
in the respective cases (.B and .W) are undefined.

Function
• This instruction pushes src onto the stack.
• When src is in register and the size specifier for the PUSH instruction is .B or .W, the byte or word of data from the

LSB in the register are saved respectively.
• The transfer to the stack is processed in longwords. When the size specifier is .B or .W, the higher-order 24 or 16

bits are undefined respectively.
• The stack pointer in use is specified by the U bit in the PSW.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
specifier is .W, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16, values from 0 to 131070
(65535 × 2) can be specified when the size specifier is .W, or values from 0 to 262140 (65535 × 4) when the
specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example
PUSH.B R1
PUSH.L [R1]

Processing
Size

Operand Code Size
(Byte)Syntax Size src

PUSH.size src B/W/L L Rs 2
B/W/L L [Rs] 2
B/W/L L dsp:8[Rs]* 3
B/W/L L dsp:16[Rs]* 4

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 127 of 278
June 11, 2010

PUSHC Saving a control register
PUSH Control register

Data transfer instruction
Instruction Code

Page: 234
Syntax
PUSHC src

Operation
tmp = src;
SP = SP - 4;
*SP = tmp;

Function
• This instruction pushes the control register specified by src onto the stack.
• The stack pointer in use is specified by the U bit in the PSW.
• When the PC is specified as src, this instruction pushes its own address onto the stack.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * Selectable src: Registers PC, ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW

Description Example
PUSHC PSW

Processing
Size

Operand Code Size
(Byte)Syntax src*

PUSHC src L Rx 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 128 of 278
June 11, 2010

PUSHM Saving multiple registers
PUSH Multiple registers

Data transfer instruction
Instruction Code

Page: 234
Syntax
PUSHM src-src2

Operation
signed char i;
for (i = register_num(src2); i >= register_num(src); i--) {
tmp = register(i);
SP = SP - 4;
*SP = tmp;

}

Function
• This instruction saves values to the stack from the block of registers in the range specified by src and src2.
• The range is specified by first and last register numbers. Note that the condition (first register number < last register

number) must be satisfied.
• R0 cannot be specified.
• The stack pointer in use is specified by the U bit in the PSW.
• Registers are saved in the stack in the following order:

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
PUSHM R1-R3
PUSHM R4-R8

Processing
Size

Operand Code Size
(Byte)Syntax src src2

PUSHM src-src2 L Rs
(Rs = R1 to R14)

Rs2
(Rs2 = R2 to R15)

2

Saving is in sequence from R15.

R15 R13R14 R12 R2 R1

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 129 of 278
June 11, 2010

RACW Round the accumulator word
Round ACcumulator Word

DSP instruction
Instruction Code

Page: 235
Syntax
RACW src

Operation
signed long long tmp;
tmp = (signed long long) ACC << src;
tmp = tmp + 0000000080000000h;
if (tmp > (signed long long) 00007FFF00000000h)
 ACC = 00007FFF00000000h;
else if (tmp < (signed long long) FFFF800000000000h)
 ACC = FFFF800000000000h;
else
 ACC = tmp & FFFFFFFF00000000h;

Function
• This instruction rounds the value of the accumulator into a word and stores the result in the accumulator.

• The RACW instruction is executed according to the following procedures.

Processing 1:
The value of the accumulator is shifted to the left by one or two bits as specified by src.

ACC

0DataSign

b15b16b31 b0b32b47b48b63

RACW instruction

b0b63

b15b16b31 b0b32b47b48b63

b15b16b31 b0b32b47b48b63

Shifted to the left by one or two bits

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 130 of 278
June 11, 2010

Processing 2:
The value of the accumulator changes according to the value of 64 bits after the contents have been shifted to the
left by one or two bits.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter 1 or 2 as the immediate
(IMM:1). As the instruction code, the value minus 1 will be stored.

Description Example
RACW #1
RACW #2

Operand Code Size
(Byte)Syntax src

RACW src #IMM:1 *
(IMM:1 = 1 or 2)

3

No carrying when bit 31 is 0
Carrying when bit 31 is 1
Bits 31 to 0 are cleared to 0

Positive
values

Negative
values

b15b16b31 b0b32b47b48b63

0000 7FFE 8000 0000 h
0000 7FFE 7FFF FFFF h

FFFF 8000 8000 0000 h
FFFF 8000 7FFF FFFF h

0000 0000 0000 0000 h

00007FFF0000
b0b63

0000

b31 b0b32b63

0000
b31 b0b32b63

0000

00008000FFFF
b0b63

0000

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 131 of 278
June 11, 2010

REVL Endian conversion
REVerse Longword data

Data transfer instruction
Instruction Code

Page: 235
Syntax
REVL src, dest

Operation
Rd = { Rs[7:0], Rs[15:8], Rs[23:16], Rs[31:24] }

Function
• This instruction converts the endian byte order within a 32-bit datum, which is specified by src, and saves the result

in dest.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
REVL R1, R2

Operand Code Size
(Byte)Syntax src dest

REVL src, dest Rs Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 132 of 278
June 11, 2010

REVW Endian conversion
REVerse Word data

Data transfer instruction
Instruction Code

Page: 236
Syntax
REVW src, dest

Operation
Rd = { Rs[23:16], Rs[31:24], Rs[7:0], Rs[15:8] }

Function
• This instruction converts the endian byte order within the higher- and lower-order 16-bit data, which are specified

by src, and saves the result in dest.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
REVW R1, R2

Operand Code Size
(Byte)Syntax src dest

REVW src, dest Rs Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 133 of 278
June 11, 2010

RMPA Multiply-and-accumulate operation
Repeated MultiPly and Accumulate

Arithmetic/logic instruction
Instruction Code

Page: 236
Syntax
RMPA.size

Operation
while (R3 != 0) {
R6:R5:R4 = R6:R5:R4 + *R1 * *R2;
R1 = R1 + n;
R2 = R2 + n;
R3 = R3 - 1;

}

Notes: 1. If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.
2. When the size specifier (.size) is .B, .W, or .L, n is 1, 2, or 4, respectively.

Function
• This instruction performs a multiply-and-accumulate operation with the multiplicand addresses specified by R1,

the multiplier addresses specified by R2, and the number of multiply-and-accumulate operations specified by R3.
The operands and result are handled as signed values, and the result is placed in R6:R5:R4 as an 80-bit datum. Note
that the higher-order 16 bits of R6 are set to the value obtained by sign-extending the lower-order 16 bits of R6.

• The greatest value that is specifiable in R3 is 00010000h.

• The data in R1 and R2 are undefined when instruction execution is completed.
• Specify the initial value in R6:R5:R4 before executing the instruction. Furthermore, be sure to set R6 to

FFFFFFFFh when R5:R4 is negative or to 00000000h if R5:R4 is positive.
• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be

suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, R4, R5, R6, and PSW when an interrupt is generated and
restore them when execution is returned from the interrupt routine.

• In execution of the instruction, the data may be prefetched from the multiplicand addresses specified by R1 and the
multiplier addresses specified by R2, with R3 as the upper limit. For details of the data size to be prefetched, refer
to the hardware manual of each product.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined.

b31 b16

R6

b15 b0 b31

R5

b0 b31

R4

b0

R6:R5:R4Sign-extended

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 134 of 278
June 11, 2010

Flag Change

Instruction Format

Description Example
RMPA.W

Flag Change Condition
C −
Z −
S √ The flag is set if the MSB of R6 is 1; otherwise it is cleared.
O √ The flag is set if the R6:R5:R4 data is greater than 2 –1 or smaller than –2 ; otherwise it is

cleared.

Processing Code Size
(Byte)Syntax Size Size

RMPA.size B/W/L size 2

63 63

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 135 of 278
June 11, 2010

ROLC Rotation with carry to left
ROtate Left with Carry

Arithmetic/logic instruction
Instruction Code

Page: 237
Syntax
ROLC dest

Operation
dest <<= 1;
if (C == 0) { dest &= FFFFFFFEh; }
else { dest |= 00000001h; }

Function
• This instruction treats dest and the C flag as a unit, rotating the whole one bit to the left.

Flag Change

Instruction Format

Description Example
ROLC R1

Flag Change Condition
C √ The flag is set if the shifted-out bit is 1; otherwise it is cleared.
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1 ; otherwise it is cleared.
O −

Processing
Size

Operand Code Size
(Byte)Syntax dest

ROLC dest L Rd 2

MSB dest LSB C

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 136 of 278
June 11, 2010

RORC Rotation with carry to right
ROtate Right with Carry

Arithmetic/logic instruction
Instruction Code

Page: 237
Syntax
RORC dest

Operation
dest >>= 1;
if (C == 0) { dest &= 7FFFFFFFh; }
else { dest |= 80000000h; }

Function
• This instruction treats dest and the C flag as a unit, rotating the whole one bit to the right.

Flag Change

Instruction Format

Description Example
RORC R1

Flag Change Condition
C √ The flag is set if the shifted-out bit is 1; otherwise it is cleared.
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1 ; otherwise it is cleared.
O −

Processing
Size

Operand Code Size
(Byte)Syntax dest

RORC dest L Rd 2

MSB dest LSB C

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 137 of 278
June 11, 2010

ROTL Rotation to left
ROTate Left

Arithmetic/logic instruction
Instruction Code

Page: 238
Syntax
ROTL src, dest

Operation
unsigned long tmp0, tmp1;
tmp0 = src & 31;
tmp1 = dest << tmp0;
dest = ((unsigned long) dest >> (32 - tmp0)) | tmp1;

Function
• This instruction rotates dest leftward by the number of bit positions specified by src and saves the value in dest.

Bits overflowing from the MSB are transferred to the LSB and to the C flag.
• src is an unsigned integer in the range of 0 ≤ src ≤ 31.
• When src is in register, only five bits in the LSB are valid.

Flag Change

Instruction Format

Description Example
ROTL #1, R1
ROTL R1, R2

Flag Change Condition
C √ After the operation, this flag will have the same LSB value as dest. In addition, when src is 0,

this flag will have the same LSB value as dest.
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O −

Processing
Size

Operand Code Size
(Byte)Syntax src dest

ROTL src, dest L #IMM:5 Rd 3
L Rs Rd 3

C MSB dest LSB

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 138 of 278
June 11, 2010

ROTR Rotation to right
ROTate Right

Arithmetic/logic instruction
Instruction Code

Page: 238
Syntax
ROTR src, dest

Operation
unsigned long tmp0, tmp1;
tmp0 = src & 31;
tmp1 = (unsigned long) dest >> tmp0;
dest = (dest << (32 - tmp0)) | tmp1;

Function
• This instruction rotates dest rightward by the number of bit positions specified by src and saves the value in dest.

Bits overflowing from the LSB are transferred to the MSB and to the C flag.
• src is an unsigned integer in the range of 0 ≤ src ≤ 31.
• When src is in register, only five bits in the LSB are valid.

Flag Change

Instruction Format

Description Example
ROTR #1, R1
ROTR R1, R2

Flag Change Condition
C √ After the operation, this flag will have the same MSB value as dest. In addition, when src is 0,

this flag will have the same MSB value as dest.
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1 ; otherwise it is cleared.
O −

Processing
Size

Operand Code Size
(Byte)Syntax src dest

ROTR src, dest L #IMM:5 Rd 3
L Rs Rd 3

CMSB dest LSB

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 139 of 278
June 11, 2010

ROUND Conversion from floating-point to integer
ROUND floating-point to integer

Floating-point operation instruction
Instruction Code

Page: 239
Syntax
ROUND src, dest

Operation
dest = (signed long) src;

Function
• This instruction converts the single-precision floating-point number stored in src into a signed longword (32-bit)

integer and places the result in dest. The result is rounded according to the setting of the RM[1:0] bits in the FPSW.

Flag Change

Note: The FX and FV flags do not change if any of the exception enable bits EX and EV is 1. The S and Z flags do not
change when an exception is generated.

Bits RM[1:0] Rounding Mode
00b Round to the nearest value
01b Round towards 0
10b Round towards +∞

11b Round towards –∞

Flag Change Condition
C −
Z √ The flag is set if the result of the operation is 0; otherwise it is cleared.
S √ The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O −
CV √ The flag is set if an invalid operation exception is generated; otherwise it is cleared.
CO √ The value of the flag is always 0.
CZ √ The value of the flag is always 0.
CU √ The value of the flag is always 0.
CX √ The flag is set if an inexact exception is generated; otherwise it is cleared.
CE √ The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV √ The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO −
FZ −
FU −
FX √ The flag is set if an inexact exception is generated; otherwise it does not change.

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 140 of 278
June 11, 2010

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 × 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 × 4) can be specified. The value divided by 4 will
be stored in the instruction code.

Possible Exceptions
Unimplemented processing
Invalid operation
Inexact

Description Example
ROUND R1, R2
ROUND [R1], R2

Supplementary Description
• The following tables show the correspondences between src and dest values and the results of operations when DN

= 0 and DN = 1.

When DN = 0

Notes: 1. An inexact exception occurs when the result is rounded.
2. No invalid operation exception occurs when src = CF000000h.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

ROUND src, dest L Rs Rd 3
L [Rs].L Rd 3
L dsp:8[Rs].L* Rd 4
L dsp:16[Rs].L* Rd 5

src Value (exponent is shown without bias) dest Exception
src ≥ 0 +∞ When an invalid operation exception is

generated with the EV bit = 1: No change
Invalid operation
exception

127 ≥ Exponent ≥ 31 Other cases: 7FFFFFFFh
30 ≥ Exponent ≥ –126 00000000h to 7FFFFF80h None*1

+Denormalized number No change Unimplemented
processing exception

+0 00000000h None
src < 0 –0

–Denormalized number No change Unimplemented
processing exception

30 ≥ Exponent ≥ –126 00000000h to 80000080h None*1

127 ≥ Exponent ≥ 31 When an invalid operation exception is
generated with the EV bit = 1: No change

Invalid operation
exception*2

–∞ Other cases: 80000000h
NaN QNaN When an invalid operation exception is

generated with the EV bit = 1: No change
Invalid operation
exception

Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 141 of 278
June 11, 2010

When DN = 1

Notes: 1. An inexact exception occurs when the result is rounded.
2. No invalid operation exception occurs when src = CF000000h.

src Value (exponent is shown without bias) dest Exception
src ≥ 0 +∞ When an invalid operation exception is

generated with the EV bit = 1: No change
Invalid operation
exception

127 ≥ Exponent ≥ 31 Other cases: 7FFFFFFFh
30 ≥ Exponent ≥ –126 00000000h to 7FFFFF80h None*1

+0, +Denormalized number 00000000h None
src < 0 –0, –Denormalized number

30 ≥ Exponent ≥ –126 00000000h to 80000080h None*1

127 ≥ Exponent ≥ 31 When an invalid operation exception is
generated with the EV bit = 1: No change

Invalid operation
exception*2

–∞ Other cases: 80000000h
NaN QNaN When an invalid operation exception is

generated with the EV bit = 1: No change
Invalid operation
exception

Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 142 of 278
June 11, 2010

RTE Return from the exception
ReTurn from Exception

System manipulation instruction
Instruction Code

Page: 239
Syntax
RTE

Operation
PC = *SP;
SP = SP + 4;
tmp = *SP;
SP = SP + 4;
PSW = tmp;

Function
• This instruction returns execution from the exception handling routine by restoring the PC and PSW contents that

were preserved when the exception was accepted.
• This instruction is a privileged instruction. Attempting to execute this instruction in user mode generates a

privileged instruction exception.
• If returning is accompanied by a transition to user mode, the U bit in the PSW becomes 1.

Flag Change

Note: * The flags become the corresponding values on the stack.

Instruction Format

Description Example
RTE

Flag Change Condition
C *

Z *

S *

O *

Syntax Code Size (Byte)
RTE 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 143 of 278
June 11, 2010

RTFI Return from the fast interrupt
ReTurn from Fast Interrupt

System manipulation instruction
Instruction Code

Page: 240
Syntax
RTFI

Operation
PSW = BPSW;
PC = BPC;

Function
• This instruction returns execution from the fast-interrupt handler by restoring the PC and PSW contents that were

saved in the BPC and BPSW when the fast interrupt request was accepted.
• This instruction is a privileged instruction. Attempting to execute this instruction in user mode generates a

privileged instruction exception.
• If returning is accompanied by a transition to user mode, the U bit in the PSW becomes 1.
• The data in the BPC and BPSW are undefined when instruction execution is completed.

Flag Change

Note: * The flags become the corresponding values from the BPSW.

Instruction Format

Description Example
RTFI

Flag Change Condition
C *

Z *

S *

O *

Syntax Code Size (Byte)
RTFI 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 144 of 278
June 11, 2010

RTS Returning from a subroutine
ReTurn from Subroutine

Branch instruction
Instruction Code

Page: 240
Syntax
RTS

Operation
PC = *SP;
SP = SP + 4;

Function
• This instruction returns the flow of execution from a subroutine.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
RTS

Syntax Code Size (Byte)
RTS 1

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 145 of 278
June 11, 2010

RTSD Releasing stack frame and
returning from subroutine

ReTurn from Subroutine and
Deallocate stack frame

Branch instruction
Instruction Code

Page: 240
Syntax
(1) RTSD src
(2) RTSD src, dest-dest2

Operation
(1) SP = SP + src;

PC = *SP;
SP = SP + 4;

(2) signed char i;
SP = SP + (src - (register_num(dest2) - register_num(dest) +1) * 4);
for (i = register_num(dest); i <= register_num(dest2); i++) {
tmp = *SP;
SP = SP + 4;
register(i) = tmp;

}
PC = *SP;
SP = SP + 4;

Function
(1) This instruction returns the flow of execution from a subroutine after deallocating the stack frame for the

subroutine.
• Specify src to be the size of the stack frame (auto conversion area).

Before
executing the

instruction
SP

Auto
conversion

area

Return
address
Function
argument

After
executing the

instruction

SP
Function
argument

Number of bytes specified
by src Direction of

address
incrementing

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 146 of 278
June 11, 2010

(2) This instruction returns the flow of execution from a subroutine after deallocating the stack frame for the
subroutine and also restoring register values from the stack area.
• Specify src to be the total size of the stack frame (auto conversion area and register restore area).

• This instruction restores values for the block of registers in the range specified by dest and dest2 from the stack.
• The range is specified by first and last register numbers. Note that the condition (first register number ≤ last

register number) must be satisfied.
• R0 cannot be specified.
• The stack pointer in use is specified by the U bit in the PSW.
• Registers are restored from the stack in the following order:

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the immediate value. With UIMM:8, values from 0 to 1020 (255 × 4) can be specified.
The value divided by 4 will be stored in the instruction code.

Description Example
RTSD #4
RTSD #16, R5-R7

Operand Code Size
(Byte)Syntax src dest dest2

(1) RTSD src #UIMM:8* − − 2
(2) RTSD src, dest-dest2 #UIMM:8* Rd (Rd=R1 to R15) Rd2 (Rd2=R1 to R15) 3

Before
executing the

instruction
SP

Auto
conversion

area

Return
address
Function
argument

After
executing the

instruction

SP
Function
argument

Register
restore area

Number of bytes specified
by src

Direction of
address
incrementing

Restoration is in sequence from R1.

R15 R13R14 R12 R2 R1

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 147 of 278
June 11, 2010

SAT Saturation of signed 32-bit data
SATurate signed 32-bit data

Arithmetic/logic instruction
Instruction Code

Page: 241
Syntax
SAT dest

Operation
if (O == 1 && S == 1)

dest = 7FFFFFFFh;
else if (O == 1 && S == 0)

dest = 80000000h;

Function
• This instruction performs a 32-bit signed saturation operation.
• When the O flag is 1 and the S flag is 1, the result of the operation is 7FFFFFFFh and it is placed in dest.

When the O flag is 1 and the S flag is 0, the result of the operation is 80000000h and it is placed in dest. In other
cases, the dest value does not change.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
SAT R1

Processing
Size

Operand Code Size
(Byte)Syntax dest

SAT dest L Rd 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 148 of 278
June 11, 2010

SATR Saturation of signed 64-bit data for RMPA
SATuRate signed 64-bit data for RMPA

Arithmetic/logic instruction
Instruction Code

Page: 241
Syntax
SATR

Operation
if (O == 1 && S == 0)

R6:R5:R4 = 000000007FFFFFFFFFFFFFFFh;
else if (O == 1 && S == 1)

R6:R5:R4 = FFFFFFFF8000000000000000h;

Function
• This instruction performs a 64-bit signed saturation operation.
• When the O flag is 1 and the S flag is 0, the result of the operation is 000000007FFFFFFFFFFFFFFFh and it is

placed in R6:R5:R4. When the O flag is 1 and the S flag is 1, the result of the operation is
FFFFFFFF8000000000000000h and it is place in R6:R5:R4. In other cases, the R6:R5:R4 value does not change.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
SATR

Syntax Code Size (Byte)
SATR 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 149 of 278
June 11, 2010

SBB Subtraction with borrow
SuBtract with Borrow

Arithmetic/logic instruction
Instruction Code

Page: 242
Syntax
SBB src, dest

Operation
dest = dest - src - !C;

Function
• This instruction subtracts src and the inverse of the C flag (borrow) from dest and places the result in dest.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 × 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 × 4) can be specified. The value divided by 4 will
be stored in the instruction code.

Description Example
SBB R1, R2
SBB [R1], R2

Flag Change Condition
C √ The flag is set if an unsigned operation produces no overflow; otherwise it is cleared.
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O √ The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

SBB src, dest L Rs Rd 3
L [Rs].L Rd 4
L dsp:8[Rs].L* Rd 5
L dsp:16[Rs].L* Rd 6

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 150 of 278
June 11, 2010

SCCnd Condition setting
Store Condition Conditionally SCCnd

Data transfer instruction
Instruction Code

Page: 243
Syntax
SCCnd.size dest

Operation
if (Cnd)

dest = 1;
else

dest = 0;

Function
• This instruction moves the truth-value of the condition specified by Cnd to dest; that is, 1 or 0 is stored to dest if the

condition is true or false, respectively.
• The following table lists the types of SCCnd.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
specifier is .W, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16, values from 0 to 131070
(65535 × 2) can be specified when the size specifier is .W, or values from 0 to 262140 (65535 × 4) when the
specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

SCCnd Condition Expression SCCnd Condition Expression
SCGEU,
SCC

C == 1 Equal to or greater than/
C flag is 1

≤ SCLTU,
SCNC

C == 0 Less than/
C flag is 0

>

SCEQ,
SCZ

Z == 1 Equal to/
Z flag is 1

= SCNE,
SCNZ

Z == 0 Not equal to/
Z flag is 0

≠

SCGTU C & ˜Z == 1 Greater than < SCLEU C & ˜Z == 0 Equal to or less than ≥
SCPZ S == 0 Positive or zero 0 ≤ SCN S == 1 Negative 0 >
SCGE S ^ O == 0 Equal to or greater than

as signed integer
≤ SCLE (S ^ O) |

Z == 1
Equal to or less than as
signed integer

≥

SCGT (S ^ O) |
Z == 0

Greater than as signed
integer

< SCLT S ^ O == 1 Less than as signed
integer

>

SCO O == 1 O flag is 1 SCNO O == 0 O flag is 0

Size
Processing
Size

Operand Code Size
Syntax dest (Byte)
SCCnd.size dest L L Rd 3

B/W/L size [Rd] 3
B/W/L size dsp:8[Rd]* 4
B/W/L size dsp:16[Rd]* 5

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 151 of 278
June 11, 2010

Description Example
SCC.L R2
SCNE.W [R2]

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 152 of 278
June 11, 2010

SCMPU String comparison
String CoMPare Until not equal

String manipulation instruction
Instruction Code

Page: 243
Syntax
SCMPU

Operation
unsigned char *R2, *R1, tmp0, tmp1;
unsigned long R3;
while (R3 != 0) {
 tmp0 = *R1++;
 tmp1 = *R2++;
 R3--;
 if (tmp0 != tmp1 || tmp0 == '\0') {
 break;
 }
}

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function
• This instruction compares strings in successively higher addresses specified by R1, which indicates the source

address for comparision, and R2, which indicates the destination address for comparision, until the values do not
match or the null character "\0" (= 00h) is detected, with the number of bytes specified by R3 as the upper limit.

• In execution of the instruction, the data may be prefetched from the source address for comparison specified by R1
and the destination address for comparison specified by R2, with R3 as the upper limit. For details of the data size
to be prefetched, refer to the hardware manual of each product.

• The contents of R1 and R2 are undefined upon completion of the instruction.
• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be

suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change

Instruction Format

Description Example
SCMPU

Flag Change Condition
C √ This flag is set if the operation of (*R1 – *R2) as unsigned integers produces a value greater

than or equal to 0; otherwise it is cleared.
Z √ This flag is set if the two strings have matched; otherwise it is cleared.
S −
O −

Syntax Processing Size Code Size (Byte)
SCMPU B 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 153 of 278
June 11, 2010

SETPSW Setting a flag or bit in the PSW
SET flag of PSW

System manipulation instruction
Instruction Code

Page: 244
Syntax
SETPSW dest

Operation
dest = 1;

Function
• This instruction clears the O, S, Z, or C flag, which is specified by dest, or the U or I bit.
• In user mode, writing to the U or I bit in the PSW will be ignored. In supervisor mode, all flags and bits can be

written to.

Flag Change

Note: * The specified flag is set to 1.

Instruction Format

Description Example
SETPSW C
SETPSW Z

Flag Change Condition
C *

Z *

S *

O *

Operand Code Size
Syntax dest (Byte)
SETPSW dest flag 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 154 of 278
June 11, 2010

SHAR Arithmetic shift to the right
SHift Arithmetic Right

Arithmetic/logic instruction
Instruction Code

Page: 245
Syntax
(1) SHAR src, dest
(2) SHAR src, src2, dest

Operation
(1) dest = (signed long) dest >> (src & 31);
(2) dest = (signed long) src2 >> (src & 31);

Function
(1) This instruction arithmetically shifts dest to the right by the number of bit positions specified by src and saves the

value in dest.
• Bits overflowing from the LSB are transferred to the C flag.
• src is an unsigned in the range of 0 ≤ src ≤ 31.
• When src is in register, only five bits in the LSB are valid.

(2) After this instruction transfers src2 to dest, it arithmetically shifts dest to the right by the number of bit positions
specified by src and saves the value in dest.
• Bits overflowing from the LSB are transferred to the C flag.
• src is an unsigned integer in the range of 0 ≤ src ≤ 31.

Flag Change

Instruction Format

Description Example
SHAR #3, R2
SHAR R1, R2
SHAR #3, R1, R2

Flag Change Condition
C √ The flag is set if the shifted-out bit is 1; otherwise it is cleared. However, when src is 0, this flag

is also cleared.
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O √ The flag is cleared to 0.

Processing
Size

Operand Code Size
(Byte)Syntax src src2 dest

(1) SHAR src, dest L #IMM:5 − Rd 2
L Rs − Rd 3

(2) SHAR src, src2, dest L #IMM:5 Rs Rd 3

CMSB dest LSB

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 155 of 278
June 11, 2010

SHLL Logical and arithmetic shift to the left
SHift Logical and arithmetic Left

Arithmetic/logic instruction
Instruction Code

Page: 246
Syntax
(1) SHLL src, dest
(2) SHLL src, src2, dest

Operation
(1) dest = dest << (src & 31);
(2) dest = src2 << (src & 31);

Function
(1) This instruction arithmetically shifts dest to the left by the number of bit positions specified by src and saves the

value in dest.
• Bits overflowing from the MSB are transferred to the C flag.
• When src is in register, only five bits in the LSB are valid.
• src is an unsigned integer in the range of 0 ≤ src ≤ 31.

(2) After this instruction transfers src2 to dest, it arithmetically shifts dest to the left by the number of bit positions
specified by src and saves the value in dest.
• Bits overflowing from the MSB are transferred to the C flag.
• src is an unsigned integer in the range of 0 ≤ src ≤ 31.

Flag Change

Instruction Format

Description Example
SHLL #3, R2
SHLL R1, R2
SHLL #3, R1, R2

Flag Change Condition
C √ The flag is set if the shifted-out bit is 1; otherwise it is cleared. However, when src is 0, this flag

is also cleared.
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O √ This bit is cleared to 0 when the MSB of the result of the operation is equal to all bit values that

have been shifted out (i.e. the shift operation has not changed the sign); otherwise it is set to 1.
However, when scr is 0, this flag is also cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src src2 dest

(1) SHLL src, dest L #IMM:5 − Rd 2
L Rs − Rd 3

(2) SHLL src, src2, dest L #IMM:5 Rs Rd 3

C 0MSB dest LSB

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 156 of 278
June 11, 2010

SHLR Logical shift to the right
SHift Logical Right

Arithmetic/logic instruction
Instruction Code

Page: 247
Syntax
(1) SHLR src, dest
(2) SHLR src, src2, dest

Operation
(1) dest = (unsigned long) dest >> (src & 31);
(2) dest = (unsigned long) src2 >> (src & 31);

Function
(1) This instruction logically shifts dest to the right by the number of bit positions specified by src and saves the value

in dest.
• Bits overflowing from the LSB are transferred to the C flag.
• src is an unsigned integer in the range of 0 ≤ src ≤ 31.
• When src is in register, only five bits in the LSB are valid.

(2) After this instruction transfers src2 to dest, it logically shifts dest to the right by the number of bit positions
specified by src and saves the value in dest.
• Bits overflowing from the LSB are transferred to the C flag.
• src is an unsigned integer in the range of 0 ≤ src ≤ 31.

Flag Change

Instruction Format

Description Example
SHLR #3, R2
SHLR R1, R2
SHLR #3, R1, R2

Flag Change Condition
C √ The flag is set if the shifted-out bit is 1; otherwise it is cleared. However, when src is 0, this flag

is also cleared.
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O −

Processing
Size

Operand Code Size
(Byte)Syntax src src2 dest

(1) SHLR src, dest L #IMM:5 − Rd 2
L Rs − Rd 3

(2) SHLR src, src2, dest L #IMM:5 Rs Rd 3

C0 MSB dest LSB

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 157 of 278
June 11, 2010

SMOVB Transferring a string backward
Strings MOVe Backward

String manipulation instruction
Instruction Code

Page: 248
Syntax
SMOVB

Operation
unsigned char *R1, *R2;
unsigned long R3;
while (R3 != 0) {
*R1-- = *R2--;
R3 = R3 - 1;

}

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function
• This instruction transfers a string consisting of the number of bytes specified by R3 from the source address

specified by R2 to the destination address specified by R1, with transfer proceeding in the direction of decreasing
addresses.

• In execution of the instruction, data may be prefetched from the source address specified by R2, with R3 as the
upper limit. For details of the data size to be prefetched, refer to the hardware manual of each product.

• The destination address specified by R1 should not be included in the range of data to be prefetched, which starts
from the source address specified by R2.

• On completion of instruction execution, R1 and R2 indicate the next addresses in sequence from those for the last
transfer.

• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
SMOVB

Syntax Processing Size Code Size (Byte)
SMOVB B 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 158 of 278
June 11, 2010

SMOVF Transferring a string forward
Strings MOVe Forward

String manipulation instruction
Instruction Code

Page: 248
Syntax
SMOVF

Operation
unsigned char *R1, *R2;
unsigned long R3;
while (R3 != 0) {
*R1++ = *R2++;
R3 = R3 - 1;

}

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function
• This instruction transfers a string consisting of the number of bytes specified by R3 from the source address

specified by R2 to the destination address specified by R1, with transfer proceeding in the direction of increasing
addresses.

• In execution of the instruction, data may be prefetched from the source address specified by R2, with R3 as the
upper limit. For details of the data size to be prefetched, refer to the hardware manual of each product.

• The destination address specified by R1 should not be included in the range of data to be prefetched, which starts
from the source address specified by R2.

• On completion of instruction execution, R1 and R2 indicate the next addresses in sequence from those for the last
transfer.

• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
SMOVF

Syntax Processing Size Code Size (Byte)
SMOVF B 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 159 of 278
June 11, 2010

SMOVU Transferring a string
Strings MOVe while Unequal to zero

String manipulation instruction
Instruction Code

Page: 248
Syntax
SMOVU

Operation
unsigned char *R1, *R2, tmp;
unsigned long R3;
while (R3 != 0) {
tmp = *R2++;
*R1++ = tmp;
R3--;
if (tmp == '\0') {
break;

}
}

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function
• This instruction transfers strings successively from the source address specified by R2 to the higher destination

addresses specified by R1 until the null character "\0" (= 00h) is detected, with the number of bytes specified by R3
as the upper limit. String transfer is completed after the null character has been transferred.

• In execution of the instruction, data may be prefetched from the source address specified by R2, with R3 as the
upper limit. For details of the data size to be prefetched, refer to the hardware manual of each product.

• The destination address specified by R1 should not be included in the range of data to be prefetched, which starts
from the source address specified by R2.

• The contents of R1 and R2 are undefined upon completion of the instruction.
• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be

suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
SMOVU

Syntax Processing Size Code Size (Byte)
SMOVU B 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 160 of 278
June 11, 2010

SSTR Storing a string
String SToRe

String manipulation instruction
Instruction Code

Page: 249
Syntax
SSTR.size

Operation
unsigned { char | short | long } *R1, R2;
unsigned long R3;
while (R3 != 0) {
*R1++ = R2;
R3 = R3 - 1;

}

Notes: 1. If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.
2. R1++: Incrementation is by the value corresponding to the size specifier (.size), i.e. by 1 for .B, 2 for .W, and 4

for .L.
3. R2: How much of the value in R2 is stored depends on the size specifier (.size): the byte from the LSB end of

R2 is stored for .B, the word from the LSB end of R2 is stored for .W, and the longword in R2 is stored for .L.

Function
• This instruction stores the contents of R2 successively proceeding in the direction of increasing addresses specified

by R1 up to the number specified by R3.
• On completion of instruction execution, R1 indicates the next address in sequence from that for the last transfer.
• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be

suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
SSTR.W

Syntax Size Processing Size Code Size (Byte)
SSTR.size B/W/L size 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 161 of 278
June 11, 2010

STNZ Transfer with condition
STore on Not Zero

Data transfer instruction
Instruction Code

Page: 249
Syntax
STNZ src, dest

Operation
if (Z == 0)

dest = src;

Function
• This instruction moves src to dest when the Z flag is 0. dest does not change when the Z flag is 1.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
STNZ #1, R2

Processing
Size

Operand Code Size
(Byte)Syntax src dest

STNZ src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 162 of 278
June 11, 2010

STZ Transfer with condition
STore on Zero

Data transfer instruction
Instruction Code

Page: 250
Syntax
STZ src, dest

Operation
if (Z == 1)

dest = src;

Function
• This instruction moves src to dest when the Z flag is 1. dest does not change when the Z flag is 0.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
STZ #1, R2

Processing
Size

Operand Code Size
(Byte)Syntax src dest

STZ src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 163 of 278
June 11, 2010

SUB Subtraction without borrow
SUBtract

Arithmetic/logic instruction
Instruction Code

Page: 251
Syntax
(1) SUB src, dest
(2) SUB src, src2, dest

Operation
(1) dest = dest - src;
(2) dest = src2 - src;

Function
(1) This instruction subtracts src from dest and places the result in dest.
(2) This instruction subtracts src from src2 and places the result in dest.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example
SUB #15, R2
SUB R1, R2
SUB [R1], R2
SUB 1[R1].B, R2
SUB R1, R2, R3

Flag Change Condition
C √ The flag is set if an unsigned operation produces no overflow; otherwise it is cleared.
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O √ The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Processing
Size

Operand Code Size
(Byte)Syntax src src2 dest

(1) SUB src, dest L #UIMM:4 − Rd 2
L Rs − Rd 2
L [Rs].memex − Rd 2 (memex == UB)

3 (memex != UB)
L dsp:8[Rs].memex* − Rd 3 (memex == UB)

4 (memex != UB)
L dsp:16[Rs].memex* − Rd 4 (memex == UB)

5 (memex != UB)
(2) SUB src, src2, dest L Rs Rs2 Rd 3

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 164 of 278
June 11, 2010

SUNTIL Searching for a string
Search UNTIL equal string

String manipulation instruction
Instruction Code

Page: 252
Syntax
SUNTIL.size

Operation
unsigned { char | short | long } *R1;
unsigned long R2, R3, tmp;
while (R3 != 0) {
tmp = (unsigned long) *R1++;
R3--;
if (tmp == R2) {

break;
}

}

Notes: 1. If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.
2. R1++: Incrementation is by the value corresponding to the size specifier (.size), i.e. by 1 for .B, 2 for .W, and 4

for .L.

Function
• This instruction searches a string for comparison from the first address specified by R1 for a match with the value

specified in R2, with the search proceeding in the direction of increasing addresses and the number specified by R3
as the upper limit on the number of comparisons. When the size specifier (.size) is .B or .W, the byte or word data
on the memory is compared with the value in R2 after being zero-extended to form a longword of data.

• In execution of the instruction, data may be prefetched from the destination address for comparison specified by
R1, with R3 as the upper limit. For details of the data size to be prefetched, refer to the hardware manual of each
product.

• Flags change according to the results of the operation "*R1 – R2".
• The value in R1 upon completion of instruction execution indicates the next address where the data matched.

Unless there was a match within the limit, the value in R1 is the next address in sequence from that for the last
comparison.

• The value in R3 on completion of instruction execution is the initial value minus the number of comparisons.
• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be

suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
Flag Change Condition
C √ The flag is set if a comparison operation as unsigned integers results in any value equal to or

greater than 0; otherwise it is cleared.
Z √ The flag is set if matched data is found; otherwise it is cleared.
S −
O −

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 165 of 278
June 11, 2010

Instruction Format

Description Example
SUNTIL.W

Syntax Size Processing Size Code Size (Byte)
SUNTIL.size B/W/L L 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 166 of 278
June 11, 2010

SWHILE Searching for a string
Search WHILE unequal string

String manipulation instruction
Instruction Code

Page: 252
Syntax
SWHILE.size

Operation
unsigned { char | short | long } *R1;
unsigned long R2, R3, tmp;
while (R3 != 0) {

tmp = (unsigned long) *R1++;
R3--;
if (tmp != R2) {

break;
}

}

Notes: 1. If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.
2. R1++: Incrementation is by the value corresponding to the size specifier (.size), i.e. by 1 for .B, 2 for .W, and 4

for .L.

Function
• This instruction searches a string for comparison from the first address specified by R1 for an unmatch with the

value specified in R2, with the search proceeding in the direction of increasing addresses and the number specified
by R3 as the upper limit on the number of comparisons. When the size specifier (.size) is. B or .W, the byte or word
data on the memory is compared with the value in R2 after being zero-extended to form a longword of data.

• In execution of the instruction, data may be prefetched from the destination address for comparison specified by
R1, with R3 as the upper limit. For details of the data size to be prefetched, refer to the hardware manual of each
product.

• Flags change according to the results of the operation "*R1 – R2".
• The value in R1 upon completion of instruction execution indicates the next addresses where the data did not

match. If all the data contents match, the value in R1 is the next address in sequence from that for the last
comparison.

• The value in R3 on completion of instruction execution is the initial value minus the number of comparisons.
• An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be

suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change
Flag Change Condition
C √ The flag is set if a comparison operation as unsigned integers results in any value equal to or

greater than 0; otherwise it is cleared.
Z √ The flag is set if all the data contents match; otherwise it is cleared.
S −
O −

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 167 of 278
June 11, 2010

Instruction Format

Description Example
SWHILE.W

Syntax Size Processing Size Code Size (Byte)
SWHILE.size B/W/L L 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 168 of 278
June 11, 2010

TST Logical test
TeST logical

Arithmetic/logic instruction
Instruction Code

Page: 253
Syntax
TST src, src2

Operation
src2 & src;

Function
• This instruction changes the flag states in the PSW according to the result of logical AND of src2 and src.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example
TST #7, R2
TST R1, R2
TST [R1], R2
TST 1[R1].UB, R2

Flag Change Condition
C −
Z √ The flag is set if the result of the operation is 0; otherwise it is cleared.
S √ The flag is set if the MSB of the result of the operation is 1; otherwise it is cleared.
O −

Processing
 Size

Operand Code Size
(Byte)Syntax src src2

TST src, src2 L #SIMM:8 Rs 4
L #SIMM:16 Rs 5
L #SIMM:24 Rs 6
L #IMM:32 Rs 7
L Rs Rs2 3
L [Rs].memex Rs2 3 (memex == UB)

4 (memex != UB)
L dsp:8[Rs].memex* Rs2 4 (memex == UB)

5 (memex != UB)
L dsp:16[Rs].memex* Rs2 5 (memex == UB)

6 (memex != UB)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 169 of 278
June 11, 2010

WAIT Waiting
WAIT

System manipulation instruction
Instruction Code

Page: 254
Syntax
WAIT

Operation

Function
• This instruction stops program execution. Program execution is then restarted by acceptance of a non-maskable

interrupt, interrupt, or generation of a reset.
• This instruction is a privileged instruction. Attempting to execute this instruction in user mode generates a

privileged instruction exception.
• The I bit in the PSW becomes 1.
• The address of the PC saved at the generation of an interrupt is the one next to the WAIT instruction.

Note: For the power-down state when the execution of the program is stopped, refer to the hardware manual of each
product.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Description Example
WAIT

Syntax Code Size (Byte)
WAIT 2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 170 of 278
June 11, 2010

XCHG Exchanging values
eXCHanGe

Data transfer instruction
Instruction Code

Page: 254
Syntax
XCHG src, dest

Operation
tmp = src;
src = dest;
dest = tmp;

Function
• This instruction exchanges the contents of src and dest as listed in the following table.

• This instruction may be used for the exclusive control. For details, refer to the hardware manual of each product.

Flag Change
• This instruction does not affect the states of flags.

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier .L. The value divided by 2 or 4 will be stored in the instruction
code.

src dest Function
Register Register Exchanges the data in the source register (src) and the destination register

(dest).
Memory location Register Exchanges the data at the memory location and the register. When the size

extension specifier (.size) is .B or .UB, the byte of data in the LSB of the register
is exchanged with the data at the memory location. When the size extension
specifier (.size) is .W or .UW, the word of data in the LSB of the register is
exchanged with the data at the memory location. When the size extension
specifier is other than .L, the data at the memory location is transferred to the
register after being extended with the specified type of extension to form a
longword of data.

Processing
Size

Operand Code Size
(Byte)Syntax src dest

XCHG src, dest L Rs Rd 3
L [Rs].memex Rd 3 (memex == UB)

4 (memex != UB)
L dsp:8[Rs].memex∗ Rd 4 (memex == UB)

5 (memex != UB)
L dsp:16[Rs].memex∗ Rd 5 (memex == UB)

6 (memex != UB)

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 171 of 278
June 11, 2010

Description Example
XCHG R1, R2
XCHG [R1].W, R2

RX Family Section 3 Instruction Descriptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 172 of 278
June 11, 2010

XOR Logical exclusive or
eXclusive OR logical

Arithmetic/logic instruction
Instruction Code

Page: 255
Syntax
XOR src, dest

Operation
dest = dest ^ src;

Function
• This instruction exclusive-ORs dest and src and places the result in dest.

Flag Change

Instruction Format

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 × 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 × 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 × 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 × 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example
XOR #8, R1
XOR R1, R2
XOR [R1], R2
XOR 16[R1].L, R2

Flag Change Condition
C −
Z √ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S √ The flag is set if the MSB of dest after the operation is 1 ; otherwise it is cleared.
O −

Processing
Size

Operand Code Size
(Byte)Syntax src dest

XOR src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == UB)

4 (memex != UB)
L dsp:8[Rs].memex∗ Rd 4 (memex == UB)

5 (memex != UB)
L dsp:16[Rs].memex∗ Rd 5 (memex == UB)

6 (memex != UB)

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 173 of 278
June 11, 2010

Section 4 Instruction Code

4.1 Guide to This Section

This section describes instruction codes by showing the respective opcodes.

The following shows how to read this section by using an actual page as an example.

Code Size

(1) ADD src, dest

(2) ADD src, dest
When memex == UB or src == Rs

When memex != UB

ADD ADD
Syntax src src2 dest Code Size (Byte)
(1) ADD src, dest #UIMM:4 � Rd 2
(Instruction code for three
operands)

#SIMM:8 � Rd 3

#SIMM:16 � Rd 4
#SIMM:24 � Rd 5
#IMM:32 � Rd 6

(2) ADD src, dest Rs � Rd 2
[Rs].memex � Rd 2 (memex == UB)

3 (memex != UB)
dsp:8[Rs].memex � Rd 3 (memex == UB)

4 (memex != UB)
dsp:16[Rs].memex � Rd 4 (memex == UB)

5 (memex != UB)
(3) ADD src, src2, dest #SIMM:8 Rs Rd 3

#SIMM:16 Rs Rd 4
#SIMM:24 Rs Rd 5
#IMM:32 Rs Rd 6

(4) ADD src, src2, dest Rs Rs2 Rd 3

imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rd R0 (SP) to R15

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

imm[3:0]
b0b7 b0b7

0 1 1 0 0 0 1 0 rd[3:0]

None

None

0 0 1 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7

rs[3:0] rd[3:0]
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

(1)

(2)

(3)

(4)

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 174 of 278
June 11, 2010

(1) Mnemonic

Indicates the mnemonic name of the instruction explained on the given page.

(2) List of Code Size

Indicates the number of bytes the instruction requires. An individual RX CPU instruction takes up from one to eight bytes.

(3) Syntax

Indicates the syntax of the instruction using symbols.

(4) Instruction Code

Indicates the instruction code. The code in parentheses may be selected or omitted depending on src/dest to be selected.

When memex == UB or src == Rs

When memex != UB

None

None

See figure 4.1

When memex != UB

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

0 0 1 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7

rs[3:0] rd[3:0]
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b
The contents of the byte at the
address of the instruction

The contents of the byte at
(address of the instruction + 1)

The contents of the byte at
(address of the instruction + 2)

The contents of the byte at the
address of the instruction

The contents of the byte at
(address of the instruction + 1)

See figure 4.1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 175 of 278
June 11, 2010

The contents of the operand, that is the byte at (address of the instruction +2) or (following address of the instruction +3) in
the previous page, are arranged as shown in figure 4.1.

Figure 4.1 Immediate (IMM) and Displacement (dsp) Values

The abbreviations such as for rs, rd, ld, and mi represent the following.

rs: Source register
rs2: Second source register
rd: Destination register
rd2: Second destination register
ri: Index register
rb: Base register
li: Length of immediate
ld: Length of displacement
lds: Length of source displacement
ldd: Length of destination displacement
mi: Memory extension size infix
imm: Immediate
dsp: Displacement
cd: Condition code
cr: Control register
cb: Control bit
sz: Size specifier
ad: Addressing

8 bits
b0b7

Lower-order 8 bits Higher-order 8 bits

Lower-order 8 bits Middle 8 bits Higher-order 8 bits

Lower-order 8 bits Middle-lower-order 8 bits Middle-higher-order 8 bits Higher-order 8 bits

+0

#IMM:8
#SIMM:8
#UIMM:8
dsp:8
pcdsp:8

#IMM:16
#SIMM:16
dsp:16
pcdsp:16

#SIMM:24
pcdsp:24

#IMM:32

+1 +2 +3

b0b7 b8b15 b16b23 b24b31

b0b7 b8b15 b16b23

b0b7 b8b15

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 176 of 278
June 11, 2010

4.2 Instruction Code Described in Detail

The following pages give details of the instruction codes for the RX CPU.

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 177 of 278
June 11, 2010

Code Size

(1) ABS dest

(2) ABS src, dest

ABS ABS
Syntax src dest Code Size (Byte)
(1) ABS dest − Rd 2
(2) ABS src, dest Rs Rd 3

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

b0b7 b0b7
0 1 1 1 1 1 1 0 0 0 1 0 rd[3:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 rs[3:0] rd[3:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 178 of 278
June 11, 2010

Code Size

(1) ADC src, dest

(2) ADC src, dest

(3) ADC src, dest

ADC ADC

Syntax src dest Code Size (Byte)
(1) ADC src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) ADC src, dest Rs Rd 3
(3) ADC src, dest [Rs].L Rd 4

dsp:8[Rs].L Rd 5
dsp:16[Rs].L Rd 6

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
10b L 00b [Rs] 0000b to 1111b Rs/Rd R0 (SP) to R15

01b dsp:8[Rs]
10b dsp:16[Rs]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 1 li[1:0] 0 0 0 0 1 0 rd[3:0] #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

ld[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 0 0 0 1 0 rs[3:0] rd[3:0]

b0b7 b0b7memex

1 0 0 0 ld[1:0]0 0 0 0 0 1 1 0 mi[1:0]

b0b7 b0b7

1 00 0 0 0 0 0 rs[3:0] rd[3:0]

srcld[1:0]
00b

01b

10b

dsp:8

dsp:16

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 179 of 278
June 11, 2010

Code Size

(1) ADD src, dest

(2) ADD src, dest
When memex == UB or src == Rs

When memex != UB

ADD ADD
Syntax src src2 dest Code Size (Byte)
(1) ADD src, dest #UIMM:4 − Rd 2
(Instruction code for three
operands)

#SIMM:8 − Rd 3

#SIMM:16 − Rd 4
#SIMM:24 − Rd 5
#IMM:32 − Rd 6

(2) ADD src, dest Rs − Rd 2
[Rs].memex − Rd 2 (memex == UB)

3 (memex != UB)
dsp:8[Rs].memex − Rd 3 (memex == UB)

4 (memex != UB)
dsp:16[Rs].memex − Rd 4 (memex == UB)

5 (memex != UB)
(3) ADD src, src2, dest #SIMM:8 Rs Rd 3

#SIMM:16 Rs Rd 4
#SIMM:24 Rs Rd 5
#IMM:32 Rs Rd 6

(4) ADD src, src2, dest Rs Rs2 Rd 3

imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rd R0 (SP) to R15

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

imm[3:0]
b0b7 b0b7

0 1 1 0 0 0 1 0 rd[3:0]

0 0 1 0 ld[1:0]0
b0b7 b0b7

rs[3:0] rd[3:0]
srcld[1:0]

1 None11b

00b None

dsp:801b

dsp:1610b

0 0 1 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7

rs[3:0] rd[3:0]
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 180 of 278
June 11, 2010

(3) ADD src, src2, dest

(4) ADD src, src2, dest

li[1:0] src rs2[3:0]/rd[3:0] src2/dest
01b #SIMM:8 0000b to 1111b Rs/Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest
0000b to 1111b Rs/Rs2/Rd R0 (SP) to R15

rs2[3:0] rd[3:0]li[1:0]
b0b7 b0b7

0 1 1 1 0 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

b0b7 b0b7 b0b7
1 1 1 1 1 1 1 1 0 0 1 0 rd[3:0] rs[3:0] rs2[3:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 181 of 278
June 11, 2010

Code Size

(1) AND src, dest

(2) AND src, dest

AND AND

Syntax src src2 dest Code Size (Byte)
(1) AND src, dest #UIMM:4 − Rd 2
(2) AND src, dest #SIMM:8 − Rd 3

#SIMM:16 − Rd 4
#SIMM:24 − Rd 5
#IMM:32 − Rd 6

(3) AND src, dest Rs − Rd 2
[Rs].memex − Rd 2 (memex == UB)

3 (memex != UB)
dsp:8[Rs].memex − Rd 3 (memex == UB)

4 (memex != UB)
dsp:16[Rs].memex − Rd 4 (memex == UB)

5 (memex != UB)
(4) AND src, src2, dest Rs Rs2 Rd 3

imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rd R0 (SP) to R15

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

imm[3:0] rd[3:0]
b0b7 b0b7

0 1 1 0 0 1 0 0

rd[3:0]li[1:0]
b0b7 b0b7

0 1 1 1 0 1 0 0 1 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 182 of 278
June 11, 2010

(3) AND src, dest
When memex == UB or src == Rs

When memex != UB

(4) AND src, src2, dest

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest
0000b to 1111b Rs/Rs2/Rd R0 (SP) to R15

rs[3:0] rd[3:0]0 1 0 0 ld[1:0]0
b0b7 b0b7

1
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rd[3:0]rs[3:0]0 1 0 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7

None
srcld[1:0]

11b

dsp:1610b

dsp:801b

00b None

1 1 1 1 1 1 1 1 0 1 0 0
b0b7 b0b7 b0b7

rd[3:0] rs2[3:0] rs[3:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 183 of 278
June 11, 2010

Code Size

(1) BCLR src, dest

(2) BCLR src, dest

(3) BCLR src, dest

BCLR BCLR

Syntax src dest Code Size (Byte)
(1) BCLR src, dest #IMM:3 [Rd].B 2

#IMM:3 dsp:8[Rd].B 3
#IMM:3 dsp:16[Rd].B 4

(2) BCLR src, dest Rs [Rd].B 3
Rs dsp:8[Rd].B 4
Rs dsp:16[Rd].B 5

(3) BCLR src, dest #IMM:5 Rd 2
(4) BCLR src, dest Rs Rd 3

ld[1:0] dest rd[3:0] dest imm[2:0] src
00b [Rd] 0000b to 1111b Rd R0 (SP) to R15 000b to 111b #IMM:3 0 to 7
01b dsp:8[Rd]
10b dsp:16[Rd]

ld[1:0] dest rs[3:0]/rd[3:0] src/dest
00b [Rd] 0000b to 1111b Rs/Rd R0 (SP) to R15
01b dsp:8[Rd]
10b dsp:16[Rd]

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

ld[1:0] rd[3:0]
b0b7 b0b7

imm[2:0]1 1 1 1 0 0 1

destld[1:0]
00b

01b

10b

dsp:8

dsp:16

None

ld[1:0] rs[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 0 1

destld[1:0]
00b

01b

10b

dsp:8

dsp:16

None

imm[4:0] rd[3:0]
b0b7 b0b7

0 1 1 1 1 0 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 184 of 278
June 11, 2010

(4) BCLR src, dest

ld[1:0] dest rs[3:0]/rd[3:0] src/dest
11b Rd 0000b to 1111b Rs/Rd R0 (SP) to R15

ld[1:0] rs[3:0]rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 0 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 185 of 278
June 11, 2010

Code Size

(1) BCnd.S src

Note: * dsp[2:0] specifies pcdsp:3 = src.

(2) BCnd.B src

Note: * Address indicated by pcdsp:8 = src minus the address of the instruction

BCnd BCnd

Syntax src Code Size (Byte)
(1) BCnd.S src pcdsp:3 1
(2) BCnd.B src pcdsp:8 2
(3) BCnd.W src pcdsp:16 3

cd BCnd dsp[2:0] Branch Distance
0b BEQ, BZ 011b 3
1b BNE, BNZ 100b 4

101b 5
110b 6
111b 7
000b 8
001b 9
010b 10

cd[3:0] BCnd cd[3:0] BCnd
0000b BEQ, BZ 1000b BGE

0001b BNE, BNZ 1001b BLT

0010b BGEU, BC 1010b BGT

0011b BLTU, BNC 1011b BLE

0100b BGTU 1100b BO

0101b BLEU 1101b BNO

0110b BPZ 1110b BRA.B

0111b BN 1111b Reserved

cd1 dsp[2:0]

b0b7
0 0 0 *

cd[3:0]

b0b7
0 0 1 0 pcdsp:8

src
*

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 186 of 278
June 11, 2010

(3) BCnd.W src

Note: * Address indicated by pcdsp:16 = src minus the address of the instruction

cd BCnd
0b BEQ, BZ
1b BNE, BNZ

cd1
b0b7

0 0 1 1 1 0 pcdsp:16

src
*

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 187 of 278
June 11, 2010

Code Size

(1) BMCnd src, dest

(2) BMCnd src, dest

BMCnd BMCnd

Syntax src dest Code Size (Byte)
(1) BMCnd src, dest #IMM:3 [Rd].B 3

#IMM:3 dsp:8[Rd].B 4
#IMM:3 dsp:16[Rd].B 5

(2) BMCnd src, dest #IMM:5 Rd 3

imm[2:0] src ld[1:0] dest
000b to 111b #IMM:3 0 to 7 00b [Rd]

01b dsp:8[Rd]
10b dsp:16[Rd]

rd[3:0] dest cd[3:0] BMCnd cd[3:0] BMCnd
0000b to 1111b Rd R0 (SP) to R15 0000b BMEQ, BMZ 1000b BMGE

0001b BMNE, BMNZ 1001b BMLT
0010b BMGEU, BMC 1010b BMGT
0011b BMLTU, BMNC 1011b BMLE
0100b BMGTU 1100b BMO
0101b BMLEU 1101b BMNO
0110b BMPZ 1110b Reserved
0111b BMN 1111b Reserved

imm[4:0] src cd[3:0] BMCnd cd[3:0] BMCnd
00000b to 11111b #IMM:5 0 to 31 0000b BMEQ, BMZ 1000b BMGE

0001b BMNE, BMNZ 1001b BMLT
0010b BMGEU, BMC 1010b BMGT
0011b BMLTU, BMNC 1011b BMLE
0100b BMGTU 1100b BMO
0101b BMLEU 1101b BMNO
0110b BMPZ 1110b Reserved
0111b BMN 1111b Reserved

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

ld[1:0]imm[2:0] rd[3:0] cd[3:0]
b0b7 b0b7 b0b7
0 11 1 1 1 1 1 0 1 1

destld[1:0]
00b

01b

10b

dsp:8

dsp:16

None

imm[4:0] rd[3:0]cd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 1 1 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 188 of 278
June 11, 2010

Code Size

(1) BNOT src, dest

(2) BNOT src, dest

BNOT BNOT

Syntax src dest Code Size (Byte)
(1) BNOT src, dest #IMM:3 [Rd].B 3

#IMM:3 dsp:8[Rd].B 4
#IMM:3 dsp:16[Rd].B 5

(2) BNOT src, dest Rs [Rd].B 3
Rs dsp:8[Rd].B 4
Rs dsp:16[Rd].B 5

(3) BNOT src, dest #IMM:5 Rd 3
(4) BNOT src, dest Rs Rd 3

imm[2:0] src ld[1:0] dest
000b to 111b #IMM:3 0 to 7 00b [Rd]

01b dsp:8[Rd]
10b dsp:16[Rd]

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

ld[1:0] dest rs[3:0]/rd[3:0] src/dest
00b [Rd] 0000b to 1111b Rs/Rd R0 (SP) to R15
01b dsp:8[Rd]
10b dsp:16[Rd]

rd[3:0]1 1 1 1 1 1 0 0 1 1 1 1 1 1 1ld[1:0]
b0b7 b0b7 b0b7

imm[2:0]
destld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

rd[3:0] rs[3:0]ld[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 1 1
destld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 189 of 278
June 11, 2010

(3) BNOT src, dest

(4) BNOT src, dest

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

ld[1:0] dest rs[3:0]/rd[3:0] src/dest
11b Rd 0000b to 1111b Rs/Rd R0 (SP) to R15

imm[4:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

rd[3:0] rs[3:0]ld[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 1 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 190 of 278
June 11, 2010

Code Size

(1) BRA.S src

Note: * dsp[2:0] specifies pcdsp:3 = src.

(2) BRA.B src

Note: * Address indicated by pcdsp:8 = src minus the address of the instruction

(3) BRA.W src

Note: * Address indicated by pcdsp:16 = src minus the address of the instruction

(4) BRA.A src

Note: * Address indicated by pcdsp:24 = src minus the address of the instruction

BRA BRA

Syntax src Code Size (Byte)
(1) BRA.S src pcdsp:3 1
(2) BRA.B src pcdsp:8 2
(3) BRA.W src pcdsp:16 3
(4) BRA.A src pcdsp:24 4
(5) BRA.L src Rs 2

dsp[2:0] Branch Distance
011b 3
100b 4
101b 5
110b 6
111b 7
000b 8
001b 9
010b 10

b0b7
0 0 0 0 1 dsp[2:0]*

b0b7
0 0 1 0 1 1 01 pcdsp:8

src
*

b0b7
0 0 1 1 1 0 0 0 pcdsp:16

src
*

b0b7
0 0 0 0 0 1 0 0 pcdsp:24

src
*

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 191 of 278
June 11, 2010

(5) BRA.L src

Code Size

(1) BRK

Code Size

(1) BSET src, dest

rs[3:0] src
0000b to 1111b Rs R0 (SP) to R15

BRK BRK

Syntax Code Size (Byte)
(1) BRK 1

BSET BSET

Syntax src dest Code Size (Byte)
(1) BSET src, dest #IMM:3 [Rd].B 2

#IMM:3 dsp:8[Rd].B 3
#IMM:3 dsp:16[Rd].B 4

(2) BSET src, dest Rs [Rd].B 3
Rs dsp:8[Rd].B 4
Rs dsp:16[Rd].B 5

(3) BSET src, dest #IMM:5 Rd 2
(4) BSET src, dest Rs Rd 3

ld[1:0] dest rd[3:0] dest imm[2:0] src
00b [Rd] 0000b to 1111b Rd R0 (SP) to R15 000b to 111b #IMM:3 0 to 7
01b dsp:8[Rd]
10b dsp:16[Rd]

rs[3:0]
b0b7 b0b7

0 1 1 1 1 1 1 1 0 1 0 0

b0b7
0 0 0 0 0 0 0 0

ld[1:0] rd[3:0] imm[2:0]
b0b7 b0b7

01 1 1 1 0 0
destld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 192 of 278
June 11, 2010

(2) BSET src, dest

(3) BSET src, dest

(4) BSET src, dest

ld[1:0] dest rs[3:0]/rd[3:0] src/dest
00b [Rd] 0000b to 1111b Rs/Rd R0 (SP) to R15
01b dsp:8[Rd]
10b dsp:16[Rd]

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

ld[1:0] dest rs[3:0]/rd[3:0] src/dest
11b Rd 0000b to 1111b Rs/Rd R0 (SP) to R15

ld[1:0] rs[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 0 0
destld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

imm[4:0] rd[3:0]
b0b7 b0b7

0 1 1 1 1 0 0

ld[1:0] rs[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 0 0

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 193 of 278
June 11, 2010

Code Size

(1) BSR.W src

Note: * Address indicated by pcdsp:16 = src minus the address of the instruction

(2) BSR.A src

Note: * Address indicated by pcdsp:24 = src minus the address of the instruction

(3) BSR.L src

BSR BSR

Syntax src Code Size (Byte)
(1) BSR.W src pcdsp:16 3
(2) BSR.A src pcdsp:24 4
(3) BSR.L src Rs 2

rs[3:0] src
0000b to 1111b Rs R0 (SP) to R15

b0b7
0 0 1 1 1 0 0 1 pcdsp:16

src
*

0 0 0 0 0 1 0 1
b0b7

pcdsp:24
src

*

rs[3:0]
b0b7 b0b7

0 1 1 1 1 1 1 1 0 1 0 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 194 of 278
June 11, 2010

Code Size

(1) BTST src, src2

(2) BTST src, src2

(3) BTST src, src2

BTST BTST

Syntax src src2 Code Size (Byte)
(1) BTST src, src2 #IMM:3 [Rs2].B 2

#IMM:3 dsp:8[Rs2].B 3
#IMM:3 dsp:16[Rs2].B 4

(2) BTST src, src2 Rs [Rs2].B 3
Rs dsp:8[Rs2].B 4
Rs dsp:16[Rs2].B 5

(3) BTST src, src2 #IMM:5 Rs2 2
(4) BTST src, src2 Rs Rs2 3

ld[1:0] src2 rs2[3:0] src2 imm[2:0] src
00b [Rs2] 0000b to 1111b Rs2 R0 (SP) to R15 000b to 111b #IMM:3 0 to 7
01b dsp:8[Rs2]
10b dsp:16[Rs2]

ld[1:0] src2 rs[3:0]/rs2[3:0] src/src2
00b [Rs2] 0000b to 1111b Rs/Rs2 R0 (SP) to R15
01b dsp:8[Rs2]
10b dsp:16[Rs2]

imm[4:0] src rs2[3:0] src2
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rs2 R0 (SP) to R15

imm[2:0]ld[1:0] rs2[3:0]
b0b7 b0b7

1 1 1 1 0 1 0
src2ld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

ld[1:0] rs[3:0] rs2[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 1 0
src2ld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

imm[4:0] rs2[3:0]
b0b7 b0b7

0 1 1 1 1 1 0

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 195 of 278
June 11, 2010

(4) BTST src, src2

ld[1:0] src2 rs[3:0]/rs2[3:0] src/src2
11b Rs2 0000b to 1111b Rs/Rs2 R0 (SP) to R15

ld[1:0] rs[3:0] rs2[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 1 1 0 1 0

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 196 of 278
June 11, 2010

Code Size

(1) CLRPSW dest

CLRPSW CLRPSW

Syntax dest Code Size (Byte)
(1) CLRPSW dest flag 2

cb[3:0] dest
0000b flag C
0001b Z
0010b S
0011b O
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b I
1001b U
1010b Reserved
1011b Reserved
1100b Reserved
1101b Reserved
1110b Reserved
1111b Reserved

cb[3:0]
b0b7 b0b7

0 1 1 1 1 1 1 1 1 0 1 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 197 of 278
June 11, 2010

Code Size

(1) CMP src, src2

(2) CMP src, src2

CMP CMP

Syntax src src2 Code Size (Byte)
(1) CMP src, src2 #UIMM:4 Rs 2
(2) CMP src, src2 #UIMM:8 Rs 3
(3) CMP src, src2 #SIMM:8 Rs 3

#SIMM:16 Rs 4
#SIMM:24 Rs 5
#IMM:32 Rs 6

(4) CMP src, src2 Rs Rs2 2
[Rs].memex Rs2 2 (memex == UB)

3 (memex != UB)
dsp:8[Rs].memex Rs2 3 (memex == UB)

4 (memex != UB)
dsp:16[Rs].memex Rs2 4 (memex == UB)

5 (memex != UB)

imm[3:0] src rs2[3:0] src2
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rs R0 (SP) to R15

rs2[3:0] src2
0000b to 1111b Rs R0 (SP) to R15

imm[3:0] rs2[3:0]
b0b7 b0b7

0 1 1 0 0 0 0 1

rs2[3:0]
b0b7 b0b7

0 1 1 1 0 1 0 1 0 1 0 1

src
#UIMM:8

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 198 of 278
June 11, 2010

(3) CMP src, src2

(4) CMP src, src2
When memex == UB or src == Rs

When memex != UB

li[1:0] src rs2[3:0] src2
01b #SIMM:8 0000b to 1111b Rs R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0]/rs2[3:0] src/src2
00b B 11b Rs 0000b to 1111b Rs/Rs2 R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rs2[3:0]li[1:0]
b0b7

0 1 1 1 0 1 0 0 0 0
b0b7

#SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

rs[3:0] rd[3:0]0 0 0 1 ld[1:0]0
b0b7 b0b7

1
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rs[3:0] rd[3:0]0 0 0 1 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7 srcld[1:0]

dsp:1610b

dsp:801b

00b None

None11b

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 199 of 278
June 11, 2010

Code Size

(1) DIV src, dest

DIV DIV

Syntax src dest Code Size (Byte)
(1) DIV src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) DIV src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)

4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)

5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)

6 (memex != UB)

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

rd[3:0]li[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 200 of 278
June 11, 2010

(2) DIV src, dest

When memex == UB or src == Rs

When memex != UB

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

0 0 ld[1:0] rd[3:0] rs[3:0]
b0b7 b0b7

0 0 1 0 0 0
b0b7

1 1 1 1 1 1

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

1 0 0 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0] 0 0
b0b7 b0b7

0 0 0 0 1 0 rs[3:0] rd[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 201 of 278
June 11, 2010

Code Size

(1) DIVU src, dest

(2) DIVU src, dest

When memex == UB or src == Rs

When memex != UB

DIVU DIVU
Syntax src dest Code Size (Byte)
(1) DIVU src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) DIVU src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)

4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)

5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)

6 (memex != UB)

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rd[3:0]li[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

0 0 1 0 0 1
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

1 0 0 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0] 0 1
b0b7 b0b7

0 0 0 0 1 0 rs[3:0] rd[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 202 of 278
June 11, 2010

Code Size

(1) EMUL src, dest

(2) EMUL src, dest

When memex == UB or src == Rs

When memex != UB

EMUL EMUL
Syntax src dest Code Size (Byte)
(1) EMUL src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) EMUL src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)

4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)

5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)

6 (memex != UB)

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1110b Rd R0 (SP) to R14
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0] src
00b B 11b Rs 0000b to 1111b Rs R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs] rd[3:0] dest
11b UW 10b dsp:16[Rs] 0000b to 1110b Rd R0 (SP) to R14

rd[3:0]li[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

0 0 0 1 1 0
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

b7
0 1 0 0 0 ld[1:0]

b0 b0b7
0 0 0 0 1 1 0

memex
mi[1:0] 1 0

b0b7 b0b7
0 0 0 0 0 1 rs[3:0] rd[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 203 of 278
June 11, 2010

Code Size

(1) EMULU src, dest

(2) EMULU src, dest

When memex == UB or src == Rs

When memex != UB

EMULU EMULU
Syntax src dest Code Size (Byte)
(1) EMULU src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) EMULU src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)

4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)

5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)

6 (memex != UB)

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1110b Rd R0 (SP) to R14
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0] src
00b B 11b Rs 0000b to 1111b Rs R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs] rd[3:0] dest
11b UW 10b dsp:16[Rs] 0000b to 1110b Rd R0 (SP) to R14

rd[3:0]li[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

0 0 0 1 1 1
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

1 0 0 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0] 1 1
b0b7 b0b7

0 0 0 0 0 1 rs[3:0] rd[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 204 of 278
June 11, 2010

Code Size

(1) FADD src, dest

(2) FADD src, dest

FADD FADD

Syntax src dest Code Size (Byte)
(1) FADD src, dest #IMM:32 Rd 7
(2) FADD src, dest Rs Rd 3

[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 #IMM:32

src

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

1 0 0 0 1 0
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 205 of 278
June 11, 2010

Code Size

(1) FCMP src, src2

(2) FCMP src, src2

FCMP FCMP

Syntax src src2 Code Size (Byte)
(1) FCMP src, src2 #IMM:32 Rs2 7
(2) FCMP src, src2 Rs Rs2 3

[Rs].L Rs2 3
dsp:8[Rs].L Rs2 4
dsp:16[Rs].L Rs2 5

rs2[3:0] src2
0000b to 1111b Rs2 R0 (SP) to R15

ld[1:0] src rs[3:0]/rs2[3:0] src/src2
11b Rs 0000b to 1111b Rs/Rs2 R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

rs2[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 #IMM:32

src

rs2[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

1 0 0 0 0 1
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 206 of 278
June 11, 2010

Code Size

(1) FDIV src, dest

(2) FDIV src, dest

FDIV FDIV

Syntax src dest Code Size (Byte)
(1) FDIV src, dest #IMM:32 Rd 7
(2) FDIV src, dest Rs Rd 3

[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 0 0 #IMM:32

src

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

1 0 0 1 0 0
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 207 of 278
June 11, 2010

Code Size

(1) FMUL src, dest

(2) FMUL src, dest

FMUL FMUL

Syntax src dest Code Size (Byte)
(1) FMUL src, dest #IMM:32 Rd 7
(2) FMUL src, dest Rs Rd 3

[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 #IMM:32

src

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

1 0 0 0 1 1
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 208 of 278
June 11, 2010

Code Size

(1) FSUB src, dest

(2) FSUB src, dest

FSUB FSUB

Syntax src dest Code Size (Byte)
(1) FSUB src, dest #IMM:32 Rd 7
(2) FSUB src, dest Rs Rd 3

[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 0 #IMM:32

src

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

1 0 0 0 0 0
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 209 of 278
June 11, 2010

Code Size

(1) FTOI src, dest

Code Size

(1) INT src

FTOI FTOI

Syntax src dest Code Size (Byte)
(1) FTOI src, dest Rs Rd 3

[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

INT INT

Syntax src Code Size (Byte)
(1) INT src #IMM:8 3

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

1 0 0 1 0 1
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

b0b7 b0b7
0 1 1 1 0 1 0 1 0 1 1 0 0 0 0 0 #IMM:8

src

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 210 of 278
June 11, 2010

Code Size

(1) ITOF src, dest

When memex == UB or src == Rs

When memex != UB

ITOF ITOF

Syntax src dest Code Size (Byte)
(1) ITOF src, dest Rs Rd 3

[Rs].memex Rd 3 (memex == UB)
4 (memex != UB)

dsp:8[Rs].memex Rd 4 (memex == UB)
5 (memex != UB)

dsp:16[Rs].memex Rd 5 (memex == UB)
6 (memex != UB)

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

0 1 0 0 0 1
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

1 0 0 0 ld[1:0]mi[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex b0b7 b0b7

0 10 0 0 1 0 0 rs[3:0] rd[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 211 of 278
June 11, 2010

Code Size

(1) JMP src

Code Size

(1) JSR src

JMP JMP

Syntax src Code Size (Byte)
(1) JMP src Rs 2

rs[3:0] src
0000b to 1111b Rs R0 (SP) to R15

JSR JSR

Syntax src Code Size (Byte)
(1) JSR src Rs 2

rs[3:0] src
0000b to 1111b Rs R0 (SP) to R15

rs[3:0]
b0b7 b0b7

0 1 1 1 1 1 1 1 0 0 0 0

rs[3:0]
b0b7 b0b7

0 1 1 1 1 1 1 1 0 0 0 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 212 of 278
June 11, 2010

Code Size

(1) MACHI src, src2

Code Size

(1) MACLO src, src2

MACHI MACHI

Syntax src src2 Code Size (Byte)
(1) MACHI src, src2 Rs Rs2 3

rs[3:0]/rs2[3:0] src/src2
0000b to 1111b Rs/Rs2 R0 (SP) to R15

MACLO MACLO

Syntax src src2 Code Size (Byte)
(1) MACLO src, src2 Rs Rs2 3

rs[3:0]/rs2[3:0] src/src2
0000b to 1111b Rs/Rs2 R0 (SP) to R15

rs[3:0] rs2[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 0

rs[3:0] rs2[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 213 of 278
June 11, 2010

Code Size

(1) MAX src, dest

(2) MAX src, dest

When memex == UB or src == Rs

When memex != UB

MAX MAX
Syntax src dest Code Size (Byte)
(1) MAX src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) MAX src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)

4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)

5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)

6 (memex != UB)

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rd[3:0]li[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

0 0 0 1 0 0
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

1 0 0 0 ld[1:0]mi[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

0 0
b0b7 b0b7

0 0 0 0 0 1 rs[3:0] rd[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 214 of 278
June 11, 2010

Code Size

(1) MIN src, dest

(2) MIN src, dest

When memex == UB or src == Rs

When memex != UB

MIN MIN
Syntax src dest Code Size (Byte)
(1) MIN src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) MIN src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)

4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)

5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)

6 (memex != UB)

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rd[3:0]li[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 1 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

rd[3:0]ld[1:0] rs[3:0]
b0b7 b0b7

0 0 0 1 0 1
b0b7

1 1 1 1 1 1 0 0

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

1 0 0 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0] 0 1
b0b7 b0b7

0 0 0 0 0 1 rs[3:0] rd[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 215 of 278
June 11, 2010

Code Size

MOV MOV

Syntax Size
Processing
Size src dest

Code Size
(Byte)

(1) MOV.size src, dest B/W/L size Rs
(Rs = R0 to R7)

dsp:5[Rd]
(Rd = R0 to R7)

2

(2) MOV.size src, dest B/W/L L dsp:5[Rs]
(Rs = R0 to R7)

Rd
(Rd = R0 to R7)

2

(3) MOV.size src, dest L L #UIMM:4 Rd 2
(4) MOV.size src, dest B B #IMM:8 dsp:5[Rd]

(Rd = R0 to R7)
3

W/L size #UIMM:8 dsp:5[Rd]
(Rd = R0 to R7)

3

(5) MOV.size src, dest L L #UIMM:8 Rd 3
(6) MOV.size src, dest L L #SIMM:8 Rd 3

L L #SIMM:16 Rd 4
L L #SIMM:24 Rd 5
L L #IMM:32 Rd 6

(7) MOV.size src, dest B/W L Rs Rd 2
L L Rs Rd 2

(8) MOV.size src, dest B B #IMM:8 [Rd] 3
B B #IMM:8 dsp:8[Rd] 4
B B #IMM:8 dsp:16[Rd] 5
W W #SIMM:8 [Rd] 3
W W #SIMM:8 dsp:8[Rd] 4
W W #SIMM:8 dsp:16[Rd] 5
W W #IMM:16 [Rd] 4
W W #IMM:16 dsp:8[Rd] 5
W W #IMM:16 dsp:16[Rd] 6
L L #SIMM:8 [Rd] 3
L L #SIMM:8 dsp:8[Rd] 4
L L #SIMM:8 dsp:16 [Rd] 5
L L #SIMM:16 [Rd] 4
L L #SIMM:16 dsp:8[Rd] 5
L L #SIMM:16 dsp:16 [Rd] 6
L L #SIMM:24 [Rd] 5
L L #SIMM:24 dsp:8[Rd] 6
L L #SIMM:24 dsp:16 [Rd] 7
L L #IMM:32 [Rd] 6
L L #IMM:32 dsp:8[Rd] 7
L L #IMM:32 dsp:16 [Rd] 8

(9) MOV.size src, dest B/W/L L [Rs] Rd 2
B/W/L L dsp:8[Rs] Rd 3
B/W/L L dsp:16[Rs] Rd 4

(10)MOV.size src, dest B/W/L L [Ri, Rb] Rd 3
(11) MOV.size src, dest B/W/L size Rs [Rd] 2

B/W/L size Rs dsp:8[Rd] 3
B/W/L size Rs dsp:16[Rd] 4

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 216 of 278
June 11, 2010

(1) MOV.size src, dest

(2) MOV.size src, dest

(3) MOV.size src, dest

(12)MOV.size src, dest B/W/L size Rs [Ri, Rb] 3
(13)MOV.size src, dest B/W/L size [Rs] [Rd] 2

B/W/L size [Rs] dsp:8[Rd] 3
B/W/L size [Rs] dsp:16[Rd] 4
B/W/L size dsp:8[Rs] [Rd] 3
B/W/L size dsp:8[Rs] dsp:8[Rd] 4
B/W/L size dsp:8[Rs] dsp:16[Rd] 5
B/W/L size dsp:16[Rs] [Rd] 4
B/W/L size dsp:16[Rs] dsp:8[Rd] 5
B/W/L size dsp:16[Rs] dsp:16[Rd] 6

(14)MOV.size src, dest B/W/L size Rs [Rd+] 3
B/W/L size Rs [–Rd] 3

(15)MOV.size src, dest B/W/L L [Rs+] Rd 3
B/W/L L [–Rs] Rd 3

sz[1:0] Size dsp[4:0] dsp:5 rs[2:0]/rd[2:0] src/dest
00b B 00000b to 11111b 0 to 31 000b to 111b Rs/Rd R0 (SP) to R7
01b W
10b L

sz[1:0] Size dsp[4:0] dsp:5 rs[2:0]/rd[2:0] src/dest
00b B 00000b to 11111b 0 to 31 000b to 111b Rs/Rd R0 (SP) to R7
01b W
10b L

imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rd R0 (SP) to R15

Syntax Size
Processing
Size src dest

Code Size
(Byte)

rd[2:0] rs[2:0]sz[1:0]
b0b7 b0b7

1 0 0

dsp[4:0]

rs[2:0] rd[2:0]sz[1:0]
b0b7 b0b7

1 0 1

dsp[4:0]

imm[3:0] rd[3:0]
b0b7 b0b7

0 1 1 0 0 1 1 0

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 217 of 278
June 11, 2010

(4) MOV.size src, dest

(5) MOV.size src, dest

(6) MOV.size src, dest

(7) MOV.size src, dest

sz[1:0] Size dsp[4:0] dsp:5 rd[2:0] dest
00b B 00000b to 11111b 0 to 31 000b to 111b Rd R0 (SP) to R7
01b W
10b L

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

sz[1:0] Size rs[3:0]/rd[3:0] src/dest
00b B 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W
10b L

11 1 rd[2:0]sz[1:0]
b0b7 b0b7

0 0 1

dsp[4:0]

src

#UIMM:8

#IMM:8

rd[3:0]
b0b7 b0b7

0 1 1 1 0 1 0 1 0 1 0 0

src
#UIMM:8

li[1:0]rd[3:0]
b0b7 b0b7

1 1 1 1 1 0 1 1 1 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

sz[1:0] rs[3:0] rd[3:0]
b0b7 b0b7

1 1 1 1 1 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 218 of 278
June 11, 2010

(8) MOV.size src, dest

(9) MOV.size src, dest

(10) MOV.size src, dest

(11) MOV.size src, dest

ld[1:0] dest rd[3:0] dest li[1:0] src sz[1:0] Size
00b [Rd] 0000b to 1111b Rd R0 (SP) to R15 01b #SIMM:8 00b B
01b dsp:8[Rd] 10b #SIMM:16 01b W
10b dsp:16[Rd] 11b #SIMM:24 10b L

00b #IMM:32

sz[1:0] Size ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 00b [Rs] 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 01b dsp:8[Rs]
10b L 10b dsp:16[Rs]

sz[1:0] Size ri[3:0]/rb[3:0]/rd[3:0] src/dest
00b B 0000b to 1111b Ri/Rb/Rd R0 (SP) to R15
01b W
10b L

sz[1:0] Size ld[1:0] dest rs[3:0]/rd[3:0] src/dest
00b B 00b [Rd] 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 01b dsp:8[Rd]
10b L 10b dsp:16[Rd]

ld[1:0] li[1:0]rd[3:0]
b0b7 b0b7

1 1 1 1 1 0 sz[1:0]
destld[1:0]

00b

01b

10b

dsp:8

dsp:16

None #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

rs[3:0] rd[3:0]ld[1:0]sz[1:0]
b0b7 b0b7

1 1 1 1
srcld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

rb[3:0] rd[3:0]sz[1:0] ri[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 1 0 0 1

ld[1:0]sz[1:0] rd[3:0] rs[3:0]
b0b7 b0b7

1 1 1 1
destld[1:0]

00b

01b

10b

dsp:8

dsp:16

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 219 of 278
June 11, 2010

(12) MOV.size src, dest

(13) MOV.size src, dest

(14) MOV.size src, dest

(15) MOV.size src, dest

sz[1:0] Size rs[3:0]/ri[3:0]/rb[3:0] src/dest
00b B 0000b to 1111b Rs/Ri/Rb R0 (SP) to R15
01b W
10b L

sz[1:0] Size lds[1:0]/ldd[1:0] src/dest rs[3:0]/rd[3:0] src/dest
00b B 00b [Rs]/[Rd] 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 01b dsp:8[Rs]/dsp:8[Rd]
10b L 10b dsp:16[Rs]/dsp:16[Rd]

ad[1:0] Addressing sz[1:0] Size rs[3:0]/rd[3:0] src/dest
00b Rs, [Rd+] 00b B 0000b to 1111b Rs/Rd R0 (SP) to R15
01b Rs, [-Rd] 01b W

10b L

ad[1:0] Addressing sz[1:0] Size rs[3:0]/rd[3:0] src/dest
10b [Rs+], Rd 00b B 0000b to 1111b Rs/Rd R0 (SP) to R15
11b [-Rs], Rd 01b W

10b L

rb[3:0] rs[3:0]sz[1:0] ri[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 1 0 0 0

rs[3:0] rd[3:0]sz[1:0]
b0b7 b0b7

1 1 ldd[1:0] lds[1:0]
srclds[1:0]

00b

01b

10b

dsp:8

dsp:16

None
destldd[1:0]

00b

01b

10b

dsp:8

dsp:16

None

sz[1:0]1 0 rd[3:0] rs[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 ad[1:0]

sz[1:0]1 0 rs[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 ad[1:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 220 of 278
June 11, 2010

Code Size

(1) MOVU.size src, dest

(2) MOVU.size src, dest

(3) MOVU.size src, dest

MOVU MOVU

Syntax Size Processing Size src dest Code Size (Byte)
(1) MOVU.size src, dest B/W L dsp:5[Rs]

(Rs = R0 to R7)
Rd
(Rd = R0 to R7)

2

(2) MOVU.size src, dest B/W L Rs Rd 2
B/W L [Rs] Rd 2
B/W L dsp:8[Rs] Rd 3
B/W L dsp:16[Rs] Rd 4

(3) MOVU.size src, dest B/W L [Ri, Rb] Rd 3
(4) MOVU.size src, dest B/W L [Rs+] Rd 3

B/W L [–Rs] Rd 3

sz Size dsp[4:0] dsp:5 rs[2:0]/rd[2:0] src/dest
0b B 00000b to 11111b 0 to 31 000b to 111b Rs/Rd R0 (SP) to R7
1b W

sz Size ld[1:0] src rs[3:0]/rd[3:0] src/dest
0b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
1b W 00b [Rs]

01b dsp:8[Rs]
10b dsp:16[Rs]

sz Size ri[3:0]/rb[3:0]/rd[3:0] src/dest
0b B 0000b to 1111b Ri/Rb/Rd R0 (SP) to R15
1b W

1 1 rs[2:0] rd[2:0]
b0b7 b0b7

1 0 sz

dsp[4:0]

rs[3:0] rd[3:0]ld[1:0]
b0b7 b0b7

0 1 0 1 1 sz

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

ri[3:0]0 rb[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 1 0 1 1 sz

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 221 of 278
June 11, 2010

(4) MOVU.size src, dest

Code Size

(1) MUL src, dest

ad[1:0] Addressing sz Size rs[3:0]/rd[3:0] src/dest
10b [Rs+], Rd 0b B 0000b to 1111b Rs/Rd R0 (SP) to R15
11b [-Rs], Rd 1b W

MUL MUL

Syntax src src2 dest Code Size (Byte)
(1) MUL src, dest #UIMM:4 − Rd 2
(2) MUL src, dest #SIMM:8 − Rd 3

#SIMM:16 − Rd 4
#SIMM:24 − Rd 5
#IMM:32 − Rd 6

(3) MUL src, dest Rs − Rd 2
[Rs].memex − Rd 2 (memex == UB)

3 (memex != UB)
dsp:8[Rs].memex − Rd 3 (memex == UB)

4 (memex != UB)
dsp:16[Rs].memex − Rd 4 (memex == UB)

5 (memex != UB)
(4) MUL src, src2, dest Rs Rs2 Rd 3

imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rd R0 (SP) to R15

rs[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 1 1 0 szad[1:0]

imm[3:0] rd[3:0]
b0b7 b0b7

0 1 1 0 0 0 1 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 222 of 278
June 11, 2010

(2) MUL src, dest

(3) MUL src, dest
When memex == UB or src == Rs

When memex != UB

(4) MUL src, src2, dest

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest
0000b to 1111b Rs/Rs2/Rd R0 (SP) to R15

rd[3:0]li[1:0]
b0b7 b0b7

0 1 1 1 0 1 0 0 0 1 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

rd[3:0]rs[3:0]0 0 1 1 ld[1:0]0
b0b7 b0b7

1
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rd[3:0]rs[3:0]0 0 1 1 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7 srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rs[3:0] rs2[3:0]rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 1 1 0 0 1 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 223 of 278
June 11, 2010

Code Size

(1) MULHI src, src2

Code Size

(1) MULLO src, src2

MULHI MULHI

Syntax src src2 Code Size (Byte)
(1) MULHI src, src2 Rs Rs2 3

rs[3:0]/rs2[3:0] src/src2
0000b to 1111b Rs/Rs2 R0 (SP) to R15

MULLO MULLO

Syntax src src2 Code Size (Byte)
(1) MULLO src, src2 Rs Rs2 3

rs[3:0]/rs2[3:0] src/src2
0000b to 1111b Rs/Rs2 R0 (SP) to R15

b0b7 b0b7
1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 rs[3:0] rs2[3:0]

b0b7

rs[3:0] rs2[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 224 of 278
June 11, 2010

Code Size

(1) MVFACHI dest

Code Size

(1) MVFACMI dest

MVFACHI MVFACHI

Syntax dest Code Size (Byte)
(1) MVFACHI dest Rd 3

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

MVFACMI MVFACMI

Syntax dest Code Size (Byte)
(1) MVFACMI dest Rd 3

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 0 0

rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 1 0

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 225 of 278
June 11, 2010

Code Size

(1) MVFC src, dest

Code Size

(1) MVTACHI src

MVFC MVFC

Syntax src dest Code Size (Byte)
(1) MVFC src, dest Rx Rd 3

cr[3:0] src rd[3:0] dest
0000b Rx PSW 0000b to 1111b Rd R0 (SP) to R15
0001b PC
0010b USP
0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved

MVTACHI MVTACHI

Syntax src Code Size (Byte)
(1) MVTACHI src Rs 3

rs[3:0] src
0000b to 1111b Rs R0 (SP) to R15

0 cr[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 0 1 0 1

rs[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 226 of 278
June 11, 2010

Code Size

(1) MVTACLO src

Code Size

(1) MVTC src, dest

MVTACLO MVTACLO
Syntax src Code Size (Byte)
(1) MVTACLO src Rs 3

rs[3:0] src
0000b to 1111b Rs R0 (SP) to R15

MVTC MVTC

Syntax src dest Code Size (Byte)
(1) MVTC src, dest #SIMM:8 Rx 4

#SIMM:16 Rx 5
#SIMM:24 Rx 6
#IMM:32 Rx 7

(2) MVTC src, dest Rs Rx 3

li[1:0] src cr[3:0] dest
01b #SIMM:8 0000b Rx PSW
10b #SIMM:16 0001b Reserved
11b #SIMM:24 0010b USP
00b #IMM:32 0011b FPSW

0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved

rs[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 1

cr[3:0]0li[1:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 227 of 278
June 11, 2010

(2) MVTC src, dest

Code Size

(1) MVTIPL src

Note: The MVTIPL instruction is not available in products of the RX610 Group. Use the MVTC instruction to write interrupt
priority levels to the processor interrupt-priority level (IPL[2:0]) bits in the processor status word (PSW).

cr[3:0] dest rs[3:0] src
0000b Rx PSW 0000b to 1111b Rs R0 (SP) to R15
0001b Reserved
0010b USP
0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved

MVTIPL MVTIPL

Syntax src Code Size (Byte)
(1) MVTIPL src #IMM:4 3

imm[3:0] #IMM:4
0000b to 1111b 0 to 15

rs[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 0 1 0 0 0 cr[3:0]

0 0 0 0
b0b7 b0b7 b0b7

0 1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 imm[3:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 228 of 278
June 11, 2010

Code Size

(1) NEG dest

(2) NEG src, dest

Code Size

(1) NOP

NEG NEG

Syntax src dest Code Size (Byte)
(1) NEG dest − Rd 2
(2) NEG src, dest Rs Rd 3

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

NOP NOP

Syntax Code Size (Byte)
(1) NOP 1

rd[3:0]
b0b7 b0b7

0 1 1 1 1 1 1 0 0 0 0 1

rs[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

b0b7
0 0 0 0 0 0 1 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 229 of 278
June 11, 2010

Code Size

(1) NOT dest

(2) NOT src, dest

NOT NOT

Syntax src dest Code Size (Byte)
(1) NOT dest − Rd 2
(2) NOT src, dest Rs Rd 3

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

rd[3:0]
b0b7 b0b7

0 1 1 1 1 1 1 0 0 0 0 0

rs[3:0] rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 230 of 278
June 11, 2010

Code Size

(1) OR src, dest

(2) OR src, dest

OR OR

Syntax src src2 dest Code Size (Byte)
(1) OR src, dest #UIMM:4 − Rd 2
(2) OR src, dest #SIMM:8 − Rd 3

#SIMM:16 − Rd 4
#SIMM:24 − Rd 5
#IMM:32 − Rd 6

(3) OR src, dest Rs − Rd 2
[Rs].memex − Rd 2 (memex == UB)

3 (memex != UB)
dsp:8[Rs].memex − Rd 3 (memex == UB)

4 (memex != UB)
dsp:16[Rs].memex − Rd 4 (memex == UB)

5 (memex != UB)
(4) OR src, src2, dest Rs Rs2 Rd 3

imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rd R0 (SP) to R15

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

imm[3:0] rd[3:0]
b0b7 b0b7

0 1 1 0 0 1 0 1

rd[3:0]li[1:0]
b0b7 b0b7

0 1 1 1 0 1 0 0 1 1 #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 231 of 278
June 11, 2010

(3) OR src, dest
When memex == UB or src == Rs

When memex != UB

(4) OR src, src2, dest

Code Size

(1) POP dest

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest
0000b to 1111b Rs/Rs2/Rd R0 (SP) to R15

POP POP

Syntax dest Code Size (Byte)
(1) POP dest Rd 2

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

rs[3:0] rd[3:0]0 1 0 1 ld[1:0]0
b0b7 b0b7

1
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rs[3:0] rd[3:0]0 1 0 1 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7 srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rs[3:0] rs2[3:0]rd[3:0]
b0b7 b0b7 b0b7

1 1 1 1 1 1 1 1 0 1 0 1

b0b7 b0b7
0 1 1 1 1 1 1 0 1 0 1 1 rd[3:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 232 of 278
June 11, 2010

Code Size

(1) POPC dest

Code Size

(1) POPM dest-dest2

POPC POPC

Syntax dest Code Size (Byte)
(1) POPC dest Rx 2

cr[3:0] dest
0000b Rx PSW
0001b Reserved
0010b USP
0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved

POPM POPM

Syntax dest dest2 Code Size (Byte)
(1) POPM dest-dest2 Rd Rd2 2

rd[3:0] dest rd2[3:0] dest2
0001b to 1110b Rd R1 to R14 0010b to 1111b Rd2 R2 to R15

b0b7 b0b7
00 1 1 1 1 1 1 0 1 1 1 cr[3:0]

b0b7 b0b7
10 1 1 0 1 1 1 rd2[3:0]rd[3:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 233 of 278
June 11, 2010

Code Size

(1) PUSH.size src

(2) PUSH.size src

PUSH PUSH

Syntax src Code Size (Byte)
(1) PUSH.size src Rs 2
(2) PUSH.size src [Rs] 2

dsp:8[Rs] 3
dsp:16[Rs] 4

sz[1:0] Size rs[3:0] src
00b B 0000b to 1111b Rs R0 (SP) to R15
01b W
10b L

ld[1:0] src rs[3:0] src sz[1:0] Size
00b [Rs] 0000b to 1111b Rs R0 (SP) to R15 00b B
01b dsp:8[Rs] 01b W
10b dsp:16[Rs] 10b L

b0b7 b0b7
0 1 1 1 1 1 1 0 1 0 rs[3:0]sz[1:0]

b0b7 b0b7
1 1 1 1 0 1 1 0rs[3:0]ld[1:0] sz[1:0]

srcld[1:0]
00b

01b

10b

dsp:8

dsp:16

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 234 of 278
June 11, 2010

Code Size

(1) PUSHC src

Code Size

(1) PUSHM src-src2

PUSHC PUSHC

Syntax src Code Size (Byte)
(1) PUSHC src Rx 2

cr[3:0] src
0000b Rx PSW
0001b PC
0010b USP
0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved

PUSHM PUSHM

Syntax src src2 Code Size (Byte)
(1) PUSHM src-src2 Rs Rs2 2

rs[3:0] src rs2[3:0] src2
0001b to 1110b Rs R1 to R14 0010b to 1111b Rs2 R2 to R15

b0b7 b0b7
00 1 1 1 1 1 1 0 1 1 0 cr[3:0]

b0b7 b0b7
00 1 1 0 1 1 1 rs2[3:0]rs[3:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 235 of 278
June 11, 2010

Code Size

(1) RACW src

Code Size

(1) REVL src, dest

RACW RACW

Syntax src Code Size (Byte)
(1) RACW src #IMM:1 3

imm src
0b to 1b #IMM:1 1 to 2

REVL REVL

Syntax src dest Code Size (Byte)
(1) REVL src, dest Rs Rd 3

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 imm 0 0 0 0

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 rs[3:0] rd[3:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 236 of 278
June 11, 2010

Code Size

(1) REVW src, dest

Code Size

(1) RMPA.size

REVW REVW

Syntax src dest Code Size (Byte)
(1) REVW src, dest Rs Rd 3

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

RMPA RMPA

Syntax Size Code Size (Byte)
(1) RMPA.size B 2

W 2
L 2

sz[1:0] Size
00b B
01b W
10b L

b0b7 b0b7 b0b7

1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 1 rs[3:0] rd[3:0]

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 1 1 sz[1:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 237 of 278
June 11, 2010

Code Size

(1) ROLC dest

Code Size

(1) RORC dest

ROLC ROLC

Syntax dest Code Size (Byte)
(1) ROLC dest Rd 2

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

RORC RORC

Syntax dest Code Size (Byte)
(1) RORC dest Rd 2

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

b0b7 b0b7
0 1 1 1 1 1 1 0 0 1 0 1 rd[3:0]

b0b7 b0b7
0 1 1 1 1 1 1 0 0 1 0 0 rd[3:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 238 of 278
June 11, 2010

Code Size

(1) ROTL src, dest

(2) ROTL src, dest

Code Size

(1) ROTR src, dest

ROTL ROTL

Syntax src dest Code Size (Byte)
(1) ROTL src, dest #IMM:5 Rd 3
(2) ROTL src, dest Rs Rd 3

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

ROTR ROTR

Syntax src dest Code Size (Byte)
(1) ROTR src, dest #IMM:5 Rd 3
(2) ROTR src, dest Rs Rd 3

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 imm[4:0] rd[3:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 0 rs[3:0] rd[3:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 1 1 0 imm[4:0] rd[3:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 239 of 278
June 11, 2010

(2) ROTR src, dest

Code Size

(1) ROUND src, dest

Code Size

(1) RTE

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

ROUND ROUND

Syntax src dest Code Size (Byte)
(1) ROUND src, dest Rs Rd 3

[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

RTE RTE

Syntax Code Size (Byte)
(1) RTE 2

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 0 1 0 0 rs[3:0] rd[3:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 0 1 0 0 1 1 0 rs[3:0] rd[3:0]ld[1:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 240 of 278
June 11, 2010

Code Size

(1) RTFI

Code Size

(1) RTS

Code Size

(1) RTSD src

(2) RTSD src, dest-dest2

RTFI RTFI

Syntax Code Size (Byte)
(1) RTFI 2

RTS RTS

Syntax Code Size (Byte)
(1) RTS 1

RTSD RTSD

Syntax src dest dest2 Code Size (Byte)
(1) RTSD src #UIMM:8 − − 2
(2) RTSD src, dest-dest2 #UIMM:8 Rd Rd2 3

rd[3:0]/rd2[3:0] dest/dest2
0001b to 1111b Rd/Rd2 R1 to R15

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0

b0b7
0 0 0 0 0 0 1 0

b0b7
0 1 1 0 0 1 1 1

src
#UIMM:8

b0b7 b0b7
10 0 1 1 1 1 1 rd2[3:0]rd[3:0]

src
#UIMM:8

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 241 of 278
June 11, 2010

Code Size

(1) SAT dest

Code Size

(1) SATR

SAT SAT

Syntax dest Code Size (Byte)
(1) SAT dest Rd 2

rd[3:0] dest
0000b to 1111b Rd R0 (SP) to R15

SATR SATR

Syntax Code Size (Byte)
(1) SATR 2

b0b7 b0b7
0 1 1 1 1 1 1 0 0 0 1 1 rd[3:0]

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 242 of 278
June 11, 2010

Code Size

(1) SBB src, dest

(2) SBB src, dest

SBB SBB

Syntax src dest Code Size (Byte)
(1) SBB src, dest Rs Rd 3
(2) SBB src, dest [Rs].L Rd 4

dsp:8[Rs].L Rd 5
dsp:16[Rs].L Rd 6

ld[1:0] src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15

ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b [Rs] 0000b to 1111b Rs/Rd R0 (SP) to R15
01b dsp:8[Rs]
10b dsp:16[Rs]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 0 0 0 0 0 0 0 rs[3:0] rd[3:0]ld[1:0]

b0b7 b0b7
0 0 0 0 0 1 1 0 1 0 1 0 0 0

memex
ld[1:0]

b0b7 b0b7
0 0 0 0 0 0 0 0 rd[3:0]rs[3:0]

srcld[1:0]
00b

01b

10b

dsp:8

dsp:16

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 243 of 278
June 11, 2010

Code Size

(1) SCCnd.size dest

Code Size

(1) SCMPU

SCCnd SCCnd

Syntax Size dest Code Size (Byte)
(1) SCCnd.size dest L Rd 3

B/W/L [Rd] 3
B/W/L dsp:8[Rd] 4
B/W/L dsp:16[Rd] 5

sz[1:0] Size ld[1:0] dest rd[3:0] dest
00b B 11b Rd 0000b to 1111b Rd R0 (SP) to R15
01b W 00b [Rd]
10b L 01b dsp:8[Rd]

10b dsp:16[Rd]

cd[3:0] SCCnd cd[3:0] SCCnd
0000b SCEQ, SCZ 1000b SCGE
0001b SCNE, SCNZ 1001b SCLT
0010b SCGEU, SCC 1010b SCGT
0011b SCLTU, SCNC 1011b SCLE
0100b SCGTU 1100b SCO
0101b SCLEU 1101b SCNO
0110b SCPZ 1110b Reserved
0111b SCN 1111b Reserved

SCMPU SCMPU

Syntax Code Size (Byte)
(1) SCMPU 2

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 0 1 1 0 1 rd[3:0] cd[3:0]sz[1:0] ld[1:0]

dsp:8

dsp:16

None
destld[1:0]

11b

00b

01b

10b

None

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 244 of 278
June 11, 2010

Code Size

(1) SETPSW dest

SETPSW SETPSW

Syntax dest Code Size (Byte)
(1) SETPSW dest flag 2

cb[3:0] dest
0000b flag C
0001b Z
0010b S
0011b O
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b I
1001b U
1010b Reserved
1011b Reserved
1100b Reserved
1101b Reserved
1110b Reserved
1111b Reserved

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 1 0 cb[3:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 245 of 278
June 11, 2010

Code Size

(1) SHAR src, dest

(2) SHAR src, dest

(3) SHAR src, src2, dest

SHAR SHAR

Syntax src src2 dest Code Size (Byte)
(1) SHAR src, dest #IMM:5 − Rd 2
(2) SHAR src, dest Rs − Rd 3
(3) SHAR src, src2, dest #IMM:5 Rs Rd 3

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

imm[4:0] src rs2[3:0]/rd[3:0] src2/dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rs/Rd R0 (SP) to R15

b0b7 b0b7
0 1 1 0 1 0 1 rd[3:0]imm[4:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 1 rs[3:0] rd[3:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 1 0 1 rs2[3:0] rd[3:0]imm[4:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 246 of 278
June 11, 2010

Code Size

(1) SHLL src, dest

(2) SHLL src, dest

(3) SHLL src, src2, dest

SHLL SHLL

Syntax src src2 dest Code Size (Byte)
(1) SHLL src, dest #IMM:5 − Rd 2
(2) SHLL src, dest Rs − Rd 3
(3) SHLL src, src2, dest #IMM:5 Rs Rd 3

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

imm[4:0] src rs2[3:0]/rd[3:0] src2/dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rs/Rd R0 (SP) to R15

b0b7 b0b7
0 1 1 0 1 1 0 rd[3:0]imm[4:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 0 0 1 0 rs[3:0] rd[3:0]

b7 b0 b0b7 b0b7
1 1 1 1 1 1 0 1 1 1 0 rs2[3:0] rd[3:0]imm[4:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 247 of 278
June 11, 2010

Code Size

(1) SHLR src, dest

(2) SHLR src, dest

(3) SHLR src, src2, dest

SHLR SHLR

Syntax src src2 dest Code Size (Byte)
(1) SHLR src, dest #IMM:5 − Rd 2
(2) SHLR src, dest Rs − Rd 3
(3) SHLR src, src2, dest #IMM:5 Rs Rd 3

imm[4:0] src rd[3:0] dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rd R0 (SP) to R15

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd R0 (SP) to R15

imm[4:0] src rs2[3:0]/rd[3:0] src2/dest
00000b to 11111b #IMM:5 0 to 31 0000b to 1111b Rs/Rd R0 (SP) to R15

b0b7 b0b7
0 1 1 0 1 0 0 rd[3:0]imm[4:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 0 0 0 0 0 rd[3:0]rs[3:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 1 0 0 rs2[3:0] rd[3:0]imm[4:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 248 of 278
June 11, 2010

Code Size

(1) SMOVB

Code Size

(1) SMOVF

Code Size

(1) SMOVU

SMOVB SMOVB

Syntax Code Size (Byte)
(1) SMOVB 2

SMOVF SMOVF

Syntax Code Size (Byte)
(1) SMOVF 2

SMOVU SMOVU

Syntax Code Size (Byte)
(1) SMOVU 2

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 249 of 278
June 11, 2010

Code Size

(1) SSTR.size

Code Size

(1) STNZ src, dest

SSTR SSTR

Syntax Size Processing Size Code Size (Byte)
(1) SSTR.size B B 2

W W 2
L L 2

sz[1:0] Size
00b B
01b W
10b L

STNZ STNZ

Syntax src dest Code Size (Byte)
(1) STNZ src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 1 0 sz[1:0]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 1li[1:0] rd[3:0] #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 250 of 278
June 11, 2010

Code Size

(1) STZ src, dest

STZ STZ

Syntax src dest Code Size (Byte)
(1) STZ src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0li[1:0] rd[3:0] #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 251 of 278
June 11, 2010

Code Size

(1) SUB src, dest

(2) SUB src, dest
When memex == UB or src == Rs

 When memex != UB

(3) SUB src, src2, dest

SUB SUB
Syntax src src2 dest Code Size (Byte)
(1) SUB src, dest #UIMM:4 − Rd 2
(2) SUB src, dest Rs − Rd 2

[Rs].memex − Rd 2 (memex == UB)
3 (memex != UB)

dsp:8[Rs].memex − Rd 3 (memex == UB)
4 (memex != UB)

dsp:16[Rs].memex − Rd 4 (memex == UB)
5 (memex != UB)

(3) SUB src, src2, dest Rs Rs2 Rd 3

imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 0 to 15 0000b to 1111b Rd R0 (SP) to R15

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest
0000b to 1111b Rs/Rs2/Rd R0 (SP) to R15

b0b7 b0b7
0 1 1 0 0 0 0 0 rd[3:0]imm[3:0]

rs[3:0] rd[3:0]0 0 0 0 ld[1:0]0
b0b7 b0b7

1
srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

rs[3:0] rd[3:0]0 0 0 0 ld[1:0]
b0b7 b0b7

0 0 0 0 0 1 1 0
memex

mi[1:0]
b0b7 srcld[1:0]

None11b

00b None

dsp:801b

dsp:1610b

b0b7 b0b7 b0b7
1 1 1 1 1 1 1 1 0 0 0 0 rs[3:0] rs2[3:0]rd[3:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 252 of 278
June 11, 2010

Code Size

(1) SUNTIL.size

Code Size

(1) SWHILE.size

SUNTIL SUNTIL

Syntax Size Processing Size Code Size (Byte)
(1) SUNTIL.size B B 2

W W 2
L L 2

sz[1:0] Size
00b B
01b W
10b L

SWHILE SWHILE

Syntax Size Processing Size Code Size (Byte)
(1) SWHILE.size B B 2

W W 2
L L 2

sz[1:0] Size
00b B
01b W
10b L

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 0 0 sz[1:0]

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 0 0 1 sz[1:0]

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 253 of 278
June 11, 2010

Code Size

(1) TST src, src2

(2) TST src, src2

When memex == UB or src == Rs

When memex != UB

TST TST
Syntax src src2 Code Size (Byte)
(1) TST src, src2 #SIMM:8 Rs 4

#SIMM:16 Rs 5
#SIMM:24 Rs 6
#IMM:32 Rs 7

(2) TST src, src2 Rs Rs2 3
[Rs].memex Rs2 3 (memex == UB)

4 (memex != UB)
dsp:8[Rs].memex Rs2 4 (memex == UB)

5 (memex != UB)
dsp:16[Rs].memex Rs2 5 (memex == UB)

6 (memex != UB)

li[1:0] src rs2[3:0] src2
01b #SIMM:8 0000b to 1111b Rs R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0]/rs2[3:0] src/src2
00b B 11b Rs 0000b to 1111b Rs/Rs2 R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 0li[1:0] rs2[3:0] #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

b0b7 b0b7 b0b7
001 1 1 1 1 1 0 0 0 0 1 1 ld[1:0] rs[3:0] rs2[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

b0b7 b0b7
0 0 0 0 0 1 1 0 1 0 0 0 ld[1:0]mi[1:0]

memex b0b7 b0b7
0 0 0 0 1 1 0 0 rs2[3:0]rs[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 254 of 278
June 11, 2010

Code Size

(1) WAIT

Code Size

(1) XCHG src, dest

When memex == UB or src == Rs

When memex != UB

WAIT WAIT

Syntax Code Size (Byte)
(1) WAIT 2

XCHG XCHG

Syntax src dest Code Size (Byte)
(1) XCHG src, dest Rs Rd 3

[Rs].memex Rd 3 (memex == UB)
4 (memex != UB)

dsp:8[Rs].memex Rd 4 (memex == UB)
5 (memex != UB)

dsp:16[Rs].memex Rd 5 (memex == UB)
6 (memex != UB)

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

b0b7 b0b7
0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0

b0b7 b0b7 b0b7
001 1 1 1 1 1 0 0 0 1 0 0 ld[1:0] rd[3:0]rs[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

b0b7 b0b7
0 0 0 0 0 1 1 0 1 0 0 0 ld[1:0]mi[1:0]

memex b0b7 b0b7
0 0 0 1 0 0 0 0 rd[3:0]rs[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 4 Instruction Code

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 255 of 278
June 11, 2010

Code Size

(1) XOR src, dest

(2) XOR src, dest

When memex == UB or src == Rs

When memex != UB

XOR XOR
Syntax src dest Code Size (Byte)
(1) XOR src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(2) XOR src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)

4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)

5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)

6 (memex != UB)

li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b Rd R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

mi[1:0] memex ld[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b Rs/Rd R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b UW 10b dsp:16[Rs]

b0b7 b0b7 b0b7
1 1 1 1 1 1 0 1 0 1 1 1 0 0 1 1 0 1li[1:0] rd[3:0] #SIMM:8

#SIMM:16

#SIMM:24

#IMM:32

srcli[1:0]
01b

10b

11b

00b

b0b7 b0b7 b0b7
101 1 1 1 1 1 0 0 0 0 1 1 ld[1:0] rd[3:0]rs[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

b0b7 b0b7
0 0 0 0 0 1 1 0 1 0 0 0 ld[1:0]mi[1:0]

memex b0b7 b0b7
0 0 0 0 1 1 0 1 rd[3:0]rs[3:0]

dsp:8

dsp:16

None
srcld[1:0]

11b

00b

01b

10b

None

RX Family Section 5 Exceptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 256 of 278
June 11, 2010

Section 5 Exceptions

5.1 Types of Exception

During the execution of a program by the CPU, the occurrence of certain events may necessitate suspending execution of
the main flow of the program and starting the execution of another flow. Such events are called exceptions.

The RX CPU supports the eight types of exception listed in figure 5.1.

The occurrence of an exception causes the processor mode to switch to supervisor mode.

Figure 5.1 Types of Exception

Undefined instruction exception

Privileged instruction exception

Access exception

Floating-point exceptions

Reset

Non-maskable interrupt

Interrupts

Unconditional trap

Exceptions

RX Family Section 5 Exceptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 257 of 278
June 11, 2010

5.1.1 Undefined Instruction Exception

An undefined instruction exception occurs when execution of an undefined instruction (an instruction not implemented)
is detected.

5.1.2 Privileged Instruction Exception

A privileged instruction exception occurs when execution of a privileged instruction is detected while operation is in user
mode. Privileged instructions can only be executed in supervisor mode.

5.1.3 Access Exception

When it detects an error in memory access, the CPU generates an access exception. Detection of memory protection
errors for memory protection units generates exceptions of two types: instruction-access exceptions and operand-access
exceptions.

5.1.4 Floating-Point Exceptions

Floating-point exceptions include the five specified in the IEEE754 standard, namely overflow, underflow, inexact,
division-by-zero, and invalid operation, and a further floating-point exception that is generated on the detection of
unimplemented processing. The exception processing of floating-point exceptions is masked when the EX, EU, EZ, EO,
or EV bit in FPSW is 0.

5.1.5 Reset

A reset through input of the reset signal to the CPU causes the exception handling. This has the highest priority of any
exception and is always accepted.

5.1.6 Non-Maskable Interrupt

The non-maskable interrupt is generated by input of the non-maskable interrupt signal to the CPU and is only used when
the occurrence of a fatal fault has been detected in the system. Never end the exception handling routine for the non-
maskable interrupt with an attempt to return to the program that was being executed at the time of interrupt generation.

5.1.7 Interrupts

Interrupts are generated by the input of interrupt signals to the CPU. The interrupt with the highest priority can be
selected for handling as a fast interrupt. In the case of the fast interrupt, hardware pre-processing and hardware post-
processing are handled fast. The priority level of the fast interrupt is fifteen (the highest)*. The exception processing of
interrupts is masked when the I bit in PSW is 0.

Note: * The priority level of the fast interrupt is seven (the highest) in products of the RX610 Group.

5.1.8 Unconditional Trap

An unconditional trap is generated when the INT or BRK instruction is executed.

RX Family Section 5 Exceptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 258 of 278
June 11, 2010

5.2 Exception Handling Procedure

For exception handling, part of the processing is handled automatically by hardware and part is handled by a program
(the exception handling routine) that has been written by the user. Figure 5.2 shows the handling procedure when an
exception other than a reset is accepted.

Figure 5.2 Outline of the Exception Handling Procedure

• Instruction canceling type
(UND, PIE, ACE, and FPE)

• Instruction suspending type
(Reception of an EI during execution of the RMPA
instruction or a string manipulation instruction)

• Instruction completion type
(EI and TRAP)

(For the fast interrupt)
PC → BPC
PSW → BPSW
U = 0
I = 0
PM = 0

(For exceptions other than the fast interrupt)
PC → Preserved on the stack (ISP)
PSW → Preserved on the stack (ISP)
U = 0
I = 0
PM = 0

(For the fast interrupt)
BPC → PC
BPSW → PSW

(For exceptions other than the fast interrupt)
Stack → PC
Stack → PSW

Transition to the user mode when the
PM bit in the PSW is 1.

Switch to the
supervisor mode

Hardware pre-processing

The program is suspended
and the exception is
accepted.

Instruction
A

Instruction
B

Instruction
D

Instruction
C

Restarting of the program

Processing of user-written program code
Read the
vector.
Branch to the
start of the
handler.

Generation of an exception event request

General-
purpose
registers

preserved on
the stack

Handler
processing

Restoration of
general-
purpose
registers

(For the fast interrupt)
RTFI instruction

(For exceptions other than the fast
interrupt)

RTE instruction

Non-maskable
interrupt processing

End of the program or resetting of the system

Exception handling
routine other than
the non-maskable
interrupt

Non-maskable
interrupt

Legend
UND: Undefined instruction exception
PIE: Privileged instruction exception
ACE: Access exception
FPE: Floating-point exception
EI: Interrupt
TRAP: Unconditional trap

Hardware post-processing

Instruction
C

Exception request

RX Family Section 5 Exceptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 259 of 278
June 11, 2010

When an exception is accepted, hardware processing by the RX CPU is followed by vector access to acquire the address
of the branch destination. A vector address is allocated to each exception. The branch destination address of the
exception handling routine for the given exception is written to each vector address.

Hardware pre-processing by the RX CPU handles saving of the contents of the program counter (PC) and processor
status word (PSW). In the case of the fast interrupt, the contents are saved in the backup PC (BPC) and the backup PSW
(BPSW), respectively. In the case of other exceptions, the contents are preserved in the stack area. General purpose
registers and control registers other than the PC and PSW that are to be used within the exception handling routine must
be preserved on the stack by user program code at the start of the exception handling routine.

On completion of processing by most exception handling routine, registers preserved under program control are restored
and the RTE instruction is executed to restore execution from the exception handling routine to the original program. For
return from the fast interrupt, the RTFI instruction is used instead. In the case of the non-maskable interrupt, however,
end the program or reset the system without returning to the original program.

Hardware post-processing by the RX CPU handles restoration of the pre-exception contents of the PC and PSW. In the
case of the fast interrupt, the contents of the BPC and BPSW are restored to the PC and PSW, respectively. In the case of
other exceptions, the contents are restored from the stack area to the PC and PSW.

RX Family Section 5 Exceptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 260 of 278
June 11, 2010

5.3 Acceptance of Exceptions

When an exception occurs, the CPU suspends the execution of the program and processing branches to the start of the
exception handling routine.

5.3.1 Timing of Acceptance and Saved PC Value

Table 5.1 lists the timing of acceptance and program counter (PC) value to be saved for each type of exception event.

Table 5.1 Timing of Acceptance and Saved PC Value

Exception Type of Handling Timing of Acceptance
Value Saved in the BPC/
on the Stack

Undefined instruction exception Instruction canceling
type

During instruction
execution

PC value of the instruction
that is generated by the
exception

Privileged instruction exception Instruction canceling
type

During instruction
execution

PC value of the instruction
that is generated by the
exception

Access exception Instruction canceling
type

During instruction
execution

PC value of the instruction
that is generated by the
exception

Floating-point exceptions Instruction canceling
type

During instruction
execution

PC value of the instruction
that is generated by the
exception

Reset Program
abandonment type

Any machine cycle None

Non-
maskable
interrupt

During execution of the
RMPA, SCMPU, SMOVB,
SMOVF, SMOVU, SSTR,
SUNTIL, and SWHILE
instructions

Instruction
suspending type

During instruction
execution

PC value of the instruction
being executed

Other than the above Instruction completion
type

At the next break
between instructions

PC value of the next
instruction

Interrupts During execution of the
RMPA, SCMPU, SMOVB,
SMOVF, SMOVU, SSTR,
SUNTIL, and SWHILE
instructions

Instruction
suspending type

During instruction
execution

PC value of the instruction
being executed

Other than the above Instruction completion
type

At the next break
between instructions

PC value of the next
instruction

Unconditional trap Instruction completion
type

At the next break
between instructions

PC value of the next
instruction

RX Family Section 5 Exceptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 261 of 278
June 11, 2010

5.3.2 Vector and Site for Preserving the PC and PSW

The vector for each type of exception and the site for preserving the contents of the program counter (PC) and processor
status word (PSW) are listed in table 5.2.

Table 5.2 Vector and Site for Preserving the PC and PSW

Exception Vector
Site for Preserving the PC
and PSW

Undefined instruction exception Fixed vector table Stack
Privileged instruction exception Fixed vector table Stack
Access exception Fixed vector table Stack
Floating-point exceptions Fixed vector table Stack
Reset Fixed vector table Nowhere
Non-maskable interrupt Fixed vector table Stack
Interrupts Fast interrupt FINTV BPC and BPSW

Other than the above Relocatable vector table (INTB) Stack
Unconditional trap Relocatable vector table (INTB) Stack

RX Family Section 5 Exceptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 262 of 278
June 11, 2010

5.4 Hardware Processing for Accepting and Returning from Exceptions

This section describes the hardware processing for accepting and returning from an exception other than a reset.

(1) Hardware pre-processing for accepting an exception

(a) Preserving the PSW

(b) Updating of the PM, U, and I bits in the PSW

(c) Preserving the PC

(d) Set the branch-destination address of the exception handling routine in the PC

(2) Hardware post-processing for executing RTE and RTFI instructions

(a) Restoring the PSW

(b) Restoring the PC

(For the fast interrupt)
PSW → BPSW
(For other exceptions)
PSW → Stack area
Note: The FPSW is not preserved by hardware pre-processing. Therefore, if this is used within the exception

handling routine for floating-point instructions, the user should ensure that it is preserved in the stack area
from within the exception handling routine.

I: Cleared to 0
U: Cleared to 0
PM: Cleared to 0

(For the fast interrupt)
PC → BPC
(For other exceptions)
PC → Stack area

Processing is shifted to the exception handling routine by acquiring the vector corresponding to the exception
and branching accordingly.

(For the fast interrupt)
BPSW → PSW
(For other exceptions)
Stack area → PSW

(For the fast interrupt)
BPC → PC
(For other exceptions)
Stack area → PC

RX Family Section 5 Exceptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 263 of 278
June 11, 2010

5.5 Hardware Pre-processing

The sequences of hardware pre-processing from reception of each exception request to execution of the associated
exception handling routine are explained below.

5.5.1 Undefined Instruction Exception

(1) The value of the processor status word (PSW) is saved on the stack (ISP).
(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are

cleared to 0.
(3) The value of the program counter (PC) is saved on the stack (ISP).
(4) The address of the processing routine is fetched from the vector address, FFFFFFDCh.
(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.2 Privileged Instruction Exception

(1) The value of the processor status word (PSW) is saved on the stack (ISP).
(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are

cleared to 0.
(3) The value of the program counter (PC) is saved on the stack (ISP).
(4) The address of the processing routine is fetched from the vector address, FFFFFFD0h.
(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.3 Access Exception

(1) The value of the processor status word (PSW) is saved on the stack (ISP).
(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are

cleared to 0.
(3) The value of the program counter (PC) is saved on the stack (ISP).
(4) The address of the processing routine is fetched from the vector address, FFFFFFD4h.
(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.4 Floating-Point Exceptions

(1) The value of the processor status word (PSW) is saved on the stack (ISP).
(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are

cleared to 0.
(3) The value of the program counter (PC) is saved on the stack (ISP).
(4) The address of the processing routine is fetched from the vector address, FFFFFFE4h.
(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.5 Reset

(1) The control registers are initialized.
(2) The address of the processing routine is fetched from the vector address, FFFFFFFCh.
(3) The PC is set to the fetched address.

RX Family Section 5 Exceptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 264 of 278
June 11, 2010

5.5.6 Non-Maskable Interrupt

(1) The value of the processor status word (PSW) is saved on the stack (ISP).
(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are

cleared to 0.
(3) If the interrupt was generated during the execution of an RMPA, SCMPU, SMOVB, SMOVF, SMOVU, SSTR,

SUNTIL, or SWHILE instruction, the value of the program counter (PC) for that instruction is saved on the stack
(ISP). For other instructions, the PC value of the next instruction is saved.

(4) The processor interrupt priority level bits (IPL[3:0]) in the PSW are set to Fh.
(5) The address of the processing routine is fetched from the vector address, FFFFFFF8h.
(6) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.7 Interrupts

(1) The value of the processor status word (PSW) is saved on the stack (ISP) or, for the fast interrupt, in the backup PSW
(BPSW).

(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are
cleared to 0.

(3) If the interrupt was generated during the execution of an RMPA, SCMPU, SMOVB, SMOVF, SMOVU, SSTR,
SUNTIL, or SWHILE instruction, the value of the program counter (PC) for that instruction is saved. For other
instructions, the PC value of the next instruction is saved. Saving of the PC is in the backup PC (BPC) for fast
interrupts and on the stack for other interrupts.

(4) The processor interrupt priority level bits (IPL[3:0]) in the PSW indicate the interrupt priority level of the interrupt.
(5) The address of the processing routine for an interrupt source other than the fast interrupt is fetched from the

relocatable vector table. For the fast interrupt, the address is fetched from the fast interrupt vector register (FINTV).
(6) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.8 Unconditional Trap

(1) The value of the processor status word (PSW) is saved on the stack (ISP).
(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are

cleared to 0.
(3) The value of the program counter (PC) is saved on the stack (ISP).
(4) For the INT instruction, the value at the vector corresponding to the INT instruction number is fetched from the

relocatable vector table.
For the BRK instruction, the value at the vector from the start address is fetched from the relocatable vector table.

(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

RX Family Section 5 Exceptions

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 265 of 278
June 11, 2010

5.6 Return from Exception Handling Routines

Executing the instructions listed in table 5.3 at the end of the corresponding exception handling routines restores the
values of the program counter (PC) and processor status word (PSW) that were saved on the stack or in control registers
(BPC and BPSW) immediately before the exception handling sequence.

5.7 Order of Priority for Exceptions

The order of priority for exceptions is given in table 5.4. When multiple exceptions are generated at the same time, the
exception with the highest priority is accepted first.

Table 5.3 Return from Exception Handling Routines

Exception Instruction for Return
Undefined instruction exception RTE
Privileged instruction exception RTE
Access exception RTE
Floating-point exceptions RTE
Reset Return is impossible
Non-maskable interrupt Return is impossible
Interrupts Fast interrupt RTFI

Other than the above RTE
Unconditional trap RTE

Table 5.4 Order of Priority for Exceptions

Order of Priority Exception
High

Low

1 Reset
2 Non-maskable interrupt
3 Interrupts
4 Instruction access exception
5 Undefined instruction exception

Privileged instruction exception
6 Unconditional trap
7 Operand access exception
8 Floating-point exceptions

RX Family Index

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 266 of 278
June 11, 2010

Numerics

0 flush bit of denormalized number (DN bit) 26

A

ACC (accumulator) .. 26

access exception ... 257

accumulator (ACC) .. 26

B

backup PC (BPC)... 23

backup PSW (BPSW) .. 23

bitwise operations .. 32

BPC (backup PC)... 23

BPSW (backup PSW) ... 23

C

C flag (carry flag) .. 22

carry flag (C flag) .. 22

CE flag (unimplemented processing cause flag) 25

CO flag (overflow cause flag) 25

control register direct.. 41

control registers ... 19

CU flag (underflow cause flag)............................... 25

CV flag (invalid operation cause flag)...................... 25

CX flag (inexact cause flag) 25

CZ flag (division-by-zero cause flag)....................... 25

D

division-by-zero cause flag (CZ flag) 25

division-by-zero exception enable bit (EZ bit) 26

division-by-zero flag (FZ flag) 26

DN bit (0 flush bit of denormalized number) 26

E

EO bit (overflow exception enable bit) 26

EU bit (underflow exception enable bit) 26

EV bit (invalid operation exception enable bit) 26

EX bit (inexact exception enable bit) 26

EZ bit (division-by-zero exception enable bit) 26

F

fast interrupt vector register (FINTV)....................... 23

FINTV (fast interrupt vector register)....................... 23

fixed vector table ... 34

floating-point .. 31

floating-point error summary flag (FS flag)............... 26

floating-point exceptions 27
floating-point rounding-mode setting bits

(RM[1:0] bits)... 25

floating-point status word (FPSW) 24

FO flag (overflow flag) ... 26

FPSW (floating-point status word) 24

FS flag (floating-point error summary flag)............... 26

FU flag (underflow flag) 26

FV flag (invalid operation flag) 26

FX flag (inexact flag).. 26

FZ flag (division-by-zero flag) 26

G

general-purpose registers (R0 (SP) to R15) 19

I

I bit (interrupt enable bit)....................................... 22

immediate .. 39

indexed register indirect .. 41

inexact cause flag (CX flag) 25

inexact exception enable bit (EX bit) 26

inexact flag (FX flag).. 26

INTB (interrupt table register) 20

integer ... 31

interrupt enable bit (I bit)....................................... 22

interrupt stack pointer (ISP) 20

interrupt table register (INTB) 20

interrupts... 257

invalid operation cause flag (CV flag) 25

invalid operation exception enable bit (EV bit) 26

invalid operation flag (FV flag) 26

IPL[3:0] bits (processor interrupt priority level) 22

ISP (interrupt stack pointer) 20

Index

RX Family Index

Under development Preliminary document
Specifications in this document are tentative and subject to change.

REJ09B0435-0100 Rev.1.00 Page 267 of 278
June 11, 2010

N

NaN (Not a Number) .. 28

non-maskable interrupt .. 257

O

O flag (overflow flag) ... 22

order of priority for exceptions 265

overflow cause flag (CO flag) 25

overflow exception enable bit (EO bit) 26

overflow flag (FO flag) ... 26

overflow flag (O flag) ... 22

P

PC (program counter) ... 20

PM bit (processor mode select bit) 22

post-increment register indirect............................... 41

pre-decrement register indirect 41

privileged instruction.. 30

privileged instruction exception 257

processor interrupt priority level (IPL[3:0] bits) 22

processor mode ... 30

processor mode select bit (PM bit) 22

processor status word (PSW).................................. 21

program counter (PC) ... 20

program counter relative 42

PSW (processor status word).................................. 21

PSW direct ... 41

Q

QNaN (Quiet NaN) .. 28

R

R0 (SP) to R15 (general-purpose registers) 19

register (n).. 46

register direct .. 40

register indirect ... 40

register relative.. 40

register_num (Rn) .. 46

relocatable vector table ... 35

reset ... 257
RM[1:0] bits

(floating-point rounding-mode setting bits)............. 25

Rounding to the nearest value................................. 25

Rounding towards +∞ ... 25

Rounding towards –∞ ... 25

Rounding towards 0 ... 25

S

S flag (sign flag) .. 22

sign flag (S flag) .. 22

size extension specifier ... 48

size specifier ... 45

SNaN (Signaling NaN) ... 28

stack pointer (R0 (SP)).. 19

stack pointer select bit (U bit) 22

strings.. 32

supervisor mode .. 30

U

U bit (stack pointer select bit) 22

unconditional trap ... 257

undefined instruction exception 257

underflow cause flag (CU flag) 25

underflow exception enable bit (EU bit) 26

underflow flag (FU flag) 26

unimplemented processing cause flag (CE flag) 25

user mode... 30

user stack pointer (USP).. 20

USP (user stack pointer) .. 20

V

vector table ... 34

Z

Z flag (zero flag).. 22

zero flag (Z flag).. 22

REJ09B0435-0100 Rev.1.00 Page 268 of 278
June 11, 2010

RX Family REVISION HISTORY

Under development Preliminary document
Specifications in this document are tentative and subject to change.

Description
Rev. Date Page Summary
0.10 Nov. 12, 2007 - First edition issued
0.20 Mar. 18, 2008 3 to 5 Notation in This Manual changed

8 to 13 List of Instructions for RX Family changed
14 Section 1 CPU Functions changed
14 1.1 Features changed
15 1.2 Register Set of the CPU changed
15 Figure 1.1 Register Set of the CPU changed
16 1.2.2 Control Registers changed
17 1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP) changed
18 1.2.2.4 Processor Status Word (PSW): b31 to b4 changed, Notes 1 and 2 changed
19 IPL[2:0] bits (Processor interrupt priority level) changed
20 1.2.2.6 Backup PSW Register (BPSW) added
20 1.2.2.7 Vector Register (VCT) → 1.2.2.7 Fast Interrupt Vector Register (FINTV)

changed
21 1.2.2.8 Floating-Point Status Word (FPSW): b25 to b15, b9, b7 to b0 changed
22 1.2.2.9 Coprocessor Enable Register (CPEN) added
24 Table 1.5 Conditions Leading to an Invalid Exception and the Operation Results

changed
25 1.4.1 Supervisor Mode changed
25 1.4.2 User Mode added
25 1.4.3 Privileged Instruction changed
25 1.4.4 Switching Between Processor Modes changed
29 1.7 Vector Table changed
29 1.7.1 Fixed Vector Table changed
29 Figure 1.8 Fixed Vector Table changed
30 1.7.2 Relocatable Vector Table changed
31 2.1 Types of Addressing Mode, (3) Special Instruction Addressing Modes added
32 2.2 Guide to This Section, (2) Symbolic notation changed
33 Immediate: #IMM:S8, #IMMEX:U8 added
33 Register Indirect: Operation diagram added
33 Register Relative: Description, Operation diagram changed
34 Short Immediate: #IMM:2 added, Description for #IMM:3 changed
34 Short Register Relative: Description changed, Operation diagram added
35 Post-increment Register Indirect: Operation diagram added
35 Pre-decrement Register Indirect: Description changed, Operation diagram added
35 Indexed Register Indirect: Operation diagram added
36 Control Register Direct: VCT → FINTV changed, CPEN added, Description

changed, Operation diagram changed
36 Program Counter Relative: Rn added
36 Program Counter Relative: label (dsp:3) → pcdsp:3 changed, Description changed,

Operation diagram changed
37 Program Counter Relative: label (dsp:8) (dsp:16) (dsp:24) → pcdsp:8 pcdsp:16

pcdsp:24 changed, Description changed, Operation diagram changed
37 Register Direct: added
38 Section 3 Instruction Descriptions added
159 Section 5 Exceptions added

RX Family Software ManualREVISION HISTORY

 REVISION HISTORY

REJ09B0435-0100 Rev.1.00 Page 269 of 278
June 11, 2010

RX Family REVISION HISTORY

Under development Preliminary document
Specifications in this document are tentative and subject to change.

0.30 Jul. 31, 2008 3 to 5 Notation in This Manual
Symbols: IMM, IMMEX → IMM, SIMM, UIMM changed
Bit length specifiers: :1 added
Bit length extension specifier: :S8, :U8 deleted
Operations: tmp2, tmp3 added

8 to 13 List of Instructions for RX Family
FREIT instruction → RTFI instruction, REIT instruction → RTE instruction changed
EDIV instruction, EDIVU instruction, MULU instruction, PUSHA instruction, and
STOP instruction deleted
For floating-point operation instructions and coprocessor instructions, the
description as an optional function added
DSP instructions added

14 Section 1 CPU Functions changed
14 1.1 Features changed
15 1.2 Register Set of the CPU changed
15 Figure 1.1 Register Set of the CPU changed
17 1.2.2.2 Interrupt Table Register (INTB)

Interrupt vector table → Relocatable vector table changed
18 1.2.2.4 Processor Status Word (PSW), Note 3 changed
19 U bit (Stack pointer select bit) changed
22 1.2.2.8 Floating-Point Status Word (FPSW), Note 3 added
23 1.2.3 Accumulator (ACC) added
24 1.3.2 Underflow added
24 Table 1.3 Conditions Leading to an Inexact Exception and the Operation Results,

Notes added
25 1.3.4 Division-by-Zero, Note for denormalized number, QNaN, and SNaN added
25 Table 1.5 Conditions Leading to an Invalid Exception and the Operation Results

changed
26 Table 1.6 Rules for Generating QNaNs added
26 1.3.6 Unimplemented Processing changed, Note deleted
27 1.4.3 Privileged Instruction changed
27 1.4.4 Switching Between Processor Modes, (2) Switching from supervisor mode to

user mode changed
33 to 39 Section 2 Addressing Modes changed
42 (5) Operation, (c) Special notation added
43 (8) Instruction Format, (d) Immediate value changed
47 to 171 Code Size in Instruction Format added
48 ADC instruction: Instruction Format changed
50 ADD instruction: Instruction Format changed
51 AND instruction: Instruction Format changed
54 BCnd instruction: Instruction Format changed
58 BRA instruction: Instruction Format changed
64 CMP instruction: Instruction Format, Description Example changed
65 DIV instruction: Instruction Format changed
67 DIVU instruction: Instruction Format changed
69 to 70 EMUL instruction: Note in Function added, Instruction Format changed
71 to 72 EMULU instruction: Note in Function added, Instruction Format changed
73 FADD instruction: Flag Change, Note in Instruction Format changed

Description
Rev. Date Page Summary

REJ09B0435-0100 Rev.1.00 Page 270 of 278
June 11, 2010

RX Family REVISION HISTORY

Under development Preliminary document
Specifications in this document are tentative and subject to change.

0.30 Jul. 31, 2008 75 to 77 FCMP instruction: Syntax, Operation, Function, Flag Change, Instruction Format,
Supplementary Description changed

78 FDIV instruction: Flag Change, Note in Instruction Format changed
80 to 82 FMUL instruction: Note in Function added, Flag Change, Note in Instruction Format,

Supplementary Description changed
83 to 84 FSUB instruction: Flag Change, Note in Instruction Format changed
86 to 88 FTOI instruction: Function, Flag Change, Instruction Format, Supplementary

Description changed
89 INT instruction: Instruction Format, Syntax: INT → INT src changed
90 to 91 ITOF instruction: Function, Flag Change, Instruction Format changed
94 MACHI instruction added
95 MACLO instruction added
96 MAX instruction: Instruction Format changed
97 MIN instruction: Instruction Format changed
98 to 100 MOV instruction: Function, Instruction Format, Description Example changed
101 MOVU instruction: Note in Instruction Format changed
103 to 104 MUL instruction: Syntax, Operation, Function, Flag Change, Instruction Format,

Description Example changed
105 MULHI instruction added
106 MULLO instruction added
107 MVFACHI instruction added
108 MVFACMI instruction added
111 MVTACHI instruction added
112 MVTACLO instruction added
113 MVTC instruction: Instruction Format changed
114 MVTCP instruction: Instruction Format changed
117 NOP instruction: Operation, Function changed
120 OR instruction: Instruction Format changed
125 PUSH instruction: Function added, Note in Instruction Format changed
128 to 129 RACW instruction added
132 RMPA instruction: Function added, Note added
138 to 140 ROUND instruction: Function, Flag Change, Instruction Format changed,

Supplementary Description added
141 RTE instruction: REIT instruction → RTE instruction changed
142 RTFI instruction: FREIT instruction → RTFI instruction changed
144 to 145 RTSD instruction: Operation, Function, Instruction Format changed
148 SBB instruction: Note in Instruction Format changed
149 SCCnd instruction: Note in Instruction Format changed
151 SCMPU instruction: Operation, Function, Flag Change changed
156 SMOVB instruction: Operation, Function changed
157 SMOVF instruction: Operation, Function changed
158 SMOVU instruction: Operation, Function changed
159 SSTR instruction: Operation, Function changed
160 STNZ instruction: Instruction Format changed
161 STZ instruction: Instruction Format changed
162 SUB instruction: Instruction Format changed
163 to 164 SUNTIL instruction: Operation, Function, Flag Change, Instruction Format changed

Description
Rev. Date Page Summary

REJ09B0435-0100 Rev.1.00 Page 271 of 278
June 11, 2010

RX Family REVISION HISTORY

Under development Preliminary document
Specifications in this document are tentative and subject to change.

0.30 Jul. 31, 2008 165 to 166 SWHILE instruction: Note 3 in Operation deleted, Operation, Function, Flag Change,
Instruction Format changed

167 TST instruction: Instruction Format changed
169 to 170 XCHG instruction: Syntax, Function, Instruction Format, Description Example

changed
171 XOR instruction: Instruction Format changed
172 to 260 Section 4 Instruction Code added
262 5.2.1 Undefined Instruction Exception added
262 5.2.5 Reset changed
262 5.2.6 Non-Maskable Interrupt changed
264 Figure 5.2 Outline of the Exception Handling Procedure changed
265 5.3 Exception Handling Procedure: FREIT instruction → RTFI instruction, REIT

instruction → RTE instruction changed
268 5.5 Hardware Processing for Accepting and Returning from Exceptions

(2) FREIT instruction → RTFI instruction, REIT instruction → RTE instruction
changed
(a) Changed

269 to 270 5.6 Exception Sequences: Processor mode select bit, RM → PM error amended
271 Table 5.3 Return from Exception Processing Routines: FREIT instruction → RTFI

instruction, REIT instruction → RTE instruction changed
271 Table 5.4 Order of Priority for Exceptions changed

0.50 Feb. 3, 2009 3 Notation in This Manual
Rx added, Fx → flag changed

9, 13 List of Instructions for RX Family
Coprocessor instructions (MVFCP, MVTCP, and OPECP instructions) deleted

14 Section 1 CPU Functions, 1.1 Features, changed
15 Figure 1.1 Register Set of the CPU, CPEN register deleted
16 1.2.2 Control Registers, CPEN register deleted
17 1.2.2.2 Interrupt Table Register (INTB) changed
18 1.2.2.4 Processor Status Word (PSW): I bit changed, PM bit added
20 1.2.2.7 Fast Interrupt Vector Register (FINTV) changed
22 1.2.2.8 Floating-Point Status Word (FPSW): Notes changed and added
22 [Explanation of Floating-Point Rounding Modes] added
26 1.4.4 Switching Between Processor Modes, (2) Switching from supervisor mode to

user mode, changed
30 Figure 1.8 Fixed Vector Table changed
31 1.7.2 Relocatable Vector Table, Description changed
32 1.8 Address Space added

35 to 36
Section 2 Addressing Modes
Immediate: #IMM:2 deleted, Operation diagram for #UIMM:8 added

37 Control Register Direct: PC added, CPEN deleted
39 2.2.1 Ranges for Immediate Values added

Section 3 Instruction Descriptions, 3.1 Guide to This Section:
41 (4) Syntax, (c) Operand, changed
42 (5) Operation, (b) Pseudo-functions, changed
43 (8) Instruction Format, (b) Control registers, changed, (c) Flag and bit, changed
- Coprocessor instructions (MVFCP, MVTCP, and OPECP instructions) deleted

Bit pattern of the instruction → Instruction code changed
53 BCLR instruction: Function added

Description
Rev. Date Page Summary

REJ09B0435-0100 Rev.1.00 Page 272 of 278
June 11, 2010

RX Family REVISION HISTORY

Under development Preliminary document
Specifications in this document are tentative and subject to change.

0.50 Feb. 3, 2009 54 BCnd instruction, Description Example: Note added
55 BMCnd instruction: Function added
57 BNOT instruction: Function added
58 BRA instruction, Description Example: Note added
59 BRK instruction: Function changed
60 BSET instruction: Function added
61 BSR instruction: Note in Operation added
61 BSR instruction, Description Example: Note added
62 BTST instruction: Function added
70 EMUL instruction: Instruction Format added
72 EMULU instruction: Instruction Format added
73 FADD instruction: Note in Flag Change changed
75 FCMP instruction: Function changed, Note in Flag Change changed
78 FDIV instruction: Note in Flag Change changed
80 FMUL instruction: Note in Flag Change changed
83 FSUB instruction: Note in Flag Change changed
86 FTOI instruction: Note in Flag Change changed
89 INT instruction: Function changed
90 ITOF instruction: Note in Flag Change changed
99 to 100 MOV instruction: Instruction Format changed, Note 1 changed
101 MOVU instruction: Note 1 in Instruction Format changed
109 MVFC instruction: Function added, Note in Instruction Format changed
112 MVTC instruction: Note in Instruction Format changed
113 MVTIPL instruction: Function added
120 POPC instruction: Instruction Format changed
123 PUSHC instruction: Function added, Instruction Format changed
129 RMPA instruction: Note in Operation changed
135 ROUND instruction: Note in Flag Change changed
142 RTSD instruction, Instruction Format: Description added, Note changed
148 SCMPU instruction: Note in Operation changed
153 SMOVB instruction: Note in Operation changed
154 SMOVF instruction: Note in Operation changed
155 SMOVU instruction: Note in Operation changed
156 SSTR instruction: Note in Operation changed
160 SUNTIL instruction: Note in Operation changed
162 SWHILE instruction: Note in Operation changed
165 WAIT instruction, Function: Description added, Note added

170
Section 4 Instruction Code
4.1 Guide to This Section, (2) List of Code Size: Description added

- Coprocessor instructions (MVFCP, MVTCP, and OPECP instructions) deleted
180 to 181 BCnd: Instruction codes (1) and (3) changed
213 to 214
217

MOV: Code Size (list) changed
MOV: Instruction code (14) changed, Instruction code (15) added

222 MVFACMI: Instruction code (1) changed
223 MVFC: Instruction code (1) changed
225 to 226 MVTC: Instruction codes (1) and (2) changed
231 POPC: Instruction code (1) changed

Description
Rev. Date Page Summary

REJ09B0435-0100 Rev.1.00 Page 273 of 278
June 11, 2010

RX Family REVISION HISTORY

Under development Preliminary document
Specifications in this document are tentative and subject to change.

0.50 Feb. 3, 2009 233 PUSHC: Instruction code (1) changed
Section 5 Exceptions

257 5.1 Types of Exception: Section title changed
257 Figure 5.1 Types of Exception changed
258 5.1.4 Floating-Point Exceptions changed
258 5.1.7 Interrupts changed
258 5.1.8 Unconditional Trap added (5.2.8 INT Instruction Exceptions and 5.2.9 BRK

Instruction Exception deleted)
259 Figure 5.2 Outline of the Exception Handling Procedure changed
260 5.2 Exception Handling Procedure changed
261 Table 5.1 Timing of Acceptance and Saved PC Value changed
262 Table 5.2 Vector Table and Site for Preserving the PC and PSW Registers changed
263 5.4 Hardware Processing for Accepting and Returning from Exceptions,

(1) Hardware pre-processing for accepting an exception, (a) Preserving the PSW
register: Note added

265 5.5.8 Unconditional Trap added (5.6.8 INT Instruction Exceptions and 5.6.9 BRK
Instruction Exception deleted)

266 Table 5.3 Return from Exception Processing Routines changed
266 Table 5.4 Order of Priority for Exceptions changed
267 Index added

0.51 Mar. 24, 2009 -

30

DSP instructions, floating-point operation instructions, floating-point operation unit
are described without the phase "(as an optional function)".
1.7.1 Fixed Vector Table, Figure 1.8 Fixed Vector Table
Reserved area is added to addresses in the range from FFFFFF80h to FFFFFFCCh.

0.60 May. 26, 2009 9 List of Instructions Classified in Alphabetical Order
MVTIPL (privileged instruction) deleted

13 List of Instructions Classified by Type
MVTIPL (privileged instruction) deleted

18 1.2.2.4 Processor Status Word (PSW)
Description on the MVTIPL deleted from Note 1

26 1.4.3 Privileged Instruction
Description on the MVTIPL deleted

35 2.2 Addressing Modes
Immediate, #IMM:3: Description on the MVTIPL deleted

- 3.2 Instructions in Detail
Description on the MVTIPL deleted

- 4.2 Instruction Code Described in Detail
Description on the MVTIPL including the code size deleted

1.00 June 11, 2010 5 Notation in This Manual, Operations: << and >> added, tmp32 and tmp64 deleted
8 to 16 List of Instructions for RX Family

BCnd, BMCnd, and SCCnd instructions: Cnd described as mnemonic
MVTIPL instruction (privileged instruction) added, table note added

All Exception sequence → Hardware pre-processing, Exception handler → Exception
handling routine, changed

Description
Rev. Date Page Summary

REJ09B0435-0100 Rev.1.00 Page 274 of 278
June 11, 2010

RX Family REVISION HISTORY

Under development Preliminary document
Specifications in this document are tentative and subject to change.

1.00 June 11, 2010

17

18

20

21
21
22
22

25

25 to 26
26
29

30

30

Section 1 CPU Functions
1.1 Features

Register set of the CPU, and the accumulator, changed
1.2 Register Set of the CPU

Figure 1.1 Register Set of the CPU, changed
1.2.2.3 Program Counter (PC)

Bit arrangement diagram, Value after reset, changed
1.2.2.4 Processor Status Word (PSW)

Bit arrangement diagram: Note for b27, added
Bits IPL[2:0] → Bits IPL[3:0] changed
Note 1 changed, Note 4 added
Description on bits IPL[3:0] changed

1.2.2.8 Floating-Point Status Word (FPSW)
FS: Floating-point flag summary bit → Floating-point error summary flag,
changed
Description on bits added

1.2.3 Accumulator (ACC), changed
1.3.6 Unimplemented Processing, changed
1.4.2 User Mode

Bits IPL[2:0] → Bits IPL[3:0] changed
1.4.3 Privileged Instruction

MVTIPL instruction added

39
41
43

Section 2 Addressing Modes
2.2 Addressing Modes

Immediate, #IMM:3: changed, Immediate, #IMM:4: added
PSW Direct, Operation diagram: Bits IPL[2:0] → Bits IPL[3:0] changed
Table 2.1 Ranges for Immediate Values: IMM:4 added

46

57
58
59

61
80

98
99
109
110
114
115
116
117
124
129
135
136
137
138

Section 3 Instruction Descriptions
3.1 Guide to This Section, (a) Data type: signed long long, unsigned long long, and
float, added
BCLR instruction: Operation (1) and (2), changed
BCnd instruction, Function: The column for Cnd described as mnemonic
BMCnd instruction: Operation (1) and (2), changed

Function: The column for Cnd described as mnemonic
BNOT instruction: Operation (1) and (2), changed
FCMP instruction:

Supplementary Description, =: src2 = src → src2 == src changed
MACHI instruction: Operation and Function, changed
MACLO instruction: Operation and Function, changed
MULHI instruction: Operation changed
MULLO instruction: Operation changed
MVTACHI instruction: Operation changed
MVTACLO instruction: Operation changed
MVTC instruction: Function changed
MVTIPL instruction, added
POPC instruction: Function changed
RACW instruction: Operation changed
ROLC instruction: Operation added, Function changed
RORC instruction: Operation added, Function changed
ROTL instruction: Operation added, Function changed
ROTR instruction: Operation added, Function changed

Description
Rev. Date Page Summary

REJ09B0435-0100 Rev.1.00 Page 275 of 278
June 11, 2010

RX Family REVISION HISTORY

Under development Preliminary document
Specifications in this document are tentative and subject to change.

1.00 June 11, 2010 145
147
148
150
154
155
156
164
166

RTSD instruction: Operation (2), changed
SAT instruction: Operation changed
SATR instruction: Operation changed
SCCnd instruction, Function: The column for Cnd described as mnemonic
SHAR instruction: Operation added, Function changed
SHLL instruction: Operation added, Function changed
SHLR instruction: Operation added, Function changed
SUNTIL instruction: Operation changed
SWHILE instruction: Operation changed

174

177 to 255
185 to 186
187
227
243

Section 4 Instruction Code
4.1 Guide to This Section
(4) Instruction Code: Instruction code for memex (when memex == UB or src == Rs,
when memex != UB) and src/dest description changed
4.2 Instruction Code Described in Detail
Description of memex specifier: SB → B, SW → W, changed
BCnd instruction: The column for Cnd described as mnemonic
BMCnd instruction: The column for Cnd described as mnemonic
MVTIPL instruction, added
SCCnd instruction: The column for Cnd described as mnemonic

257
257
258
261
261

262
264
264

Section 5 Exceptions
5.1.3 Access Exception, changed
5.1.7 Interrupts, changed
5.2 Exception Handling Procedure, changed
5.3.2 Vector and Site for Preserving the PC and PSW, changed
Table 5.2 Vector and Site for Preserving the PC and PSW, changed
5.4 Hardware Processing for Accepting and Returning from Exceptions: Description

added
(b) Updating of the PM, U, and I bits in the PSW, changed

5.5.6 Non-Maskable Interrupt, (4) changed
5.5.7 Interrupts, (4) changed

Description
Rev. Date Page Summary

RX Family User’s Manual: Software

Publication Date: Rev.0.10 Nov. 12, 2007
Rev.1.00 June 11, 2010

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

RX Family

REJ09B0435-0100

	Cover
	Notes regarding these materials
	Notation in This Manual
	Contents
	List of Instructions for RX Family
	List of Instructions Classified in Alphabetical Order
	List of Instructions Classified by Type

	Section 1 CPU Functions
	1.1 Features
	1.2 Register Set of the CPU
	1.2.1 General-Purpose Registers (R0 to R15)
	1.2.2 Control Registers
	1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)
	1.2.2.2 Interrupt Table Register (INTB)
	1.2.2.3 Program Counter (PC)
	1.2.2.4 Processor Status Word (PSW)
	1.2.2.5 Backup PC (BPC)
	1.2.2.6 Backup PSW (BPSW)
	1.2.2.7 Fast Interrupt Vector Register (FINTV)
	1.2.2.8 Floating-Point Status Word (FPSW)

	1.2.3 Accumulator (ACC)

	1.3 Floating-Point Exceptions
	1.3.1 Overflow
	1.3.2 Underflow
	1.3.3 Inexact
	1.3.4 Division-by-Zero
	1.3.5 Invalid Operation
	1.3.6 Unimplemented Processing

	1.4 Processor Mode
	1.4.1 Supervisor Mode
	1.4.2 User Mode
	1.4.3 Privileged Instruction
	1.4.4 Switching Between Processor Modes

	1.5 Data Types
	1.5.1 Integer
	1.5.2 Floating-Point
	1.5.3 Bitwise Operations
	1.5.4 Strings

	1.6 Data Arrangement
	1.6.1 Data Arrangement in Registers
	1.6.2 Data Arrangement in Memory

	1.7 Vector Table
	1.7.1 Fixed Vector Table
	1.7.2 Relocatable Vector Table

	1.8 Address Space

	Section 2 Addressing Modes
	2.1 Guide to This Section
	(1) Name
	(2) Symbolic notation
	(3) Description
	(4) Operation diagram

	2.2 Addressing Modes
	2.2.1 Ranges for Immediate Values

	Section 3 Instruction Descriptions
	3.1 Guide to This Section
	(1) Mnemonic
	(2) Instruction Type
	(3) Instruction Code
	(4) Syntax
	(a) Mnemonic
	(b) Size specifier .size
	(c) Operand src, dest

	(5) Operation
	(a) Data type
	(b) Pseudo-functions
	(c) Special notation

	(6) Function
	(7) Flag Change
	(8) Instruction Format
	(a) Registers
	(b) Control registers
	(c) Flag and bit
	(d) Immediate value
	(e) Size extension specifier (.memex) appended to a memory operand
	(f) Processing size

	(9) Description Example
	(4) Syntax
	(a) Mnemonic
	(b) Branch distance specifier .length

	3.2 Instructions in Detail
	ABS
	ADC
	ADD
	AND
	BCLR
	BCnd
	BMCnd
	BNOT
	BRA
	BRK
	BSET
	BSR
	BTST
	CLRPSW
	CMP
	DIV
	DIVU
	EMUL
	EMULU
	FADD
	FCMP
	FDIV
	FMUL
	FSUB
	FTOI
	INT
	ITOF
	JMP
	JSR
	MACHI
	MACLO
	MAX
	MIN
	MOV
	MOVU
	MUL
	MULHI
	MULLO
	MVFACHI
	MVFACMI
	MVFC
	MVTACHI
	MVTACLO
	MVTC
	MVTIPL
	NEG
	NOP
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHC
	PUSHM
	RACW
	REVL
	REVW
	RMPA
	ROLC
	RORC
	ROTL
	ROTR
	ROUND
	RTE
	RTFI
	RTS
	RTSD
	SAT
	SATR
	SBB
	SCCnd
	SCMPU
	SETPSW
	SHAR
	SHLL
	SHLR
	SMOVB
	SMOVF
	SMOVU
	SSTR
	STNZ
	STZ
	SUB
	SUNTIL
	SWHILE
	TST
	WAIT
	XCHG
	XOR

	Section 4 Instruction Code
	4.1 Guide to This Section
	(1) Mnemonic
	(2) List of Code Size
	(3) Syntax
	(4) Instruction Code

	4.2 Instruction Code Described in Detail
	ABS
	ADC
	ADD
	AND
	BCLR
	BCnd
	BMCnd
	BNOT
	BRA
	BRK
	BSET
	BSR
	BTST
	CLRPSW
	CMP
	DIV
	DIVU
	EMUL
	EMULU
	FADD
	FCMP
	FDIV
	FMUL
	FSUB
	FTOI
	INT
	ITOF
	JMP
	JSR
	MACHI
	MACLO
	MAX
	MIN
	MOV
	MOVU
	MUL
	MULHI
	MULLO
	MVFACHI
	MVFACMI
	MVFC
	MVTACHI
	MVTACLO
	MVTC
	MVTIPL
	NEG
	NOP
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHC
	PUSHM
	RACW
	REVL
	REVW
	RMPA
	ROLC
	RORC
	ROTL
	ROTR
	ROUND
	RTE
	RTFI
	RTS
	RTSD
	SAT
	SATR
	SBB
	SCCnd
	SCMPU
	SETPSW
	SHAR
	SHLL
	SHLR
	SMOVB
	SMOVF
	SMOVU
	SSTR
	STNZ
	STZ
	SUB
	SUNTIL
	SWHILE
	TST
	WAIT
	XCHG
	XOR

	Section 5 Exceptions
	5.1 Types of Exception
	5.1.1 Undefined Instruction Exception
	5.1.2 Privileged Instruction Exception
	5.1.3 Access Exception
	5.1.4 Floating-Point Exceptions
	5.1.5 Reset
	5.1.6 Non-Maskable Interrupt
	5.1.7 Interrupts
	5.1.8 Unconditional Trap

	5.2 Exception Handling Procedure
	5.3 Acceptance of Exceptions
	5.3.1 Timing of Acceptance and Saved PC Value
	5.3.2 Vector and Site for Preserving the PC and PSW

	5.4 Hardware Processing for Accepting and Returning from Exceptions
	(1) Hardware pre-processing for accepting an exception
	(a) Preserving the PSW
	(b) Updating of the PM, U, and I bits in the PSW
	(c) Preserving the PC
	(d) Set the branch-destination address of the exception handling routine in the PC

	(2) Hardware post-processing for executing RTE and RTFI instructions
	(a) Restoring the PSW
	(b) Restoring the PC

	5.5 Hardware Pre-processing
	5.5.1 Undefined Instruction Exception
	5.5.2 Privileged Instruction Exception
	5.5.3 Access Exception
	5.5.4 Floating-Point Exceptions
	5.5.5 Reset
	5.5.6 Non-Maskable Interrupt
	5.5.7 Interrupts
	5.5.8 Unconditional Trap

	5.6 Return from Exception Handling Routines
	5.7 Order of Priority for Exceptions

	Index
	REVISION HISTORY
	Colophon
	Address List
	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

