LENESAS

-
o
@
ﬁ\I
7
<
Q
S
-
)

RX Family

8
N

User’s Manual: Software

RENESAS 32-Bit MCU
RX Family

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWWw.renesas.com Rev.1.00 June 2010

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonabl e care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errorsin or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’ s quality grade, as
indicated below. Y ou must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repesaters; nuclear reactor control systems; medical equipment or
systemsfor life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software aloneis very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with al applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note1) “RenesasElectronics’ asused in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Notation in This Manual

The following is a list of the elements of the notation used in this manual.

Classification Notation Meaning
Symbols IMM Immediate value

SIMM Immediate value for sign extension according to the processing size

UIMM Immediate value for zero extension according to the processing size

src Source of an instruction operand

dest Destination of an instruction operand

dsp Displacement of relative addressing

pcdsp Displacement of relative addressing of the program counter

[1] Represents indirect addressing

Rn General-purpose register. RO to R15 are specifiable unless stated
otherwise.

Rs General-purpose register as a source. RO to R15 are specifiable unless
stated otherwise.

Rs2 Used in the description for the ADD, AND, CMP, MUL, OR, PUSHM, SUB,
and TST instructions. In these instructions, since two general-purpose
registers can be specified for an operand, the first general-purpose register
specified as a source is described as Rs and the second general-purpose
register specified as a source is described as Rs2.

Rd General-purpose register as a destination. RO to R15 are specifiable unless
stated otherwise.

Rd2 Used in the description for the POPM and RTSD instructions. In these
instructions, since two general-purpose registers can be specified for an
operand, the first general-purpose register specified as a destination is
described as Rd and the second general-purpose register specified as a
destination is described as Rd2.

Rb General-purpose register specified as a base register. RO to R15 are
specifiable unless stated otherwise.

Ri General-purpose register as an index register. RO to R15 are specifiable
unless stated otherwise.

Rx Represents a control register. The PC, ISP, USP, INTB, PSW, BPC, BPSW,
FINTV, and FPSW are selectable, although the PC is only selectable as the
src operand of MVFC and PUSHC instructions.

flag Represents a bit (U or I) or flag (O, S, Z, or C) in the PSW.

Values 000b Binary number
0000h Hexadecimal number
Bit length #IMM:8 etc. Represents the effective bit length for the operand symbol.

1 Indicates an effective length of one bit.

2 Indicates an effective length of two bits.

3 Indicates an effective length of three bits.

4 Indicates an effective length of four bits.

5 Indicates an effective length of five bits.

8 Indicates an effective length of eight bits.

16 Indicates an effective length of 16 bits.

24 Indicates an effective length of 24 bits.

132 Indicates an effective length of 32 bits.

Classification Notation Meaning
Size specifiers MOV.W etc. Indicates the size that an instruction handles.
B Byte (8 bits) is specified.
W Word (16 bits) is specified.
L Longword (32 bits) is specified.
Branch distance BRA.A etc Indicates the length of the valid bits to represent the distance to the branch
specifiers relative destination.
.S 3-bit PC forward relative is specified. The range of valid values is 3 to 10.
B 8-bit PC relative is specified. The range of valid values is —128 to 127.
W 16-bit PC relative is specified. The range of valid values is —32768 to 32767.
A 24-bit PC relative is specified. The range of valid values is —8388608 to
8388607.
L 32-bit PC relative is specified. The range of valid values is —2147483648 to

2147483647.

Size extension
specifiers added to
memory operands

dsp:16[Rs].UB etc.

Indicates the size of a memory operand and the type of extension. If the
specifier is omitted, the memory operand is handled as longword.

Byte (8 bits) is specified. The extension is sign extension.

Byte (8 bits) is specified. The extension is zero extension.

Word (16 bits) is specified. The extension is sign extension.

Word (16 bits) is specified. The extension is zero extension.

= E = g [io

Longword (32 bits) is specified.

Operations

(Operations in this manual are written in accord with C language syntax. The following is the
notation in this manual.)

Assignment operator. The value on the right is assigned to the variable on
the left.

Indicates negation as a unary operator or a "difference" as a binary operator.

Indicates "sum" as a binary operator.

Indicates a pointer or a "product" as a binary operator.

Indicates "quotient" as a binary operator.

Indicates "remainder" as a binary operator.

Indicates bit-wise "NOT" as a unary operator.

Indicates bit-wise "AND" as a binary operator.

Indicates bit-wise "OR" as a binary operator.

Indicates bit-wise "Exclusive OR" as a binary operator.

Indicates the end of a statement.

{}

Indicates the start and end of a complex sentence. Multiple statements can
be putin { }.

if (expression)
statement 1 else
statement 2

Indicates an if-statement. The expression is evaluated; statement 1 is
executed if the result is true and statement 2 is executed if the result is false.

for (statement 1;
expression;
statement 2)
statement 3

Indicates a for-statement. After executing statement 1 and then evaluating
the expression, statement 3 is executed if the result is true. After statement 3
is executed the first time, the expression is evaluated after executing
statement 2.

do statement while
(expression);

Indicates a do-statement. As long as the expression is true, the statement is
executed. Regardless of whether the expression is true or false, the
statement is executed at least once.

while (expression)
statement

Indicates a while-statement. As long as the expression is true, the statement
is executed.

Classification Notation Meaning
Operations ==, 1= Comparison operators. "==" means "is equal to" and "!=" means "is not
equal to".
> < Comparison operators. ">" means "greater than" and "<" means "less than".
>= <= Comparison operators. The condition includes "==" as well as ">" or "<".
&& Logical operator. Indicates the "AND" of the conditions to the left and right of
the operator.
Il Logical operator. Indicates the "OR" of the conditions to the left and right of
the operator.
<<, >> Shift operators, respectively indicating leftward and rightward shifts.

tmp, tmp0, tmp1,

Temporary register

tmp2, tmp3
! Logical NOT, that is, inversion of the boolean value of a variable or
expression.
Floating point NaN Not a number
number
Floating-point SNaN Signaling NaN
standard QNaN Quiet NaN

Contents

List of Instructions for RX Family........c.ccooiiiiiiiiiiieeeeee e 8
List of Instructions Classified in Alphabetical OTdercccociriiiiiiinininiieteee et 8
List of Instructions Classified DY TYPe......ccueiriririririniierereteet ettt ettt ettt st aene 12

Section 1 CPU FUNCHIONScueiiiiiiiiiiiieeie ettt ettt ettt ettt st et e sttt esabeebeesnseenseens 17

1.1 FRALUIES ...ttt ettt ettt et e h et e b et s et e st e eh e et e e et e e b e eb e emb e e et e nbesbeenaeebe et e eheenbeeneenteene 17

1.2 RegiSter Set 0T the CPU ..ottt ettt ee ettt et bt e bt s bt e beebe e beennesbeans 18
1.2.1 General-Purpose Registers (RO t0 R15) ..o 19
1.2.2 CONLLOL REZISEIS ...utitieiiiiieieett ettt ettt ettt at ettt e s bt st e bt et e beeb e et e e bt e st e sbeeseenbeeneesbeenaesneas 19

1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)ccceevieviiiiienieciieieereeee e 20
1.2.2.2 Interrupt Table Register (INTB)......coiiiiiiiiiieeeeee ettt s 20
1.2.2.3 Program Counter (PC)........coiiiiiieiee ettt sttt st sb et seee e 20
1.2.24 Processor Status Word (PSW)....o.ui ittt sttt et e e snne e 21
1.2.2.5 BaCKUP PC (BPO)...iiitit ettt ettt ettt st bt et s eaeebe b e e eneeneeneeneeneas 23
1.2.2.6 Backup PSW (BPSW) ...ttt ettt ettt se et ae e eesennen 23
1.2.2.7 Fast Interrupt Vector Register (FINTV).....ooiiiiiiiieiieieee ettt 23
1.2.2.8 Floating-Point Status Word (FPSW).......oouiiiie e 24
1.2.3 ACCUMUIALOT (ACC) .iiiiiiieiieeiiecie ettt et et e ete et e st e e teesabe e beasssesssaessaeesseeseessseanseessseassaenseesssaeseensses 26

1.3 Floating-Point EXCEPLIONSeouiiiiiiiiiiiitieie ettt ettt bbbt e ettt e e e et eaeebesaeesbeestenbeeneenteane 27
1.3.1 OVETTIOW ettt ettt a et e bt e bt s e e s bt e a e e bt e et e bt eb e et et e enteeaeentenbeeneesaeensennean 27
1.3.2 UNAEITIOW ..ttt ettt ettt b et e a et e b et e a e et e e bt e bt s aeesbe e st e beese e beebeenbeebeeneeeneeneesae 27
133 TIIEXACE ettt ettt ettt h et b et ettt ettt eh et h e bt bt e bt b e e bt bt en b e bt et e e bt e st e bt et saeentennean 27
1.3.4 DIVISION-DY=ZETO ...ttt ettt ettt ea et e e bt bt et e bt e bt eb e emt e et e st e sbeesee bt eneesaeensesaeas 28
1.3.5 INVALIA OPEIALION ...eiviiiiieiiieeie ettt ettt et teste et et e e e e teeesbeesseeaseeenseesseessseensaeassessseesssessseessesnseesssenn 28
1.3.6 Unimplemented PrOCESSINGcc.oeuiiiiiiiiieieit ettt ettt ettt sttt st ebe et sbeeee e e e eae 29

L4 PrOCESSOT IMOAEoueiiiiiieiiit ettt ettt ettt e a et e e sb e eb e bt ea e e bt eh e bt e et e saeeme et e et e beeb e e beeneenteene 30
1.4.1 N b 0T e Y [T (<SSR 30
1.4.2 L8131 (o LTSRS 30
143 Privileged INSIIUCHIONccuiiuieiiiiieieee ettt ettt ettt esee s et e ae et e e e ebeenteeneeeeeneeneeeae 30
1.4.4 Switching Between ProceSsOr MOGAESc.eeciiiieiiiieieiieie ettt see e nneas 30

1.5 DALA TYPES ittt ettt et e h e et h et ea bt e s bt e a bt e bt e a bt bt e sat e bt e e at e e b e e eab e e bt e sbbeebeenates 31
1.5.1 TIEEZET ettt et ettt e b e bt et e st ea bt et e bt e st e sa b e e bt e st e ebeesaeean 31
1.5.2 FLOAHINE-POINE ..ottt sttt ettt e et e e s st et e es e e eesaeeme e aeeseeseeneeneeeneeneeens 31
1.53 BItWiSE OPETALIONS .. .eetiiuieitieiietieiieete et et et te et eet e et e e s et e tebees e st eae e et e eneesaeeneesseemeesseemsenseeneenseeneenseeneenseenes 32
1.5.4 SEEITIES ettt ettt ettt e e et e et e et esae e ee st e este bt aate et e en e e et e eneeea e et e ee e e st eheen st en e e teeReen st en e e st et e enee et eneenneenean 32

1.6 Data AITANZEIMENT ..coc.tiiiiiiriieiiieiieeie ettt ettt e st e et e ettt e bt e sbteeateesbee e bt eabee s st e e beesabeeabeebeesabeeabtesabeesaseenbeensaean 33
1.6.1 Data Arrangement in REGISTETSoouieiiiiieiiiiierie ettt ettt sttt et etesbe e eeaeenteeseeeeeneeneeens 33
1.6.2 Data Arrangement il IMEITIOTYc.ceieriirieriiitieiesteeteeteete et et e ete e e st este st eeesseeseenseeseenseeneesesseensesneensesnees 33

1.7 VECTOT TADIE ...ttt ettt ettt e e sa e e te s bt e e e st et e eseeneeeseeaeesseensesneeaseeneenseeneenseens 34
1.7.1 0T BT 10 G 1 o) (PSPPSR 34
1.7.2 Relocatable VEctor TabIEcoociiiiiiiiieiieieee ettt sttt ettt sae e sseeeesneensennean 35

R 14 1 (TR o T SR URUSTRRTR 36

Section 2 Addressing MOAES........cccueieiiiieiiiieieeeee ettt e e e st eesve e e seaeeeaaeessaeessseeessseeenns 37

2.1 GUIAE 10 THIS SECTOM ..ttt ettt ettt h e bt bt sttt et et e st e bt ebe e bt eb e s b e st eneesteseeseeseebeabeebeebenbesaennen 38

2.2 AdAresSing MOGES ...oioieiiiieiicieieet ettt ettt te ettt eetb et e et e b e et e et e e e e heerb e b e esbeebeetb e aeenbeeteenbeestenaeereeraeteas 39
2.2.1 Ranges for IMMEdiate VAIUEScccoovieriiiiiiiiieiceect ettt sttt ess e s essesteesaesseesseseeessanneas 43

Section 3 INStruction DESCIIPLIONSueeviiiiieiieiieeiteeie et ettt siteeteestee e e esaesebeebeeseneeseesanaens 44

3.1 GUIAE t0 THIS SECLION ..eieieiieeiiiieeeet ettt ettt ettt e e st e e et e e e st e et e st e sesaeessesseentesseenseeseenseeneenseeneenseens 44

3.2 INStructions 1N DELAILoouiiiiiieee ettt sttt et st e ettt e et st e nne e e sreeneeeneeneenteens 50

Section 4 INStrUCtioN CO@........vviiiiiiiie e ettt e e e aaee e e enes 173

4.1 GUIAE 10 THIS SECTOM ..eutiuiiiieiieiietiet ettt ettt ettt ettt bttt e b e st et et eb e e bt ebeebesbesbe st enseseeseebeebeabesbeebenbentens 173

4.2 Instruction Code DeScribed in DIELAIlccoiiivuiiiiiiiiiiie ettt et eeeaae e ee s eaaeesenneeeennees 176

N Lo 107 BT 2 (1< o 5 o) 1 KRS 256

5.1 TYPES OFf EXCEPLION ..euvieniieeiiiieiieieetieit ettt ettt et e te et et e e te et et e esaesseeseesseessesseansesseessenseeseanseessansenseensesseensesanen 256
5.1.1 Undefined InStruction EXCEPLIONccuecieiiirieiiriieie ittt ettt et sre e e eae e esaensesseenaesseensesneen 257
5.1.2 Privileged InStruction EXCEPLIONccecieeiirieriiriieie it eie sttt ettt eae st eae e eaesseessestesseenaessaensesseen 257
5.1.3 ACCESS EXCOPLION ...evviiieiiieiieieeiiesit ettt ettt ekt e e et et e s st e seeseensesseesseensenseessenseessenseensesseensesseensennnes 257
5.1.4 Floating-Point EXCEPIONScc.eiieiiieieiieiert ettt sttt ettt e tesaesaessaensessaenseesaensesseeneesseensesneen 257
5.1.5 RESEE ettt sttt sttt a et sae et be et ean 257
5.1.6 NON-MaSKaDIE INTEITUPLocvveiieeiiiieieiieest ettt ettt e teesaesseesaesseesaesseessensesseensesseensesneen 257
5.1.7 TIEETTUPLS .ottt ettt e bt e e a bt et e sab e e bt e bt e eab e e bt e sebeenbeenstesabe e seenseesnbeensaesats 257
5.1.8 UNCONAILIONAL TTAP .oovvivieieiiieiieiieie ettt ettt sttt et et e steestesseesaesseesaesseensesseeseenseeseesseensenseennen 257

5.2 Exception Handling PrOCEAUIEccceicieiiiiieiieieiteieie ettt sttt ettt ettt eseesseesaesse s aenseeseensensnenseees 258

5.3 AcCeptance Of EXCEPLIONS ...c.eccuiiuiiiiiiieieetieteetiesteeete it etestesae e esaesteesaesteessesseasseeseensesseensessaensesssesenssensennsenseanes 260
5.3.1 Timing of Acceptance and Saved PC ValUeccocieviiiiiiiiieiecieeeee et 260
5.3.2 Vector and Site for Preserving the PC and PSWccooiiiiiiiieeeeeeee e 261

5.4 Hardware Processing for Accepting and Returning from EXCEPLionsccoecevieriirierienienenieieeeee e 262

5.5 HardwWare Pre-PrOCESSINGccecciecierieiieeiietieierteetestestessestestessseseeseesseessasseassesseessessesssesseessesssensenseensenseensennes 263
5.5.1 Undefined INnStruction EXCEPLIONcc.ecieiuirieiiiieie ittt ettt sttt esa et e e eneesneensesneas 263
552 Privileged InStruction EXCEPLIONcecieiierieriiriieieitete sttt ettt et eae st eae e eaesseensessesseennesseensesneas 263
553 ACCESS EXCOPLION ...evviiieiiieiieieeiett ettt ettt ettt et e et et e s et e s e eseessessaesseessenseesseaseenseassensesseensesseensennnes 263
5.54 Floating-Point EXCEPIONScc.ieiiiiieiiiieiert ettt sttt et et este e s e e saessaensessaesseeseensesseeneesseensesneen 263
5.55 RESEE e ettt ettt st b et ettt et sae et e be st e 263
5.5.6 NON-MaSKaDIE INTEITUPLocvviiieiiiiieiieiieiest ettt ettt et e teestesaeesaesseesaesseesaensesseensesseensesnean 264
5.5.7 TIEETTUPLS .ottt ettt ettt et e b e e it et e s ab e e bt e bt e e a bt e bt e sebeenbeenstesabeebee bt e snbeenaaesats 264
5.5.8 UNCONAILIONAL TTAP ..ovvivieieieieiieiieie ettt ettt sttt et et e eseesseesaesseenaesseensesseeseensesseenseensensesnnen 264

5.6 Return from Exception Handling ROULINESccoecieviiiieiiiiieiiieiesiiee sttt sne e 265

5.7 Order of Priority fOr EXCEPLIONSccuieciiriieierieiiesieeieie ettt ettt e e st e s s ae e ssaesseesaesseeseesaenseessensesssensennsenseenes 265

DX ettt et e et e bt sat e e bt et te et e e nateeabeeteeeateenneeenne 266

REVISION HISTORY ...ttt st 268

Under development Preliminary document
Specifications in this document are tentative and subject to change.
RX Family

List of Instructions for RX Family

List of Instructions for RX Family

List of Instructions Classified in Alphabetical Order

Instruction Instruction Code
Described in Detail Described in Detail
Mnemonic Function (on Page) (on Page)
ABS Absolute value 51 177
ADC Addition with carry 52 178
ADD Addition without carry 53 179
AND Logical AND 55 181
BCLR Clearing a bit 57 183
BCnd BGEU Relative conditional branch 58 185
BC 58 185
BEQ 58 185
Bz 58 185
BGTU 58 185
BPz 58 185
BGE 58 185
BGT 58 185
BO 58 185
BLTU 58 185
BNC 58 185
BNE 58 185
BNz 58 185
BLEU 58 185
BN 58 185
BLE 58 185
BLT 58 185
BNO 58 185
BMCnd BMGEU Conditional bit transfer 59 187
BMC 59 187
BMEQ 59 187
BMZ 59 187
BMGTU 59 187
BMPZ 59 187
BMGE 59 187
BMGT 59 187
BMO 59 187
BMLTU 59 187
BMNC 59 187
BMNE 59 187
BMNZz 59 187
BMLEU 59 187
BMN 59 187
BMLE 59 187
BMLT 59 187
BMNO 59 187
REJ09B0435-0100 Rev.1.00 RENESAS Page 8 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family List of Instructions for RX Family
Instruction Instruction Code
Described in Detail Described in Detail
Mnemonic Function (on Page) (on Page)
BNOT Inverting a bit 61 188
BRA Unconditional relative branch 62 190
BRK Unconditional trap 63 191
BSET Setting a bit 64 191
BSR Relative subroutine branch 65 193
BTST Testing a bit 66 194
CLRPSW Clear a flag or bit in the PSW 67 196
CMP Comparison 68 197
DIV Signed division 69 199
DIVU Unsigned division 71 201
EMUL Signed multiplication 73 202
EMULU Unsigned multiplication 75 203
FADD Floating-point addition 77 204
FCMP Floating-point comparison 79 205
FDIV Floating-point division 82 206
FMUL Floating-point multiplication 84 207
FSUB Floating-point subtraction 87 208
FTOI Floating point to integer conversion 90 209
INT Software interrupt 93 209
ITOF Integer to floating-point conversion 94 210
JMP Unconditional jump 96 211
JSR Jump to a subroutine 97 21
MACHI Multiply-Accumulate the high-order word 98 212
MACLO Multiply-Accumulate the low-order word 99 212
MAX Selecting the highest value 100 213
MIN Selecting the lowest value 101 214
MOV Transferring data 102 215
MOVU Transfer unsigned data 105 220
MUL Multiplication 107 221
MULHI Multiply the high-order word 109 223
MULLO Multiply the low-order word 110 223
MVFACHI Move the high-order longword from 111 224
accumulator
MVFACMI Move the middle-order longword from 112 224
accumulator

MVFC Transfer from a control register 113 225
MVTACHI Move the high-order longword to accumulator 114 225
MVTACLO Move the low-order longword to accumulator 115 226
MVTC Transfer to a control register 116 226
MVTIPL* Interrupt priority level setting 117 227
(privileged instruction)

NEG Two’s complementation 118 228
NOP No operation 119 228
NOT Logical complementation 120 229

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 9 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family List of Instructions for RX Family
Instruction Instruction Code
Described in Detail Described in Detail
Mnemonic Function (on Page) (on Page)
OR Logical OR 121 230
POP Restoring data from stack to register 123 231
POPC Restoring a control register 124 232
POPM Restoring multiple registers from the stack 125 232
PUSH Saving data on the stack 126 233
PUSHC Saving a control register 127 234
PUSHM Saving multiple registers 128 234
RACW Round the accumulator word 129 235
REVL Endian conversion 131 235
REVW Endian conversion 132 236
RMPA Multiply-and-accumulate operation 133 236
ROLC Rotation with carry to left 135 237
RORC Rotation with carry to right 136 237
ROTL Rotation to left 137 238
ROTR Rotation to right 138 238
ROUND Conversion from floating-point to integer 139 239
RTE Return from the exception 142 239
(privileged instruction)
RTFI Return from the fast interrupt 143 240
(privileged instruction)
RTS Returning from a subroutine 144 240
RTSD Releasing stack frame and returning from 145 240
subroutine
SAT Saturation of signed 32-bit data 147 241
SATR Saturation of signed 64-bit data for RMPA 148 241
SBB Subtraction with borrow 149 242
SCCnd SCGEU Condition setting 150 243
SCC 150 243
SCEQ 150 243
SCz 150 243
SCGTU 150 243
SCPz 150 243
SCGE 150 243
SCGT 150 243
SCO 150 243
SCLTU 150 243
SCNC 150 243
SCNE 150 243
SCNz 150 243
SCLEU 150 243
SCN 150 243
SCLE 150 243
SCLT 150 243
SCNO 150 243

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 10 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family List of Instructions for RX Family
Instruction Instruction Code
Described in Detail Described in Detail

Mnemonic Function (on Page) (on Page)
SCMPU String comparison 152 243

SETPSW Setting a flag or bit in the PSW 153 244

SHAR Arithmetic shift to the right 154 245

SHLL Logical and arithmetic shift to the left 155 246

SHLR Logical shift to the right 156 247

SMOVB Transferring a string backward 157 248

SMOVF Transferring a string forward 158 248

SMOVU Transferring a string 159 248

SSTR Storing a string 160 249

STNZ Transfer with condition 161 249

STz Transfer with condition 162 250

SuB Subtraction without borrow 163 251

SUNTIL Searching for a string 164 252

SWHILE Searching for a string 166 252

TST Logical test 168 253

WAIT Waiting 169 254

(privileged instruction)

XCHG Exchanging values 170 254

XOR Logical exclusive or 172 255

Note: * The MVTIPL instruction is not available in products of the RX610 Group.

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 11 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family List of Instructions for RX Family

List of Instructions Classified by Type

Instruction Instruction
Described in Code Described

Instruction Detail in Detail
Type Mnemonic Function (on Page) (on Page)
Arithmetic/logic ABS Absolute value 51 177
instructions Apc Addition with carry 52 178
ADD Addition without carry 53 179
AND Logical AND 55 181
CMP Comparison 68 197
DIV Signed division 69 199
DIVU Unsigned division 71 201
EMUL Signed multiplication 73 202
EMULU Unsigned multiplication 75 203
MAX Selecting the highest value 100 213
MIN Selecting the lowest value 101 214
MUL Multiplication 107 221
NEG Two’s complementation 118 228
NOP No operation 119 228
NOT Logical complementation 120 229
OR Logical OR 121 230
RMPA Multiply-and-accumulate operation 133 236
ROLC Rotation with carry to left 135 237
RORC Rotation with carry to right 136 237
ROTL Rotation to left 137 238
ROTR Rotation to right 138 238
SAT Saturation of signed 32-bit data 147 241
SATR Saturation of signed 64-bit data for RMPA 148 241
SBB Subtraction with borrow 149 242
SHAR Arithmetic shift to the right 154 245
SHLL Logical and arithmetic shift to the left 155 246
SHLR Logical shift to the right 156 247
SUB Subtraction without borrow 163 251
TST Logical test 168 253
XOR Logical exclusive or 172 255
Floating-point FADD Floating-point addition 77 204
QPera“‘?” FCMP Floating-point comparison 79 205
instructions
FDIV Floating-point division 82 206
FMUL Floating-point multiplication 84 207
FSUB Floating-point subtraction 87 208
FTOI Floating point to integer conversion 90 209
ITOF Integer to floating-point conversion 94 210
ROUND Conversion from floating-point to integer 139 239
REJ09B0435-0100 Rev.1.00 RENESAS Page 12 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family List of Instructions for RX Family
Instruction Instruction
Described in Code Described
Instruction Detail in Detail
Type Mnemonic Function (on Page) (on Page)
Data transfer MOV Transferring data 102 215
instructions MOVU Transfer unsigned data 105 220
POP Restoring data from stack to register 123 231
POPC Restoring a control register 124 232
POPM Restoring multiple registers from the stack 125 232
PUSH Saving data on the stack 126 233
PUSHC Saving a control register 127 234
PUSHM Saving multiple registers 128 234
REVL Endian conversion 131 235
REVW Endian conversion 132 236
SCCnd SCGEU Condition setting 150 243
SCC 150 243
SCEQ 150 243
SCz 150 243
SCGTU 150 243
SCPz 150 243
SCGE 150 243
SCGT 150 243
SCO 150 243
SCLTU 150 243
SCNC 150 243
SCNE 150 243
SCNZz 150 243
SCLEU 150 243
SCN 150 243
SCLE 150 243
SCLT 150 243
SCNO 150 243
STNZ Transfer with condition 161 249
STZ Transfer with condition 162 250
XCHG Exchanging values 170 254

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 13 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section5
Instruction Instruction
Described in Code Described
Instruction Detail in Detail
Type Mnemonic Function (on Page) (on Page)
Branch BCnd BGEU Relative conditional branch 58 185
instructions BC 58 185
BEQ 58 185
BZ 58 185
BGTU 58 185
BPZ 58 185
BGE 58 185
BGT 58 185
BO 58 185
BLTU 58 185
BNC 58 185
BNE 58 185
BNZ 58 185
BLEU 58 185
BN 58 185
BLE 58 185
BLT 58 185
BNO 58 185
BRA Unconditional relative branch 62 190
BSR Relative subroutine branch 65 193
JMP Unconditional jump 96 211
JSR Jump to a subroutine 97 21
RTS Returning from a subroutine 144 240
RTSD Releasing stack frame and returning from 145 240

subroutine

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 14 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section5

Instruction Instruction
Described in Code Described

Instruction Detail in Detail
Type Mnemonic Function (on Page) (on Page)
Bit BCLR Clearing a bit 57 183
manipulation gy g BMGEU Conditional bit transfer 59 187
instructions —_—
BMC 59 187
BMEQ 59 187
BMZ 59 187
BMGTU 59 187
BMPZ 59 187
BMGE 59 187
BMGT 59 187
BMO 59 187
BMLTU 59 187
BMNC 59 187
BMNE 59 187
BMNZ 59 187
BMLEU 59 187
BMN 59 187
BMLE 59 187
BMLT 59 187
BMNO 59 187
BNOT Inverting a bit 61 188
BSET Setting a bit 64 191
BTST Testing a bit 66 194
String SCMPU String comparison 152 243
rnanipu]ation SMOVB Transferring a string backward 157 248
instructions
SMOVF Transferring a string forward 158 248
SMOVU Transferring a string 159 248
SSTR Storing a string 160 249
SUNTIL Searching for a string 164 252
SWHILE Searching for a string 166 252
System BRK Unconditional trap 63 191
manipulation) ppgyy Clear a flag or bit in the PSW 67 196
instructions
INT Software interrupt 93 209
MVFC Transfer from a control register 113 225
MVTC Transfer to a control register 116 226
MVTIPL* Interrupt priority level setting 117 227
(privileged instruction)
RTE Return from the exception 142 239
(privileged instruction)
RTFI Return from the fast interrupt 143 240
(privileged instruction)
SETPSW Setting a flag or bit in the PSW 153 244
WAIT Waiting 169 254

(privileged instruction)

REJ09B0435-0100 Rev.1.00 RENESAS Page 15 of 278
June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family

Section5

Instruction
Described in

Instruction
Code Described

Instruction Detail in Detail
Type Mnemonic Function (on Page) (on Page)
DSP MACHI Multiply-Accumulate the high-order word 98 212
instructions \acLO Multiply-Accumulate the low-order word 99 212
MULHI Multiply the high-order word 109 223
MULLO Multiply the low-order word 110 223
MVFACHI Move the high-order longword from 111 224
accumulator
MVFACMI Move the middle-order longword from 112 224
accumulator
MVTACHI Move the high-order longword to 114 225
accumulator
MVTACLO Move the low-order longword to 115 226
accumulator
RACW Round the accumulator word 129 235

Note: * The MVTIPL instruction is not available in products of the RX610 Group.

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 16 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 1 CPU Functions

Section 1 CPU Functions

The RX CPU has short formats for frequently used instructions, facilitating the development of efficient programs that
take up less memory. Moreover, some instructions are executable in one clock cycle, and this realizes high-speed
arithmetic processing. The CPU has 73 basic instructions, 8 floating-point operation instructions, and 9 DSP instructions,
for a total of 90 instructions. It has 10 addressing modes, with register-register operations, register-memory operations,
and bitwise operations included. Data transfer between memory locations is also possible. An internal multiplier is
included for high-speed multiplication.

1.1 Features

* High instruction execution rate: One instruction in one clock cycle
e Address space: 4-Gbyte linear addresses
* Register set of the CPU
General purpose: Sixteen 32-bit registers
Control: Nine 32-bit registers
Accumulator: One 64-bit register
* Basic instructions: 73
Relative branch instructions to suit branch distances
Variable-length instruction format (lengths from one to eight bytes)
Short formats are provided for frequently used instructions.
» Floating-point operation instructions : 8
* DSP instructions : 9
Supports 16-bit x 16-bit multiplication and multiply-and-accumulate operations.
Rounds the data in the accumulator.
* Addressing modes: 10
* Processor modes
Supports a supervisor mode and a user mode.
* Floating-point operation unit
Supports single precision (32-bit) floating-point.
Supports data types and exceptions conforming to the [EEE754 standard.
* Memory protection unit (as an optional function)
e Data arrangement

Selectable as little endian or big endian

REJ09B0435-0100 Rev.1.00 RENESAS Page 17 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 1 CPU Functions

1.2 Register Set of the CPU

The RX CPU has sixteen general-purpose registers, nine control registers, and one accumulator used for DSP
instructions.

General-purpose register
b31 b0

RO (SP) *
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

Control register
b31 b0

ISP (Interrupt stack pointer)
USP (User stack pointer)

INTB (Interrupt table register)

PC (Program counter)

PSW (Processor status word)

BPSW (Backup PSW)

FINTV (Fast interrupt vector register)

|
|
|
BPC (Backup PC) |
|
|
|

FPSW (Floating-point status word)

DSP instruction register
b63 b0
ACC (Accumulator)

Note: * The stack pointer (SP) can be the interrupt stack pointer (ISP) or user stack pointer (USP),
according to the value of the U bit in the PSW.

Figure 1.1 Register Set of the CPU

REJ09B0435-0100 Rev.1.00 RENESAS Page 18 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 1 CPU Functions

1.2.1

General-Purpose Registers (R0 to R15)

This CPU has sixteen general-purpose registers (RO to R15). R1 to R15 can be used as data register or address register.

RO, a general-purpose register, also functions as the stack pointer (SP). The stack pointer is switched to operate as the
interrupt stack pointer (ISP) or user stack pointer (USP) by the value of the stack pointer select bit (U) in the processor
status word (PSW).

1.2.2 Control Registers

This CPU has the following nine control registers.

Interrupt stack pointer (ISP)

User stack pointer (USP)

Interrupt table register (INTB)
Program counter (PC)

Processor status word (PSW)

Backup PC (BPC)

Backup PSW (BPSW)

Fast interrupt vector register (FINTV)
Floating-point status word (FPSW)

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 19 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 1 CPU Functions

1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)

b31 b0

ISP
I e o e

Value afterreset: 0 0 0 0 0 0 0 0 0 0 0 0O O 0O 0O O OOOOOOOOOOOOOOOO

b31 b0

uUspP

Value afterreset: 0 0 0 0 0 0 0 0 0 0 0 0O O 0 0 0O OO OOOOOOOOOOOOOO

The stack pointer (SP) can be either of two types, the interrupt stack pointer (ISP) or the user stack pointer (USP).
Whether the stack pointer operates as the ISP or USP depends on the value of the stack pointer select bit (U) in the
processor status word (PSW).

Set the ISP or USP to a multiple of four, as this reduces the numbers of cycles required to execute interrupt sequences
and instructions entailing stack manipulation.

1.2.2.2 Interrupt Table Register (INTB)

b31 b0

Value after reset: Undefined

The interrupt table register (INTB) specifies the address where the relocatable vector table starts.

1.2.2.3 Program Counter (PC)

b31 b0

I e s
Value after reset: Reset vector (Contents of addresses FFFFFFFCh to FFFFFFFFh)

The program counter (PC) indicates the address of the instruction being executed.

REJ09B0435-0100 Rev.1.00 RENESAS Page 20 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 1 CPU Functions

1.2.2.4 Processor Status Word (PSW)

b31 b30 b29 b28 b27* b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16
= | =] =] = IPLFS:O] — | — | — | PM| — | — | U | 1
Value afterreset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
- | - - - - - - -] = = | —] 0| s | z|c
Value afterreset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Note : * Since the interrupt priority levels are from 0 to 7 for the RX610 Group, bit 27 is reserved. Writing to bit 27 is ineffective.
Reserved
Bit Symbol Bit Name Description R/W
b0 C Carry flag 0: No carry has occurred. R/W
1: A carry has occurred.
b1 z Zero flag 0: Result is non-zero. R/W
1: Resultis 0.
b2 S Sign flag 0: Result is a positive value or 0. R/W
1: Result is a negative value.
b3 (0] Overflow flag 0: No overflow has occurred. R/W
1: An overflow has occurred.
b15 to — Reserved When writing, write 0 to these bits. The value R/W
b4 read is always 0.
b16 1 Interrupt enable bit 0: Interrupt disabled. R/W
1: Interrupt enabled.
b17 U™ Stack pointer select bit 0: Interrupt stack pointer (ISP) is selected. R/W
1: User stack pointer (USP) is selected.
b19, b18 — Reserved When writing, write 0 to these bits. The value R/W
read is always O.
b20 PM*1*2"3 Processor mode select bit 0: Supervisor mode is selected. R/W
1: User mode is selected.
b23 to — Reserved When writing, write 0 to these bits. The value R/W
b21 read is always 0.
b27 to IPL[3:0] Processor interrupt priority level b27 b24 R/W
b24 T 0 0 0 0: Priority level 0 (lowest)
0 0 O 1: Priority level 1
0 0 1 O: Priority level 2
0 0 1 1: Priority level 3
0 1 O O: Priority level 4
0 1 0 1: Priority level 5
0 1 1 O: Priority level 6
0 1 1 1: Priority level 7
1 0 O O: Priority level 8
1 0 0 1: Priority level 9
1 0 1 0: Priority level 10
1 0 1 1: Priority level 11
1 1 0 O: Priority level 12
1 1 0 1: Priority level 13
1 1 1 O: Priority level 14
1 1 1 1: Priority level 15 (highest)
REJ09B0435-0100 Rev.1.00 RENESAS Page 21 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 1 CPU Functions
Bit Symbol Bit Name Description R/W
b31 to — Reserved When writing, write O to these bits. The value R/W
b28 read is always 0.

Notes: 1. In user mode, writing to the IPL[3:0], PM, U, and | bits by an MVTC or POPC instruction is ignored. Writing to
the IPL[3:0] bits by an MVTIPL instruction generates a privileged instruction exception.

2. In supervisor mode, writing to the PM bit by an MVTC or POPC instruction is ignored, but writing to the other
bits is possible.

3. Switching from supervisor mode to user mode requires execution of an RTE instruction after having set the PM
bit in the PSW saved on the stack to 1 or executing an RTFI instruction after having set the PM bit in the
backup PSW (BPSW) to 1.

4. Since the interrupt priority levels are from 0 to 7 for the RX610 Group, bit 27 is reserved. Writing to bit 27 is
ineffective.

The processor status word (PSW) indicates results of instruction execution or the state of the CPU.
C flag (Carry flag)

This flag indicates whether a carry, borrow, or shift-out has occurred as the result of an operation.
Z flag (Zero flag)

This flag indicates that the result of an operation was 0.

S flag (Sign flag)

This flag indicates that the result of an operation was negative.

O flag (Overflow flag)

This flag indicates that an overflow occurred during an operation.

I bit (Interrupt enable bit)

This bit enables interrupt requests. When an exception is accepted, the value of this bit becomes 0.
U bit (Stack pointer select bit)

This bit specifies the stack pointer as either the ISP or USP. When an exception request is accepted, this bit is set to 0.
When the processor mode is switched from supervisor mode to user mode, this bit is set to 1.

PM bit (Processor mode select bit)
This bit specifies the operating mode of the processor. When an exception is accepted, the value of this bit becomes 0.
IPL[3:0] bits (Processor interrupt priority level)

The IPL[3:0] bits specify the processor interrupt priority level as one of sixteen levels from zero to fifteen, where priority
level zero is the lowest and priority level fifteen the highest. When the priority level of a requested interrupt is higher
than the processor interrupt priority level, the interrupt is enabled. Setting the IPL[3:0] bits to level 15 (Fh) disables all
interrupt requests. The IPL[3:0] bits are set to level 15 (Fh) when a non-maskable interrupt is generated. When interrupts
in general are generated, the bits are set to the priority levels of accepted interrupts.

REJ09B0435-0100 Rev.1.00 RENESAS Page 22 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 1 CPU Functions

1.2.2.5 Backup PC (BPC)

b31 b0
I e s A B
Value after reset: Undefined
The backup PC (BPC) is provided to speed up response to interrupts. After a fast interrupt has been generated, the
contents of the program counter (PC) are saved in the BPC.
1.2.2.6 Backup PSW (BPSW)
b0

b31

Value after reset: Undefined

The backup PSW (BPSW) is provided to speed up response to interrupts. After a fast interrupt has been generated, the
contents of the processor status word (PSW) are saved in the BPSW. The allocation of bits in the BPSW corresponds to

that in the PSW.

1.2.2.7 Fast Interrupt Vector Register (FINTYV)

b31 b0

Value after reset: Undefined

The fast interrupt vector register (FINTV) is provided to speed up response to interrupts. The FINTV register specifies a
branch destination address when a fast interrupt has been generated.

REJ09B0435-0100 Rev.1.00 RENESAS Page 23 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 1 CPU Functions

1.2.2.8 Floating-Point Status Word (FPSW)

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16
FS | FX | FU | FZ | FO | FV | — | — | — | — | — | — | — | — | — | —
Value after reset: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
— EX EU EZ EO EV — DN CE CX Cu Ccz CO Ccv RM[‘1:O]
Value after reset: 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Bit Symbol Bit Name Description R/W
b1, b0 RM[1:0] Floating-point rounding-mode b1 b0 R/W
setting bits 0 0: Round to the nearest value
0 1: Round towards 0
1 0: Round towards +«
1 1: Round towards —o
b2 Cv Invalid operation cause flag 0: No invalid operation has been encountered. R/(W)*1
1: Invalid operation has been encountered.
b3 CO Overflow cause flag 0: No overflow has occurred. R/(W)™"
1: Overflow has occurred.
b4 Ccz Division-by-zero cause flag 0: No division-by-zero has occurred. R/(W)*1
1: Division-by-zero has occurred.
b5 Cu Underflow cause flag 0: No underflow has occurred. R/(W)™"
1: Underflow has occurred.
b6 CX Inexact cause flag 0: No inexact exception has been generated. R/(W)*1
1: Inexact exception has been generated.
b7 CE Unimplemented processing cause 0: No unimplemented processing has been R/(W)™"
flag encountered.
1: Unimplemented processing has been
encountered.
b8 DN 0 flush bit of denormalized number 0: A denormalized number is handled as a R/W
denormalized number.
1: A denormalized number is handled as 0.2
b9 — Reserved When writing, write 0 to this bit. The value read R/W
is always 0.
b10 EV Invalid operation exception enable 0: Invalid operation exception is masked. R/W
bit 1: Invalid operation exception is enabled.
b11 EO Overflow exception enable bit 0: Overflow exception is masked. R/W
1: Overflow exception is enabled.
b12 EZ Division-by-zero exception enable 0: Division-by-zero exception is masked. R/W
bit 1: Division-by-zero exception is enabled.
b13 EU Underflow exception enable bit 0: Underflow exception is masked. R/W
1: Underflow exception is enabled.
b14 EX Inexact exception enable bit 0: Inexact exception is masked. R/W
1: Inexact exception is enabled.
b25 to — Reserved When writing, write O to these bits. The value R/W
b15 read is always 0.
b26 Fv™3 Invalid operation flag 0: No invalid operation has been encountered. R/W

1: Invalid operation has been encountered.”®

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 24 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 1 CPU Functions
Bit Symbol Bit Name Description R/W
b27 FO™ Overflow flag 0: No overflow has occurred. R/W
1: Overflow has occurred.”®

b28 FZ*® Division-by-zero flag 0: No division-by-zero has occurred. R/W
1: Division-by-zero has occurred.*®

b29 FU™® Underflow flag 0: No underflow has occurred. R/W
1: Underflow has occurred.™®

b30 FX*7 Inexact flag 0: No inexact exception has been generated. ~ R/W
1: Inexact exception has been genera’[ed.*8

b31 FS Floating-point error summary flag This bit reflects the logical OR of the FU, FZ, R

FO, and FV flags.

Notes: 1. When 0 is written to the bit, the bit is set to 0; the bit remains the previous value when 1 is written.
Positive denormalized numbers are treated as +0, negative denormalized numbers as —0.

When the EV bit is set to 0, the FV flag is enabled.

When the EO bit is set to 0, the FO flag is enabled.

When the EZ bit is set to 0, the FZ flag is enabled.

. When the EU bit is set to 0, the FU flag is enabled.

. When the EX bit is set to 0, the FX flag is enabled.

Once the bit has been set to 1, this value is retained until it is cleared to 0 by software.

©® N O AN

The floating-point status word (FPSW) indicates the results of floating-point operations. In products that do not support
floating-point instructions, the value "00000000h" is always read out and writing to these bits does not affect operations.

When an exception handling enable bit (Ej) enables the exception handling (Ej = 1), the corresponding Cj flag indicates
the cause. If the exception handling is masked (Ej = 0), check the Fj flag at the end of a series of processing. The Fj flag
is the accumulation type flag (j =X, U, Z, O, or V).

RM][1:0] bits (Floating-point rounding-mode setting bits)

These bits specify the floating-point rounding-mode.

Explanation of Floating-Point Rounding Modes

* Rounding to the nearest value (the default behavior): An inexact result is rounded to the available value that is closest
to the result which would be obtained with an infinite number of
digits. If two available values are equally close, rounding is to the
even alternative.

* Rounding towards 0: An inexact result is rounded to the smallest available absolute value; i.e., in the direction of zero
(simple truncation).

* Rounding towards +o: An inexact result is rounded to the nearest available value in the direction of positive infinity.
* Rounding towards —o: An inexact result is rounded to the nearest available value in the direction of negative infinity.

(1) Rounding to the nearest value is specified as the default mode and returns the most accurate value.
(2) Modes such as rounding towards 0, rounding towards +, and rounding towards — are used to ensure precision
when interval arithmetic is employed.

CYV flag (Invalid operation cause flag), CO flag (Overflow cause flag), CZ flag (Division-by-zero cause flag),
CU flag (Underflow cause flag), CX flag (Inexact cause flag), and CE flag (Unimplemented processing cause flag)

Floating-point exceptions include the five specified in the IEEE754 standard, namely overflow, underflow, inexact,

division-by-zero, and invalid operation. For a further floating-point exception that is generated upon detection of

unimplemented processing, the corresponding flag (CE) is set to 1.

» The bit that has been set to 1 is cleared to 0 when the FPU instruction is executed.

* When 0 is written to the bit by the MVTC and POPC instructions, the bit is set to 0; the bit retains the previous value
when 1 is written by the instruction.

REJ09B0435-0100 Rev.1.00 RENESAS Page 25 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 1 CPU Functions

DN bit (0 flush bit of denormalized number)

When this bit is set to 0, a denormalized number is handled as a denormalized number.
When this bit is set to 1, a denormalized number is handled as 0.

EYV bit (Invalid operation exception enable bit), EO bit (Overflow exception enable bit),
EZ bit (Division-by-zero exception enable bit), EU bit (Underflow exception enable bit), and
EX bit (Inexact exception enable bit)

When any of five floating-point exceptions specified in the IEEE754 standard is generated by the FPU instruction, the bit
decides whether the CPU will start handling the exception. When the bit is set to 0, the exception handling is masked;
when the bit is set to 1, the exception handling is enabled.

FV flag (Invalid operation flag), FO flag (Overflow flag), FZ flag (Division-by-zero flag),
FU flag (Underflow flag), and FX flag (Inexact flag)

While the exception handling enable bit (Ej) is 0 (exception handling is masked), if any of five floating-point exceptions
specified in the IEEE754 standard is generated, the corresponding bit is set to 1.

* When Ej is 1 (exception handling is enabled), the value of the flag remains.

* When the corresponding flag is set to 1, it remains 1 until it is cleared to 0 by software. (Accumulation flag)

FS flag (Floating-point error summary flag)
This bit reflects the logical OR of the FU, FZ, FO, and FV flags.

1.2.3 Accumulator (ACC)

Range for reading by MVFACM

b63 b48 b47 b32 b31 b16 b15 b0

Range for reading and writing H Range for writing by MVTACLC

by MVTACHI and MVFACHI

Value after reset: Undefined

The accumulator (ACC) is a 64-bit register used for DSP instructions. The accumulator is also used for the multiply and
multiply-and-accumulate instructions; EMUL, EMULU, FMUL, MUL, and RMPA, in which case the prior value in the
accumulator is modified by execution of the instruction.

Use the MVTACHI and MVTACLO instructions for writing to the accumulator. The MVTACHI and MVTACLO
instructions write data to the higher-order 32 bits (bits 63 to 32) and the lower-order 32 bits (bits 31 to 0), respectively.

Use the MVFACHI and MVFACMI instructions for reading data from the accumulator. The MVFACHI and MVFACMI
instructions read data from the higher-order 32 bits (bits 63 to 32) and the middle 32 bits (bits 47 to 16), respectively.

REJ09B0435-0100 Rev.1.00 RENESAS Page 26 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 1 CPU Functions

1.3 Floating-Point Exceptions

Floating-point exceptions include the five specified in the IEEE754 standard, namely overflow, underflow, inexact,
division-by-zero, and invalid operation, and a further floating-point exception that is generated on the detection of
unimplemented processing. The following is an outline of the events that cause floating-point exceptions.

1.3.1 Overflow

An overflow occurs when the absolute value of the result of an arithmetic operation is greater than the range of values
that can be represented in the floating-point format. Table 1.1 lists the results of operations when an overflow exception
occurs.

Table 1.1 Operation Results When an Overflow Exception Has Occurred

Operation Result (Value in the Destination Register)

Floating-Point Rounding Mode Sign of Result EO=0 EO =1
Rounding towards —o + +MAX No change
— —o0
Rounding towards +« + +o0
- —MAX
Rounding towards 0 + +MAX
- -MAX
Rounding to the nearest value + +00
— —0

Note: An inexact exception will be generated when an overflow error occurs while EO = 0.

1.3.2 Underflow

An underflow occurs when the absolute value of the result of an arithmetic operation is smaller than the range of
normalized values that can be represented in the floating-point format. (However, this does not apply when the result is
0.) Table 1.2 lists the results of operations when an underflow exception occurs.

Table 1.2 Operation Results When an Underflow Exception Has Occurred

Operation Result (Value in the Destination Register)
EU=0 EU =1
DN = 0: No change. (An unimplemented processing exception is generated.) No change
DN = 1: The value of 0 is returned.

1.3.3 Inexact

An inexact exception occurs when the result of a hypothetical calculation with infinite precision differs from the actual
result of the operation. Table 1.3 lists the conditions leading to an inexact exception and the results of operations.

Table 1.3 Conditions Leading to an Inexact Exception and the Operation Results

Operation Result (Value in the Destination Register)

Occurrence Condition EX=0 EX=1

An overflow exception has occurred Refer to table 1.1, Operation Results When an No change
while overflow exceptions are masked. Overflow Exception Has Occurred

Rounding has been produced. Value after rounding

Notes: 1. An inexact exception will not be generated when an underflow error occurs.

2. An inexact exception will not be generated when an overflow exception occurs while overflow exceptions are
enabled, regardless of the rounding generation.

REJ09B0435-0100 Rev.1.00 RENESAS Page 27 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 1 CPU Functions

1.3.4 Division-by-Zero

Dividing a non-zero finite number by zero produces a division-by-zero exception. Table 1.4 lists the results of operations
that have led to a division-by-zero exception.

Table 1.4 Operation Results When a Division-by Zero Exception Has Occurred
Operation Result (Value in the Destination Register)
Dividend EZ=0 EZ=1

Non-zero finite number +oo (the sign bit is the logical exclusive or of the sign No change
bits of the divisor and dividend)

Note that a division-by zero exception does not occur in the following situations.

Dividend Result

0 An invalid operation exception is generated.

) No exception is generated. The result is .
Denormalized number (DN = 0) An unimplemented processing exception is generated.
QNaN No exception is generated. The result is QNaN.

SNaN An invalid operation exception is generated.

1.3.5 Invalid Operation

Executing an invalid operation produces an invalid exception. Table 1.5 lists the conditions leading to an invalid
exception and the results of operations.

Table 1.5 Conditions Leading to an Invalid Exception and the Operation Results

Operation Result (Value in the Destination Register)

Occurrence Condition EV=0 EV =1
Operation on SNaN operands QNaN No change
+00+(—00), *+oo—(+00), —o0—(—00)
0 xo0
0+0,0+
Overflow in integer conversion or attempting The return value is 7FFFFFFFh when the sign bit
integer conversion of NaN or co when before conversion was 0 and 80000000h when the
executing FTOI or ROUND instruction sign bit before conversion was 1.
Comparison of SNaN operands No destination
Legend

NaN (Not a Number): Not a Number

SNaN (Signaling NaN): SNaN is a kind of NaN where the most significant bit in the mantissa part is 0.
Using an SNaN as a source operand in an operation generates an invalid operation. Using
an SNaN as the initial value of a variable facilitates the detection of bugs in programs. Note
that the hardware will not generate an SNaN.

QNaN (Quiet NaN): QNaN is a kind of NaN where the most significant bit in the mantissa part is 1.
Using a QNaN as a source operand in an operation (except in a comparison or format
conversion) does not generate an invalid operation. Since a QNaN is propagated through
operations, just checking the result without performing exception handling enables the
debugging of programs. Note that hardware operations can generate a QNaN.

REJ09B0435-0100 Rev.1.00 RENESAS Page 28 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 1 CPU Functions

Table 1.6 lists the rules for generating QNaNs as the results of operations.

Table 1.6 Rules for Generating QNaNs

Source Operands Operation Result (Value in the Destination Register)
An SNaN and a QNaN The SNaN source operand converted into a QNaN

Two SNaNs dest converted into a QNaN

Two QNaNs dest

An SNaN and a real value The SNaN source operand converted into a QNaN

A QNaN and a real value The QNaN source operand

Neither source operand is an NaN and an invalid 7FFFFFFFh

operation exception is generated

Note: The SNaN is converted into a QNaN while the most significant bit in the mantissa part is 1.

1.3.6 Unimplemented Processing

An unimplemented processing exception occurs when DN = 0 and a denormalized number is given as an operand, or
when an underflow exception is generated as the result of an operation with DN = 0. An unimplemented processing
exception will not occur with DN = 1.

There is no enable bit to mask an unimplemented processing exception, so this processing exception cannot be masked.
The destination register remains as is.

REJ09B0435-0100 Rev.1.00 RENESAS Page 29 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 1 CPU Functions

1.4 Processor Mode

The RX CPU supports two processor modes, supervisor and user. These processor modes and the memory protection
function enable the realization of a hierarchical CPU resource protection and memory protection mechanism. Each
processor mode imposes a level on rights of access to memory and the instructions that can be executed. Supervisor
mode carries greater rights than user mode. The initial state after a reset is supervisor mode.

1.4.1 Supervisor Mode

In supervisor mode, all CPU resources are accessible and all instructions are available. However, writing to the processor
mode select bit (PM) in the processor status word (PSW) by executing an MVTC or POPC instruction will be ignored.
For details on how to write to the PM bit, refer to 1.2.2.4, Processor Status Word (PSW).

1.4.2 User Mode

In user mode, write access to the CPU resources listed below is restricted. The restriction applies to any instruction
capable of write access.

* Some bits (bits IPL[3:0], PM, U, and I) in the processor status word (PSW)
» Interrupt stack pointer (ISP)

* Interrupt table register (INTB)

* Backup PSW (BPSW)

* Backup PC (BPC)

» Fast interrupt vector register (FINTV)

143 Privileged Instruction

Privileged instructions can only be executed in supervisor mode. Executing a privileged instruction in user mode
produces a privileged instruction exception. Privileged instructions include the RTFI, MVTIPL, RTE, and WAIT
instructions.

14.4 Switching Between Processor Modes

Manipulating the processor mode select bit (PM) in the processor status word (PSW) switches the processor mode.
However, rewriting the PM bit by executing an MVTC or POPC instruction is prohibited. Switch the processor mode by
following the procedures described below.

(1) Switching from user mode to supervisor mode
After an exception has been generated, the PM bit in the PSW is set to 0 and the CPU switches to supervisor mode.
The hardware pre-processing is executed in supervisor mode. The state of the processor mode before the exception
was generated is retained in the PM bit in the copy of the PSW that is saved on the stack.

(2) Switching from supervisor mode to user mode
Executing an RTE instruction when the value of the copy of the PM bit in the PSW that has been preserved on the
stack is "1" or an RTFI instruction when the value of the copy of the PM bit in the PSW that has been preserved in the
backup PSW (BPSW) is "1" causes a transition to user mode. In the transition to user mode, the value of the stack
pointer designation bit (the U bit in the PSW) becomes "1".

REJ09B0435-0100 Rev.1.00 RENESAS Page 30 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 1 CPU Functions

1.5 Data Types

The RX CPU can handle four types of data: integer, floating-point, bit, and string.

1.5.1 Integer

An integer can be signed or unsigned. For signed integers, negative values are represented by two's complements.

b7 b0

Signed byte (8-bit) integer

b7 b0

Unsigned byte (8-bit) integer m

b15 b0

Signed word (16-bit) integer s]

b15 b0

Unsigned word (16-bit) integer (. .]

b31 [

Slgned Iongword (32_blt) integer |S\ L L L L L L ‘ L L L L L L L ‘ L L L L L L L ‘ L L L L L L L |

b31 b0

UnSigned Iongword (32-bit) integer | L L L L L L L ‘ L L L L L L L ‘ L L L L L L L ‘ L L L L L L L |
Legend

S: Signed bit

1.5.2 Floating-Point

Figure 1.2 Integer

Floating-point support is for the single-precision floating-point type specified in IEEE754; operands of this type can be
used in eight floating-point operation instructions: FADD, FCMP, FDIV, FMUL, FSUB, FTOI, ITOF, and ROUND.

b0

E
| L

b31
Single-precision |S‘
floating-point .
Legend
S: Sign (1 bit)

E: Exponent (8 bits)
F: Mantissa (23 bits)

Value = (-1)°x(14Fx2%)x2&"27)

Figure 1.3 Floating-Point

The floating-point format supports the values listed below.

0 < E <255 (normal numbers)

E =0 and F =0 (signed zero)

E =0 and F > 0 (denormalized numbers)*
E =255 and F = 0 (infinity)

E =255 and F > 0 (NaN: Not-a-Number)

Note: * The number is treated as 0 when the DN bit in the FPSW is 1. When the DN bit is 0, an unimplemented

processing exception is generated.

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 31 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.
RX Family

Section 1 CPU Functions

15.3 Bitwise Operations

Five bit-manipulation instructions are provided for bitwise operations: BCLR, BMCnd, BNOT, BSET, and BTST.

A bit in a register is specified as the destination register and a bit number in the range from 31 to 0.

A bit in memory is specified as the destination address and a bit number from 7 to 0. The addressing modes available to

specify addresses are register indirect and register relative.

Register
b31 b0

#bit, Rn |
(bit:31to0,m:0to15) b v v 0 v

Example
——» #30,R1 (register R1, bit 30)

Memory
b b7 b0 Example
it, mem .
(bit: 7 to 0) e —— #2,[R2] (address [R2], bit 2)
Figure 1.4 Bit
1.5.4 Strings

The string data type consists of an arbitrary number of consecutive byte (8-bit), word (16-bit), or longword (32-bit) units.
Seven string manipulation instructions are provided for use with strings: SCMPU, SMOVB, SMOVF, SMOVU, SSTR,

SUNTIL, and SWHILE.

String of byte (8-bit) data
<« 8>

String of word (16-bit) data
<« 16 —»

String of longword (32-bit) data

\ 4

< 32
| T I

Figure 1.5 String

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 32 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 1 CPU Functions

1.6 Data Arrangement

1.6.1 Data Arrangement in Registers

Figure 1.6 shows the relation between the sizes of registers and bit numbers.

Byte (8-bit) data

Word (16-bit) data

Longword (32-bit) data

b7

b0

L1

b15 b0
L.]
b31 b0
MSB LSB

Figure 1.6 Data Arrangement in Registers

1.6.2 Data Arrangement in Memory

Data in memory have three sizes; byte (8-bit), word (16-bit), and longword (32-bit)

as little endian or big endian. Figure 1.7 shows the arrangement of data in memory.

. The data arrangement is selectable

Data type

1-bit data

Byte data

Word data

Longword data

Address

Address L

Address L

Address M
Address M+1

Address N
Address N+1
Address N+2
Address N+3

Data image Data image
(Little endian) (Big endian)
b7 b0 b7 b0
7]6]5 4[3[2][1]0 7]6]5 4[3[2]1]0
MsBi {1 i | | ILsB mMsBi 1 i | | ILsB
LSB MSB
MSB LSB
LSB MSB
MSB LSB

Figure 1.7

Data Arrangement in Memory

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 33 of 278

Under development Preliminary document

RX Family

Specifications in this document are tentative and subject to change.

Section 1 CPU Functions

1.7 Vector Table

There are two types of vector table: fixed and relocatable. Each vector in the vector table consists of four bytes and
specifies the address where the corresponding exception handling routine starts.

1.7.1 Fixed Vector Table

The fixed vector table is allocated to a fixed address range. The individual vectors for the privileged instruction
exception, access exception, undefined instruction exception, floating-point exception, non-maskable interrupt, and reset
are allocated to addresses in the range from FFFFFF80h to FFFFFFFFh. Figure 1.8 shows the fixed vector table.

FFFFFF80h

FFFFFFCCh

FFFFFFDO

FFFFFFDA4h

FFFFFFD8h
FFFFFFDCh

FFFFFFEO

FFFFFFE4h

FFFFFFE8h

FFFFFFECh
FFFFFFFOh

FFFFFFF4h

FFFFFFF8h

FFFFFFFCh

MSB

LSB

(Reserved)

(Reserved)

Privileged instruction exception

Access exception

(Reserved)

Undefined instruction exception

(Reserved)

Floating-point exception

(Reserved)

(Reserved)

(Reserved)

(Reserved)

Non-maskable interrupt

Reset

Figure 1.8 Fixed Vector Table

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 34 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 1 CPU Functions

1.7.2 Relocatable Vector Table

The address where the relocatable vector table is placed can be adjusted. The table is a 1,024-byte region that contains all
vectors for unconditional traps and interrupts and starts at the address (IntBase) specified in the interrupt table register
(INTB). Figure 1.9 shows the relocatable vector table.

Each vector in the relocatable vector table has a vector number from 0 to 255. Each of the INT instructions, which act as
the sources of unconditional traps, is allocated to the vector that has the same number as that of the instruction itself
(from 0 to 255). The BRK instruction is allocated to the vector with number 0. Furthermore, vector numbers within the
set from 0 to 255 may also be allocated to other interrupt sources on a per-product basis.

b31 b0
INTB \\\\\\\l\\\\\\In\tBlawsewwwwwwlwwwwwww

IntBase+4 g 10

IntBase+8 = 11
= q2
f f Interrupt vectors are
= = allocated in this order.

IntBase+1020 | i

= 4255 ¥

Figure 1.9 Relocatable Vector Table

REJ09B0435-0100 Rev.1.00 RENESAS Page 35 of 278
June 11, 2010

Under development Preliminary

document

Specifications in this document are tentative and subject to change.

RX Family

Section 1 CPU Functions

1.8 Address Space

The address space of the RX CPU is the 4 Gbyte range from address 0000 0000h to address FFFF FFFFh. Program and
data regions taking up to a total of 4 Gbytes are linearly accessible. The address space of the RX-CPU is depicted in
figure 1.10. For all regions, the designation may differ with the product and operating mode. For details, see the

hardware manuals for the respective products.

00000000h

FFFFFFFFh

Data regions/

— Program regions
(4 Gbytes, linear)

Figure 1.10 Address Space

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 36 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 2 Addressing Modes

Section 2 Addressing Modes

The following is a description of the notation and operations of each addressing mode.
There are ten types of addressing mode.

* Immediate

* Register direct

* Register indirect

* Register relative

* Post-increment register indirect
* Pre-decrement register indirect
* Indexed register indirect

* Control register direct

» PSW direct

* Program counter relative

REJ09B0435-0100 Rev.1.00 RENESAS Page 37 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 2 Addressing Modes

2.1 Guide to This Section

The following sample shows how the information in this section is presented.

(1) Register Relati)e

dsp:5[Rn]
@H (Rn = 50 ER?)
dsp:8[Rn]

The effective address of the operand is the
least significant 32 bits of the sum of the
displacement (dsp) value, after zero-
extension to 32 bits and multiplication by 1,

G)TRT=ROTORTS)

2, or 4 accoding to the specification (see
thhedi@gram Jat right), and the value in the
specifi gister. The range of valid

FaYaYaVaVaVaV NS

Register
s —> (9—()

« Instruction that takes a size specifier J L
B: x1

W x2
L: x4

4)
dsp:16[Rn]

(Rn = RO to R15)

addluoouo ;D fIUIII CGUUUUUUII W
FFFFFFFFh. dsp:n represents an n-bit long
displacement value. The following mode can
be specified:

dsp:5[Rn] (Rn = RO to R7),

dsp:8[Rn] (Rn = RO to R15), and
dsp:16[Rn] (Rn = RO to R15).

dsp:5[Rn] (Rn = RO to R7) is used only with
MOV and MOVE instructions.

« Instruction s a size extension specifier
BLUE: x1
W x 2
L x4

Memory

Direction of
address
incrementing

(1) Name

The name of the addressing mode is given here.

(2) Symbolic notation

This notation represents the addressing mode.
:8 or :16 represents the number of valid bits just before an instruction in this addressing mode is executed. This symbolic
notation is added in the manual to represent the number of valid bits, and is not included in the actual program.

(3) Description

The operation and effective address range are described here.

(4) Operation diagram

The operation of the addressing mode is illustrated here.

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 38 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 2 Addressing Modes

2.2 Addressing Modes

Immediate
#IMM:1 #IMM:1 #IMM:1

#IMM:3 The operand is the 1-bit immediate value

#UIMM:4 indicated by #IMM. This addressing mode is b2 b0
used to specify the source for the RACW #IMM:3

#IMM:5 . .

instruction.

g

o
w
o
o

#IMM:4
#IMM:3
The operand is the 3-bit immediate value b31 b4b3 b0
indicated by #IMM. This addressing mode is | #UMM:4 | ~ Zeroextension
used to specify the bit number for the bit
manipulation instructions: BCLR, BMCnd, b4 b0
BNOT, BSET, and BTST. #IMM:5 L]

#IMM:4

The operand is the 4-bit immediate value
indicated by #IMM. This addressing mode is
used to specify the interrupt priority level for
the MVTIPL instruction.

#UIMM:4

The operand is the 4-bit immediate value
indicated by #UIMM after zero extension to
32 bits. This addressing mode is used to
specify sources for ADD, AND, CMP, MOV,
MUL, OR, and SUB instructions.

#IMM:5

The operand is the 5-bit immediate value
indicated by #IMM. This addressing mode is
used in the following ways:

- to specify the bit number for the bit-
manipulation instructions: BCLR,
BMCnd, BNOT, BSET, and BTST,

- to specify the number of bit places of
shifting in certain arithmetic/logic
instructions: SHAR, SHLL, and SHLR;
and

- to specify the number of bit places of

rotation in certain arithmetic/logic
instructions: ROTL and ROTR.

REJ09B0435-0100 Rev.1.00 RENESAS Page 39 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 2 Addressing Modes
Immediate When the size specifier is B o w0
#IMM:8 The operand is the value specified by the #IMM:8 L1
#SIMM:8 immediate value. In addition, the operand When the size sbedifier is W

. will be the result of zero-extending or sign- _ 015 _b8b7 b0
#UIMM:8 extending the immediate value when it is FoIMIE [Slgn sitension |
#IMM:16 specified by #UIMM or #SIMM. #IMM:n, bis b8b7 b0
#SIMM:16 #UIMM:n, and #SIMM:n represent n-bit long #UIMM: [Zeroextension] |
#SIMM:24 immediate values. bis w0
#IMM-32 For the range of IMM, refer to section 2.2.1, #IMM:16]

Ranges for Immediate Values.

When the size specifier is L

dsp:16[Rn]
(Rn =R0 to R15)

specified register. The range of valid
addresses is from 00000000h to
FFFFFFFFh. dsp:n represents an n-bit long
displacement value. The following mode can
be specified:

dsp:5[Rn] (Rn = RO to R7),

dsp:8[Rn] (Rn = RO to R15), and
dsp:16[Rn] (Rn = RO to R15).

dsp:5[Rn] (Rn = RO to R7) is used only with
MOV and MOVE instructions.

« Instruction that takes a size extension specifier

b31 b8b7 b0
#omms [Zeoetension, ., |]
b31 b8b7 b0
#sMM:8 [~ ‘Signextension]]
b31 b16b15 b0
#SIMM: 16 | e ‘S‘ig‘n ‘ex‘teps‘io‘n‘ L) |
b31 b24b23 b0
#SIMM:24 [Signextension|]
b31 b0
ammz2 []
Register Direct b31 Register bo
Rn The operand is the specified register. In Rn |
(Rn = RO to R15) addition, the Rn value is transferred tothe | — —/FHAi——"b—4—H—m"t—"——+——"r—"———""—r——-
program counter (PC) when this addressing Memory
mode is used with JMP and JSR Register
instructions. The range of valid addresses is Rn | |
from 00000000h to FFFFFFFFh. Rn (Rn = i Direction of
RO to R15) can be specified. Register address]
PC | |—> Incrementing
Register Indirect
[Rn] The value in the specified register is the Memory
(Rn = RO to R15) effective address of the operand. The range Register
of valid addresses is from 00000000h to Rn o
FFFFFFFFh. [Rn] (Rn = RO to R15) can be R ot
Speciﬁed. incrementing
Register Relative Rt Memory
egister
dsp:5[Rn] The effective address of the operand is the Rn address
(Rn = RO to R7) least significant 32 bits of the sum of the) o
displacement (dsp) value, after zero- dp —> D) adress |
extension to 32 bits and multiplication by 1, _ ‘ R L incrementing
dsp:8[Rn] 2, or 4 according to the specification (see - Instruction that takes size specifier
(Rn = RO to R15) | the diagram at right), and the value in the W2

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 40 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 2 Addressing Modes
Post-increment Register Indirect Memory
[Rn+] The value in the specified register is the Register p
(Rn = RO to R15) | effective address of the operand. The range s >j o
of valid addresses is from 00000000h to 1447@) Divection of
FFFFFFFFh. After the operation, 1,2, 0r4is | wnen the size specifieris 5: +1 % incrementing
added to the value in the specified register | e oo ot o s +a
according to the size specifier: .B, .W, or .L.
This addressing mode is used with MOV and
MOVU instructions.
Pre-decrement Register Indirect _ o Memory
[-Rn] According to the size specifier: .B, .W, or .L, Wen :;: §EZE§I?2i?§ w2
1,2, or 4 is subtracted from the value in the | """ "% eetere L =
(Rn=ROtoR15) | ' < @— () —6r irection o
specified register. The value after the [9 ;’ddretss ‘f
operation is the effective address of the Register ¢ nerementng
operand. The range of valid addresses is Rn address
from 00000000h to FFFFFFFFh. This
addressing mode is used with MOV and
MOVU instructions.
Indexed Register Indirect ‘ Memory
[Ri,Rb] The effective address of the operand is the Rb address
(Ri = R0 to R15, | least significant 32 bits of the sum of the _ \ birection of
Rb = RO to R15) | Value in the index register (Ri), multiplied by | &Fm ‘? addross
1, 2, or 4 according to the size specifier: .B, ¢
W, or .L, and the value in the base register N CaOntss
(Rb). The range of valid addresses is from | Wwen e sue spectieris W 2
00000000h to FFFFFFFFh. This addressing | """ "esee secteris L x4
mode is used with MOV and MOVU
instructions.
Control Register Direct . Register .
PC The operand is the specified control register. PG | |
ISP This addressing mode is used with MVFC, S S S
USP MVTC, POPC, and PUSHC instructions. b31 b0
INTB The PC is only selectable as the srcoperand | 'SP | |
of MVFC and PUSHC instructions.
PSW b31 b0
usp | |
BPC S
BPSW b31 b0
INTB | |
FINTV e
FPSW b31 b0
psw |]
b31 b0
o
b31 b0
BPSW | i
b31 b0
FINTV | i
b31 b0
FPsw [i
PSW Direct b31 b24 b23 b16
C The operand is the specified flag or bit. This | psw [[| | | Pop [| [P [Juli]
Z addressing mode is used with CLRPSW and
SETPSW instructions. b15 b8 b7 b0
S pswi [[[[T [[][] [ofsfz]e]
0]
I
u
REJ09B0435-0100 Rev.1.00 -IENESAS Page 41 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 2 Addressing Modes

Program Counter Relative

pcdsp:3

When the branch distance specifier is .S, the
effective address is the least significant 32
bits of the unsigned sum of the value in the
program counter (PC) and the displacement
(pcdsp) value. The range of the branch is
from 3 to 10. The range of valid addresses is
from 00000000h to FFFFFFFFh. This
addressing mode is used with BCnd (where
Cnd==EQ/Z or NE/NZ) and BRA
instructions.

Register

(> Label
pcdsp J

Memory

Branch instruction

Direction of
address
incrementing

pcdsp:8
pcdsp:16
pcdsp:24

When the branch distance specifier is .B, .W,
or .A, the effective address is the signed
sum of the value in the program counter
(PC) and the displacement (pcdsp) value.
The range of pcdsp depends on the branch
distance specifier.

For .B: —128 < pcdsp:8 <127
For .W: —-32768 < pcdsp:16 < 32767
For .A: —8388608 < pcdsp:24 < 8388607

The range of valid addresses is from
00000000h to FFFFFFFFh. When the
branch distance specifier is .B, this
addressing mode is used with BCnd and
BRA instructions. When the branch distance
specifier is .W, this addressing mode is used
with BCnd (where Cnd==EQ/Z or NE/NZ),
BRA, and BSR instructions. When the
branch distance specifier is .A, this
addressing mode is used with BRA and BSR
instructions.

When the pcdsp value is negative

pcdsp—» @—» Label

Register T

Memory

PC | |

Branch instruction

pedsp—> (+)—> Label

When the pcdsp value is positive

Direction of
address
incrementing

Rn
(Rn = RO to R15)

The effective address is the signed sum of
the value in the program counter (PC) and
the Rn value. The range of the Rn value is
from —2147483648 to 2147483647. The
range of valid addresses is from 00000000h
to FFFFFFFFh. This addressing mode is
used with BRA(.L) and BSR(.L) instructions.

When the Rn value is negative

Register

[

Register

Rn

I

Memory

Direction of

PC |

Branch instruction

address

Register

When the Rn value is positive

Rn

-

incrementing

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 42 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 2 Addressing Modes

2.2.1 Ranges for Immediate Values

Ranges for immediate values are listed in table 2.1.

Unless specifically stated otherwise in descriptions of the various instructions under section 3.2, Instructions in Detail,

ranges for immediate values are as listed below.

Table 2.1 Ranges for Immediate Values
IMM In Decimal Notation In Hexadecimal Notation
IMM:1 1or2 1h or 2h
IMM:3 Oto7 Ohto 7h
IMM:4 Oto15 Oh to OFh
UIMM:4 0to15 Oh to OFh
IMM:5 0to 31 Oh to 1Fh
IMM:8 -128 to 255 -80h to OFFh
UIMM:8 0 to 255 Oh to OFFh
SIMM:8 -128 to 127 -80h to 7Fh
IMM:16 -32768 to 65535 -8000h to OFFFFh
SIMM:16 -32768 to 32767 -8000h to 7FFFh
SIMM:24 -8388608 to 8388607 -800000h to 7FFFFFh
IMM:32 -2147483648 to 4294967295 -80000000h to OFFFFFFFFh

Notes: 1. The RX Family assembler from Renesas converts instruction codes with immediate values to have the optimal

numbers of bits.

2. The RX Family assembler from Renesas is capable of depicting hexadecimal notation as a 32-bit notation. For
example "-127" in decimal notation, i.e. "-7Fh" in hexadecimal, can be expressed as "OFFFFFF81h".

3. For the ranges of immediate values for INT and RTSD instructions, see the relevant descriptions under section

3.2, Instructions in Detail.

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 43 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Section 3 Instruction Descriptions

3.1 Guide to This Section

This section describes the functionality of each instruction by showing syntax, operation, function, src/dest to be selected,
flag change, and description example.

The following shows how to read this section by using an actual page as an example.

Absolute value
ABSolute

(2) Arithmetic/logic i i
3) {_ Instruction Code

Page: 177

dest

(5)

(1) if (dest < 0)

dest = -dest;

(2) if (src < 0)

dest = -src;
else

dest = src;

(6)—(Famstion)

(1) This instruction takes the absolute value of dest and places the result in dest.
(2) This instruction takes the absolute value of src and places the result in dest.

(7)

Flag Change Condition

C -

z N The flag is set when dest is O after the operation; otherwise it is cleared.

S N The flag is set when the MSB of dest after the operation is 1; otherwise it is cleared.
(0] N (1) The flag is set if dest before the operation was 80000000h; otherwise it is cleared.

(2) The flag is set if src before the operation was 80000000h; otherwise it is cleared.

(8)——(Instruction Format)

Processing Operand Code Size
Syntax Size src dest (Byte)
(1) ABS dest L - Rd 2
(2) ABS src, dest L Rs Rd 3
(9)—(Description Example)
ABS R2
ABS R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 44 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

(1) Mnemonic

Indicates the mnemonic name of the instruction explained on the given page. The center column gives a simple
description of the operation and the full name of the instruction.

(2) Instruction Type

Indicates the type of instruction.

(3) Instruction Code

Indicates the page in which instruction code is listed.

Refer to this page for instruction code.

(4) Syntax

Indicates the syntax of the instruction using symbols.

(a) Mnemonic

Describes the mnemonic.

(b) Size specifier .size

For data-transfer instructions, some string-manipulation instructions, and the RMPA instruction, a size specifier can be
added to the end of the mnemonic. This determines the size of the data to be handled as follows.

.B Byte (8 bits)
W Word (16 bits)
.L Longword (32 bits)

(¢) Operand src, dest

Describes the operand.

src Source operand
dest Destination operand

(5) Operation

Describes the operation performed by the instruction. A C-language-style notation is used for the descriptions of
operations.

REJ09B0435-0100 Rev.1.00 RENESAS Page 45 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.
RX Family

Section 3

Instruction Descriptions

(a) Data type

Signed byte (8-bit) integer

Signed word (16-bit) integer

Signed longword (32-bit) integer

Signed long longword (64-bit) integer
Unsigned byte (8-bit) integer

unsigned short Unsigned word (16-bit) integer
unsigned long Unsigned longword (32-bit) integer
unsigned long long Unsigned long longword (64-bit) integer
float Single-precision floating point

signed char
signed short
signed long
signed long long
unsigned char

(b) Pseudo-functions

(©)

register(n):
register_num(Rn):

Special notation
Ra[i+7:1]:
Rm:Rn:

RI:Rm:Rn:

Returns register Rn, where n is the register number (n: 0 to 15).
Returns register number n for Rn.

Indicates the unsigned byte integer for bits (i + 7) to i of Rn.

(n: 0 to 15, 1: 24, 16, 8, or 0)

Indicates the virtual 64-bit register for two connected registers.

(m, n: 0 to 15. Rm is allocated to bits 63 to 32, Rn to bits 31 to 0.)
Indicates the virtual 96-bit register for three connected registers.

(1, m, n: 0 to 15. Rl is allocated to bits 95 to 64, Rm to bits 63 to 32, and Rn

to bits 31 t0 0.)
{byte3, byte2, bytel, byte0}:
integers.

(6) Function

Explains the function of the instruction and precautions to be taken when using it.

(7) Flag Change

Indicates the unsigned longword integer for four connected unsigned byte

Indicates changes in the states of flags (O, S, Z, and C) in the PSW. For floating-point instructions, changes in the states of
flags (FX, FU, FZ, FO, FV, CE, CX, CU, CZ, CO, and CV) in the FPSW are also indicated.

The symbols in the table mean the following:

- The flag does not change.
\: The flag changes depending on condition.

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 46 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
(8) Instruction Format
Indicates the instruction format.
Instruction Format
Processing Operand Code Size
Syntax Size src src2 dest (Byte)
(a) (1) AND sre_dect] #UIMM-4 - (Rd\ 2
L #S | - \Re’ 3
L #oIMM: 16\ - Rd 4
(d) T fisiMm:24) - Rd 5
L L EA - Rd 6
(f) (L) Rs — - Rd 2
\b/ [Rs].memex - Rd 2 (memex == UB)
N\ 3 (memex != UB)
L dsp:S[Rﬂ.memex* - Rd 3 (memex == UB)
(e) 1 4 (memex != UB)
L dsp:16[W - Rd 4 (memex == UB)
5 (memex != UB)
(2) AND src, src2, dest L Rs Rs2 Rd 3
Instruction Format
Processing Operand Code Size
Syntax Size src dest” (Byte)
MVTC src, dest L #SIMM:8 /RN 4
L #SIMM:16 [Rx '\ 5
(b) t #Stvivi24 i Rx] 6
L #IMM:32 \ R/ 7
L Rs \Rx / 3
Instruction Format
Operand Code Size
Syntax dest (Byte)
(C) SETPSW dect \/ﬂag) 2
N

(a) Registers

Rs, Rs2, Rd, Rd2, Ri, and Rb mean that RO to R15 are specifiable unless stated otherwise.

(b) Control registers

Rx indicates that the PC, ISP, USP, INTB, PSW, BPC, BPSW, FINTYV, and FPSW are selectable, although the PC is

only selectable as the src operand of MVFC and PUSHC instructions.

(¢) Flag and bit

"flag" indicates that a bit (U or I) or a flag (O, S, Z, or C) in the PSW is specifiable.

REJ09B0435-0100 Rev.1
June 11, 2010

.00

RENESAS

Page 47 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

(d) Immediate value

#IMM:n, #UIMM:n, and #SIMM:n indicate n-bit immediate values. When extension is necessary, UIMM specifies
zero extension and SIMM specifies sign extension.

(e) Size extension specifier (memex) appended to a memory operand

The sizes of memory operands and forms of extension are specified as follows. Each instruction with a size-extension
specifier is expanded accordingly and then executed at the corresponding processing size.

memex Size Extension

B Byte Sign extension
uUB Byte Zero extension
W Word Sign extension
uw Word Zero extension
L Longword None

If the extension specifier is omitted, byte size is assumed for bit-manipulation instructions and longword size is
assumed for other instructions.

(f) Processing size

The processing size indicates the size for transfer or calculation within the CPU.

(9) Description Example

Shows a description example for the instruction.

REJ09B0435-0100 Rev.1.00 RENESAS Page 48 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 3

Instruction Descriptions

The following explains the syntax of BCnd, BRA, and BSR instructions by using the BRA instruction as an actual

example.
B R A Unconditional relative branch
BRanch Always
Branch instruction
(4) Svntax Instruction Code
Page: 190
(a) O src
Operation
(b
PC = PC + src;
Function
« This instruction executes a relative branch to destination address specified by src.
Flag Change
« This instruction does not affect the states of flags.
Instruction Format
Operand Code Size
Syntax Length src Range of pcdsp/Rs (Byte)
BRA(.length) src S pcdsp:3 3 <pcdsp<10 1
B pcdsp:8 —128 < pcdsp <127 2
W pcdsp:16 —32768 < pcdsp < 32767 3
A pcdsp:24 —-8388608 < pcdsp < 8388607 4
L Rs —2147483648 < Rs < 2147483647 2

(4) Syntax

Indicates the syntax of the instruction using symbols.

Description Example

BRA labell

BRA.A label2

BRA R1

BRA.L R2
Note:

(a) Mnemonic

Describes the mnemonic.

For the RX Family assembler manufactured by Renesas Technology Corp., enter a destination address specified

by a label or an effective address as the displacement value (pcdsp:3, pcdsp:8, pcdsp: 16, pcdsp:24). The value of
the specified address minus the address where the instruction is allocated will be stored in the pcdsp section of the

instruction.

Description Example

BRA label
BRA 1000h

(b) Branch distance specifier .length

For branch or jump instructions, a branch distance specifier can be added to the end of the mnemonic. This determines
the number of bits to be used to represent the relative distance value for the branch.

>

3-bit PC forward relative specification. Valid values are 3 to 10.

8-bit PC relative specification. Valid values are —128 to 127.

16-bit PC relative specification. Valid values are —32768 to 32767.

24-bit PC relative specification. Valid values are —8388608 to 8388607.

32-bit PC relative specification. Valid values are —2147483648 to 2147483647.

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 49 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

3.2 Instructions in Detail

The following pages give details of the individual instructions for the RX Family.

REJ09B0435-0100 Rev.1.00 RENESAS Page 50 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
AB S Absolute value
ABSolute
Arithmetic/logic instruction
Syntax Instruction Code
Page: 177
(1) ABS dest
(2) ABS src, dest
Operation

(1) if (dest < 0)
dest = -dest;
(2) if (src < 0)
dest = -src;
else

dest = src;

Function

(1) This instruction takes the absolute value of dest and places the result in dest.
(2) This instruction takes the absolute value of src and places the result in dest.

Flag Change

Flag Change Condition

C

4 \ The flag is set when dest is 0 after the operation; otherwise it is cleared.

S S The flag is set when the MSB of dest after the operation is 1; otherwise it is cleared.
(0] \ (1) The flag is set if dest before the operation was 80000000h; otherwise it is cleared.

(2) The flag is set if src before the operation was 80000000h; otherwise it is cleared.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
(1) ABS dest L - Rd 2
(2) ABS src, dest L Rs Rd 3
Description Example
ABS R2
ABS R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 51 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
ADC Addition with carry
ADd with Carry
Arithmetic/logic instruction
Syntax Instruction Code
Page: 178
ADC src, dest
Operation

dest = dest + src + C;

Function

* This instruction adds dest, src, and the C flag and places the result in dest.

Flag Change

Flag Change Condition

C N The flag is set if an unsigned operation produces an overflow; otherwise it is cleared.

V4 v The flag is set if dest is 0 after the operation; otherwise it is cleared.
S S The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
(0] S The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
ADC src, dest L #SIMM:8 Rd 4

L #SIMM:16 Rd 5

L #SIMM:24 Rd 6

L #IMM:32 Rd 7

L Rs Rd 3

L [Rs].L Rd 4

L dsp:8[Rs].L" Rd 5

L dsp:16[Rs].L" Rd 6

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 24)
can be specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will
be stored in the instruction code.

Description Example

ADC #127, R2
ADC R1, R2
ADC [R1], R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 52 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family

Section 3 Instruction Descriptions

ADD

Syntax

(1) ADD src, dest

(2) ADD src, src2, dest
Operation

(1) dest = dest + src;
(2) dest

src + src2;

Function

Addition without carry
ADD

(1) This instruction adds dest and src and places the result in dest.
(2) This instruction adds src and src2 and places the result in dest.

Flag Change

Flag Change Condition

Arithmetic/logic instruction
Instruction Code
Page: 179

C J

The flag is set if an unsigned operation produces an overflow; otherwise it is cleared.

The flag is set if dest is 0 after the operation; otherwise it is cleared.

The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

z v
S N
0 N

The flag is set if a signed operation produces an overflow; otherwise it is cleared.

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 53 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Instruction Format

Processing Operand Code Size
Syntax Size src src2 dest (Byte)
(1) ADD src, dest L #UIMM:4 - Rd 2
L #SIMM:8 - Rd 3
L #SIMM:16 - Rd 4
L #SIMM:24 - Rd 5
L #IMM:32 - Rd 6
L Rs - Rd 2
L [Rs].memex - Rd 2 (memex == UB)
3 (memex != UB)
L dsp:8[Rs].memex” - Rd 3 (memex == UB)
4 (memex != UB)
L dsp:16[Rs].memex” - Rd 4 (memex == UB)
5 (memex != UB)
(2) ADD src, src2, dest L #SIMM:8 Rs Rd 3
L #SIMM:16 Rs Rd 4
L #SIMM:24 Rs Rd 5
L #IMM:32 Rs Rd 6
L Rs Rs2 Rd 3

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .\W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example

ADD #15, R2
ADD R1, R2
ADD [R1], R2
ADD [R1].UB, R2
ADD #127, R1, R2
ADD R1, R2, R3
REJ09B0435-0100 Rev.1.00 REN ESNS Page 54 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Logical AND
AND

Arithmetic/logic instruction
Instruction Code

Syntax
Page: 181
(1) AND src, dest
(2) AND src, src2, dest
Operation
(1) dest = dest & src;
(2) dest = src & src2;
Function
(1) This instruction logically ANDs dest and src and places the result in dest.
(2) This instruction logically ANDs src and src2 and places the result in dest.
Flag Change
Flag Change Condition
C -
4 \ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
O -
Instruction Format
Processing Operand Code Size
Syntax Size src src2 dest (Byte)
(1) AND src, dest L #UIMM:4 - Rd 2
L #SIMM:8 - Rd 3
L #SIMM: 16 - Rd 4
L #SIMM:24 - Rd 5
L #IMM:32 - Rd 6
L Rs - Rd 2
L [Rs].memex - Rd 2 (memex == UB)
3 (memex != UB)
L dsp:8[Rs].memex* - Rd 3 (memex == UB)
4 (memex != UB)
L dsp:16[Rs].memex* - Rd 4 (memex == UB)
5 (memex != UB)
(2) AND src, src2, dest L Rs Rs2 Rd 3

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .\W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

REJ09B0435-0100 Rev.1.00 RENESAS Page 55 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Description Example

AND #15, R2
AND R1, R2
AND [R1], R2
AND [R1].UW, R2
AND R1, R2, R3
REJ09B0435-0100 Rev.1.00 RENESAS Page 56 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
B C L R Clearing a bit
Bit CLeaR
Bit manipulation instruction
Syntax Instruction Code
Page: 183
BCLR src, dest
Operation
(1) When dest is a memory location:
unsigned char dest;
dest &= (1 << (src & 7));
(2) When dest is a register:
register unsigned long dest;
dest &= (1 << (src & 31));
Function
+ This instruction clears the bit of dest, which is specified by src.
* The immediate value given as src is the number (position) of the bit.
The range for IMM:3 operands is 0 < IMM:3 < 7. The range for IMM:5 is 0 < IMM:5 < 31.
Flag Change
* This instruction does not affect the states of flags.
Instruction Format
Processing Operand Code Size
Syntax Size src dest (Byte)
(1) BCLR src, dest B #IMM:3 [Rd].B 2
B #IMM:3 dsp:8[Rd].B 3
B #IMM:3 dsp:16[Rd].B 4
B Rs [Rd].B 3
B Rs dsp:8[Rd].B 4
B Rs dsp:16[Rd].B 5
(2) BCLR src, dest L #IMM:5 Rd 2
L Rs Rd 3
Description Example
BCLR #7, [R2]
BCLR R1, [R2]
BCLR #31, R2
BCLR R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 57 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
Relative conditional branch C
B Cnd Branch Conditionally B nd
Branch instruction
Syntax Instruction Code
Page: 185
BCnd(.length) src
Operation
if (Cnd)
PC = PC + src;
Function

+ This instruction makes the flow of relative branch to the location indicated by src when the condition specified by
Cnd is true; if the condition is false, branching does not proceed.
* The following table lists the types of BCrd.

BCnd Condition Expression BCnd Condition Expression
BGEU, C == Equal to or greater than/ < BLTU, C-== Less than/ >
BC Cflagis 1 BNC Cflagis O
BEQ, Z== Equal to/Z flag is 1 BNE, Z-== Not equal to/Z flagis 0 #
BZ BNz
BGTU C & "Z==1 Greater than < BLEU C & "Z==0 Equal to or less than 2
BPZ S== Positive or zero 0= BN S== Negative 0>
BGE S7*0==0 Equaltoorgreaterthan < BLE (S*0)| Equal to or less than as 2
as signed integer Z== signed integer
BGT (S*0)| Greater than as signed < BLT SA0==1 Lessthan as signed >
Z== integer integer
BO O== Oflagis 1 BNO O== Oflagis O
Flag Change
* This instruction does not affect the states of flags.
Instruction Format
Operand Code Size
Syntax Length src Range of pcdsp (Byte)
(1) BEQ.S src S pcdsp:3 3 <pcdsp<10 1
(2) BNE.S src S pcdsp:3 3 <pcdsp <10 1
(3)BCnd.B src B pcdsp:8 —128 < pcdsp <127 2
(4) BEQ.W src W pcdsp:16 —32768 < pcdsp < 32767 3
(5) BNE.W src w pcdsp:16 —32768 < pcdsp < 32767 3

Description Example

BC labell
BC.B label?2
Note:

For the RX Family assembler manufactured by Renesas Technology Corp., enter a destination address specified

by a label or an effective address as the displacement value (pcdsp:3, pcdsp:8, pcdsp:16). The value of the
specified address minus the address where the instruction is allocated will be stored in the pcdsp section of the

instruction.

Description Example

BC
BC

label
1000h

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 58 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

BMCnd ol BMCnd

Bit manipulation instruction

Instruction Code
Syntax
y Page: 187
BMCnd src, dest
Operation

(1) When dest is a memory location:
unsigned char dest;
if (Cnd)
dest |= (1 << (sxc & 7));
else
dest &= “(1 << (src & 7));

(2) When dest is a register:
register unsigned long dest;

if (Cnd)
dest |= (1 << (src & 31));
else
dest &= " (1 << (src & 31));
Function

* This instruction moves the truth-value of the condition specified by Cnd to the bit of dest, which is specified by src;
that is, 1 or 0 is transferred to the bit if the condition is true or false, respectively.
* The following table lists the types of BMCnd.

BMCnd Condition Expression BMCnd Condition Expression
BMGEU, C == Equal to or greater than/ < BMLTU, C-== Less than/ >
BMC Cflagis 1 BMNC Cflagis 0
BMEQ, Z== Equal to/Z flag is 1 = BMNE, Z== Not equal to/Z flagis 0 #
BMz BMNZ
BMGTU C &"Z==1 Greater than < BMLEU C & "Z==0 Equal to or less than 2
BMPZ S-== Positive or zero 0= BMN S== Negative 0>
BMGE S*0==0 Equaltoorgreaterthan < BMLE (S"0)| Equal to or less than as 2
as signed integer Z== signed integer
BMGT (S*0)| Greater than as signed < BMLT S*0O== Less than as signed >
Z== integer integer

BMO O== Oflagis 1 BMNO O-== Oflagis 0

* The immediate value given as src is the number (position) of the bit.

The range for IMM:3 operands is 0 < IMM:3 < 7. The range for IMM:5 is 0 < IMM:5 < 31.

Flag Change

* This instruction does not affect the states of flags.

REJ09B0435-0100 Rev.1.00 -2 ENESAS Page 59 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
(1) BMCnd src, dest B #IMM:3 [Rd].B 3
B #IMM:3 dsp:8[Rd].B 4
B #IMM:3 dsp:16[Rd].B 5
(2) BMCnd src, dest L #IMM:5 Rd 3
Description Example
BMC #7, [R2]
BMZ #31, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 60 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Inverti bit
BNOT il

Bit manipulation instruction
Instruction Code

Syntax
Page: 188
BNOT src, dest
Operation

(1) When dest is a memory location:
unsigned char dest;
dest "= (1 << (src & 7));

(2) When dest is a register:
register unsigned long dest;
dest "= (1 << (src & 31));

Function

+ This instruction inverts the value of the bit of dest, which is specified by src, and places the result into the specified
bit.
+ The immediate value given as src is the number (position) of the bit.
The range for IMM:3 operands is 0 < IMM:3 < 7. The range for IMM:5 is 0 < IMM:5 < 31.
Flag Change

+ This instruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
(1) BNOT src, dest B #IMM:3 [Rd].B 3
B #IMM:3 dsp:8[Rd].B 4
B #IMM:3 dsp:16[Rd].B 5
B Rs [Rd].B 3
B Rs dsp:8[Rd].B 4
B Rs dsp:16[Rd].B 5
(2) BNOT src, dest L #IMM:5 Rd 3
L Rs Rd 3
Description Example
BNOT #7, [R2]
BNOT R1, [R2]
BNOT #31, R2
BNOT R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 61 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
B R A Unconditional relative branch
BRanch Always
Branch instruction
Syntax Instruction Code
Page: 190
BRA (.length) src
Operation
PC = PC + src;
Function
+ This instruction executes a relative branch to destination address specified by src.
Flag Change
* This instruction does not affect the states of flags.
Instruction Format
Operand Code Size
Syntax Length src Range of pcdsp/Rs (Byte)
BRA(.length) src S pcdsp:3 3<pcdsp<10 1
B pcdsp:8 —128 < pcdsp = 127 2
w pcdsp:16 -32768 < pcdsp < 32767 3
A pcdsp:24 —8388608 < pcdsp < 8388607 4
L Rs —2147483648 < Rs < 2147483647 2

Description Example

BRA labell
BRA.A label?2
BRA R1
BRA.L R2

Note: For the RX Family assembler manufactured by Renesas Technology Corp., enter a destination address specified
by a label or an effective address as the displacement value (pcdsp:3, pcdsp:8, pcdsp:16, pcdsp:24). The value of
the specified address minus the address where the instruction is allocated will be stored in the pcdsp section of the

instruction.

Description Example

BRA label
BRA 1000h
REJ09B0435-0100 Rev.1.00 RENESAS Page 62 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
B R K Unconditional trap
BReaK

Syntax

System manipulation instruction
Instruction Code
Page: 191

BRK

Operation

tmp0 = PSW;
U= 0;

I =20;

PM = 0;

tmpl = PC + 1;
PC = *IntBase;
SP = SP - 4;
*SP = tmp0;

SP = SP - 4;
*SP = tmpl;

Function

* This instruction generates an unconditional trap of number 0.

» This instruction causes a transition to supervisor mode and clears the PM bit in the PSW.
* This instruction clears the U and I bits in the PSW.

* The address of the instruction next to the executed BRK instruction is saved.

Flag Change
* This instruction does not affect the states of flags.

* The state of the PSW before execution of this instruction is preserved on the stack.

Instruction Format

Syntax Code Size (Byte)
BRK 1

Description Example

BRK

REJ09B0435-0100 Rev.1.00 RENESAS Page 63 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
B S ET Setting a bit
Bit SET
Bit manipulation instruction
Syntax Instruction Code
Page: 191
BSET src, dest
Operation
(1) When dest is a memory location:
unsigned char dest;
dest |= (1 << (src & 7));
(2) When dest is a register:
register unsigned long dest;
dest |= (1 << (src & 31));
Function
* This instruction sets the bit of dest, which is specified by src.
* The immediate value given as src is the number (position) of the bit.
The range for IMM:3 operands is 0 < IMM:3 < 7. The range for IMM:5 is 0 < IMM:5 < 31.
Flag Change
* This instruction does not affect the states of flags.
Instruction Format
Processing Operand Code Size
Syntax Size src dest (Byte)
(1) BSET src, dest B #IMM:3 [Rd].B 2
B #IMM:3 dsp:8[Rd].B 3
B #IMM:3 dsp:16[Rd].B 4
B Rs [Rd].B 3
B Rs dsp:8[Rd].B 4
B Rs dsp:16[Rd].B 5
(2) BSET src, dest L #IMM:5 Rd 2
L Rs Rd 3
Description Example
BSET #7, [R2]
BSET R1, [R2]
BSET #31, R2
BSET R1, R2
REJ09B0435-0100 Rev.1.00 -2 ENESAS Page 64 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family

Section 3

Instruction Descriptions

BSR

Syntax

BSR(.length) src

Operation

SP = SP - 4;
*SP = (PC +n) ;
PC = PC + src;

Notes: 1. (PC + n) is the address of the instruction following the BSR instruction.

Function

Flag Change

Relative subroutine branch
Branch to SubRoutine

* This instruction does not affect the states of flags.

Instruction Format

Syntax

Branch instruction
Instruction Code

BSR(.length) src

Page: 193
2. "n"indicates the code size. For details, refer to "Instruction Format".
+ This instruction executes a relative branch to destination address specified by src.
Operand Code Size
src Range of pcdsp/Rs (Byte)
pcdsp:16 —32768 < pcdsp < 32767 3
pcdsp:24 —8388608 < pcdsp < 8388607 4
Rs —2147483648 < Rs < 2147483647 2

Description Example

BSR labell
BSR.A label?2
BSR R1
BSR.L R2

Note: For the RX Family assembler manufactured by Renesas Technology Corp., enter a destination address specified
by a label or an effective address as the displacement value (pcdsp:16, pcdsp:24). The value of the specified
address minus the address where the instruction is allocated will be stored in the pcdsp section of the instruction.

Description Example

BSR label
BSR 1000h

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 65 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Testi, bit
BTST e

Bit manipulation instruction
Instruction Code

Syntax
Page: 194
BTST src, src2
Operation

(1) When src2 is a memory location:
unsigned char src2;
Z = " ((src2 > (src & 7)) &1);
C= ((src2 > (src & 7)) &1);

(2) When src2 is a register:
register unsigned long src2;

Z = "((src2 > (src&3l)) &l);
C = ((src2 > (src &31)) &1l);
Function

* This instruction moves the inverse of the value of the bit of scr2, which is specified by src, to the Z flag and the
value of the bit of scr2, which is specified by sre, to the C flag.

* The immediate value given as src is the number (position) of the bit.
The range for IMM:3 operands is 0 < IMM:3 < 7. The range for IMM:5 is 0 < IMM:5 < 31.

Flag Change

Flag Change Condition

C N The flag is set if the specified bit is 1; otherwise it is cleared.
Z v The flag is set if the specified bit is 0; otherwise it is cleared.
S -

O -

Instruction Format

Processing Operand Code Size
Syntax Size src src2 (Byte)
(1) BTST src, src2 B #IMM:3 [Rs2].B 2
B #IMM:3 dsp:8[Rs2].B 3
B #IMM:3 dsp:16[Rs2].B 4
B Rs [Rs2].B 3
B Rs dsp:8[Rs2].B 4
B Rs dsp:16[Rs2].B 5
(2) BTST src, src2 L #IMM:5 Rs2 2
L Rs Rs2 3
Description Example
BTST #7, [R2]
BTST R1, [R2]
BTST #31, R2
BTST R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 66 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

(: L RPSW Clear a flag or bit in the PSW
CLeaR flag in PSW
System manipulation instruction

Instruction Code
Page: 196

Syntax

CLRPSW dest

Operation

dest = 0;

Function

* This instruction clears the O, S, Z, or C flag, which is specified by dest, or the U or I bit.
* Inuser mode, writing to the U or I bit is ignored. In supervisor mode, all flags and bits can be written to.

Flag Change

Flag Change Condition
C *

Z *

S *

O *

Note: * The specified flag becomes 0.

Instruction Format

Operand
Syntax dest Code Size (Byte)
CLRPSW dest flag 2
Description Example
CLRPSW C
CLRPSW Z
REJ09B0435-0100 Rev.1.00 RENESAS Page 67 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
C M P Comparison
CoMPare
Arithmetic/logic instruction
Syntax Instruction Code
Page: 197
CMP src, src?2
Operation
src2 - src;
Function

» This instruction changes the states of flags in the PSW to reflect the result of subtracting src from src2.

Flag Change

Flag Change Condition

C N The flag is set if an unsigned operation does not produce an overflow; otherwise it is cleared.
4 \ The flag is set if the result of the operation is 0; otherwise it is cleared.

S v The flag is set if the MSB of the result of the operation is 1; otherwise it is cleared.

(0] \ The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Instruction Format

Processing Operand Code Size
Syntax Size src src2 (Byte)
CMP src, src2 L #UIMM:4 Rs 2
L #UIMM:8™ Rs 3
L #SIMM:8™ Rs 3
L #SIMM:16 Rs 4
L #SIMM:24 Rs 5
L #IMM:32 Rs 6
L Rs Rs2 2
L [Rs].memex Rs2 2 (memex == UB)
3 (memex != UB)
L dsp:8[Rs].memex*2 Rs2 3 (memex == UB)
4 (memex != UB)
L dsp:16[Rs].memex*2 Rs2 4 (memex == UB)
5 (memex != UB)

Notes: 1. Values from 0 to 127 are always specified as the instruction code for zero extension.

2. For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .\W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example

CMP #7, R2
CMP R1, R2
CMP [R1], R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 68 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

DIV

Arithmetic/logic instruction
Instruction Code

Syntax
Page: 199
DIV src, dest
Operation

dest = dest / src;

Function

* This instruction divides dest by src as signed values and places the quotient in dest. The quotient is rounded
towards 0.

* The calculation is performed in 32 bits and the result is placed in 32 bits.

* The value of dest is undefined when the divisor (src) is 0 or when overflow is generated after the operation.

Flag Change

Flag Change Condition

C -

Z -

S -

(0] S This flag is set if the divisor (src) is 0 or the calculation is —2147483648 / —1; otherwise it is
cleared.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
DIV src, dest L #SIMM:8 Rd
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
L dsp:8[Rs].memex” Rd 4 (memex == UB)
5 (memex != UB)
L dsp:16[Rs].memex” Rd 5 (memex == UB)

6 (memex != UB)

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

REJ09B0435-0100 Rev.1.00 RENESAS Page 69 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Description Example

DIV #10, R2
DIV R1, R2
DIV [R1], R2
DIV 3[R1].B, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 70 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

P
DIVU DIVide Unsigned

Arithmetic/logic instruction
Instruction Code

Syntax
Page: 201
DIVU src, dest
Operation

dest = dest / src;

Function

* This instruction divides dest by src as unsigned values and places the quotient in dest. The quotient is rounded
towards 0.

* The calculation is performed in 32 bits and the result is placed in 32 bits.

e The value of dest is undefined when the divisor (src) is 0.

Flag Change

Flag Change Condition

C -

Z -

S -

(0] S The flag is set if the divisor (src) is 0; otherwise it is cleared.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
DIVU src, dest L #SIMM:8 Rd
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
L dsp:8[Rs].memex* Rd 4 (memex == UB)
5 (memex != UB)
L dsp:16[Rs].memex" Rd 5 (memex == UB)

6 (memex != UB)

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

REJ09B0435-0100 Rev.1.00 RENESAS Page 71 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Description Example

DIVU #10, R2
DIVU R1, R2

DIVU [R1], R2
DIVU 3[R1].UB, R2

REJ09B0435-0100 Rev.1.00 RENESAS Page 72 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
E M U L Signed multiplication
Extended MULtiply, signed
Arithmetic/logic instruction
Syntax Instruction Code
Page: 202
EMUL src, dest
Operation

dest2:dest = dest * src;

Function

* This instruction multiplies dest by src, treating both as signed values.
* The calculation is performed on src and dest as 32-bit operands to obtain a 64-bit result, which is placed in the
register pair, dest2:dest (R(n+1):Rn).
* Any of the 15 general registers (Rn (n: 0 to 14)) is specifiable for dest.
Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is

undefined.
Register Specified for dest Registers Used for 64-Bit Extension
RO R1:R0O
R1 R2:R1
R2 R3:R2
R3 R4:R3
R4 R5:R4
R5 R6:R5
R6 R7:R6
R7 R8:R7
R8 R9:R8
R9 R10:R9
R10 R11:R10
R11 R12:R11
R12 R13:R12
R13 R14:R13
R14 R15:R14

Flag Change

* This instruction does not affect the states of flags.

REJ09B0435-0100 Rev.1.00 RENESAS Page 73 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 3

Instruction Descriptions

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
EMUL src, dest L #SIMM:8 Rd (Rd=R0 to R14) 4
L #SIMM:16 Rd (Rd=R0 to R14) 5
L #SIMM:24 Rd (Rd=R0 to R14) 6
L #IMM:32 Rd (Rd=R0 to R14) 7
L Rs Rd (Rd=R0 to R14) 3
L [Rs].memex Rd (Rd=R0 to R14) 3 (memex == UB)
4 (memex != UB)
L dsp:8[Rs].memex" Rd (Rd=R0 to R14) 4 (memex == UB)
5 (memex != UB)
L dsp:16[Rs].memex” Rd (Rd=R0 to R14) 5 (memex == UB)
6 (memex != UB)
Note: For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual

Description Example

EMUL
EMUL
EMUL
EMUL

value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the

displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size

extension specifier is .\W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,

values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values

from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the

instruction code.

#10, R2

R1, R2
[R1], R2
8[R1].W, R2

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 74 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
E M U L U Unsigned multiplication
Extended MULtiply, Unsigned
Arithmetic/logic instruction
Syntax Instruction Code
Page: 203

EMULU src, dest

Operation

dest2:dest = dest * src;

Function

* This instruction multiplies dest by src, treating both as unsigned values.
* The calculation is performed on src and dest as 32-bit operands to obtain a 64-bit result, which is placed in the
register pair, dest2:dest (R(n+1):Rn).
* Any of the 15 general registers (Rn (n: 0 to 14)) is specifiable for dest.
Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is

undefined.
Register Specified for dest Registers Used for 64-Bit Extension
RO R1:R0O
R1 R2:R1
R2 R3:R2
R3 R4:R3
R4 R5:R4
R5 R6:R5
R6 R7:R6
R7 R8:R7
R8 R9:R8
R9 R10:R9
R10 R11:R10
R11 R12:R11
R12 R13:R12
R13 R14:R13
R14 R15:R14

Flag Change

* This instruction does not affect the states of flags.

REJ09B0435-0100 Rev.1.00 RENESAS Page 75 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
EMULU src, dest L #SIMM:8 Rd (Rd=R0 to R14) 4
L #SIMM:16 Rd (Rd=R0 to R14) 5
L #SIMM:24 Rd (Rd=R0 to R14) 6
L #IMM:32 Rd (Rd=R0 to R14) 7
L Rs Rd (Rd=R0 to R14) 3
L [Rs].memex Rd (Rd=R0 to R14) 3 (memex == UB)
4 (memex != UB)
L dsp:8[Rs].memex" Rd (Rd=R0 to R14) 4 (memex == UB)
5 (memex != UB)
L dsp:16[Rs].memex” Rd (Rd=R0 to R14) 5 (memex == UB)

6 (memex != UB)

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .\W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example

EMULU 410, R2
EMULU R1, R2
EMULU [R1], R2
EMULU 8[R1].UW, R2

REJ09B0435-0100 Rev.1.00 RENESAS Page 76 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

F AD D Floating-point addition
Floating-point ADD
Floating-point operation instruction
Instruction Code

Syntax
Page: 204
FADD src, dest
Operation

dest = dest + src;

Function

* This instruction adds the single-precision floating-point numbers stored in dest and src and places the result in dest.
Rounding of the result is in accord with the setting of the RM[1:0] bits in the FPSW.

* Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

* The operation result is +0 when the sum of src and dest of the opposite signs is exactly 0 except in the case of a
rounding mode towards —o. The operation result is —0 when the rounding mode is towards —oo.

Flag Change

Flag Change Condition

C -

4 \ The flag is set if the result of the operation is +0 or —0; otherwise it is cleared.

S S The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O -

cv \ The flag is set if an invalid operation exception is generated; otherwise it is cleared.

CcO S The flag is set if an overflow exception is generated; otherwise it is cleared.

Ccz \ The value of the flag is always 0.

CuU S The flag is set if an underflow exception is generated; otherwise it is cleared.

CX S The flag is set if an inexact exception is generated; otherwise it is cleared.

CE \ The flag is set if an unimplemented processing is generated; otherwise it is cleared.

FV S The flag is set if an invalid operation exception is generated, and otherwise left unchanged.
FO S The flag is set if an overflow exception is generated, and otherwise left unchanged.

Fz

FU \ The flag is set if an underflow exception is generated, and otherwise left unchanged.

FX S The flag is set if an inexact exception is generated, and otherwise left unchanged.

Note: The FX, FU, FO, and FV flags do not change if any of the exception enable bits EX, EU, EO, and EV is 1. The S
and Z flags do not change when an exception is generated.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
FADD src, dest L #IMM:32 Rd 7

L Rs Rd 3

L [Rs].L Rd 3

L dsp:8[Rs].L" Rd 4

L dsp:16[Rs].L" Rd 5

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will
be stored in the instruction code.

REJ09B0435-0100 Rev.1.00 RENESAS Page 77 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Possible Exceptions

Unimplemented processing
Invalid operation

Overflow

Underflow

Inexact

Description Example

FADD R1, R2
FADD [R1], R2

Supplementary Description

* The following tables show the correspondences between src and dest values and the results of operations when DN
=0and DN=1.

When DN =0

Src

Normalized| +0 | -0 +00 —0 Denormalized QNaN SNaN
dest | Normalized Sum

+0 +0 * —o0
-0 * -0

+oo Invalid
+00 .
operation

—0 Invalid
—00 . —00
operation

Denormalized Unimplemented
processing

QNaN QNaN
SNaN Invalid

operation

When DN =1

src
Normalized +0, -0, +00 —© QNaN SNaN
+Denormalized | -Denormalized
dest| Normalized Sum Normalized
+0,
+Denormalized
-0,
—Denormalized

+00 Invalid
+00 .
operation

+0 * —0

Normalized

—00 Invalid
—00 . —00
operation
QNaN QNaN

SNaN Invalid

operation

Note: * The result is —0 when the rounding mode is set to rounding towards — and +0 in other rounding modes.

REJ09B0435-0100 Rev.1.00 RENESAS Page 78 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

F(: M P Floating-point comparison
Floating-point CoMPare
Floating-point operation instruction

Instruction Code
Page: 205

Syntax

FCMP src, src2

Operation

src2 - src;

Function

« This instruction compares the single-precision floating numbers stored in src2 and src and changes the states of
flags according to the result.
* Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

Flag Change

Flag Change Condition

C -

Z v The flag is set if src2 == src; otherwise it is cleared.

S \ The flag is set if src2 < src; otherwise it is cleared.

(0] \ The flag is set if an ordered classification based on the comparison result is impossible;

otherwise it is cleared.

cv S The flag is set if an invalid operation exception is generated; otherwise it is cleared.

CO \ The value of the flag is always 0.

cz S The value of the flag is always 0.

CuU S The value of the flag is always 0.

CX \ The value of the flag is always 0.

CE S The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV S The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO -

Fz -

FU -

FX -

Note: The FV flag does not change if the exception enable bit EV is 1. The O, S, and Z flags do not change when an
exception is generated.

Flag
Condition (0] S z
src2 > src 0 0 0
src2 < src 0 1 0
src2 == src 0 0 1
Ordered classification impossible 1 0 0
REJ09B0435-0100 Rev.1.00 RENESAS Page 79 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Instruction Format

Processing Operand Code Size
Syntax Size src src2 (Byte)
FCMP src, src2 L #IMM:32 Rs2 7

L Rs Rs2 3

L [Rs].L Rs2 3

L dsp:8[Rs].L" Rs2 4

L dsp:16[Rs].L" Rs2 5

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will
be stored in the instruction code.

Possible Exceptions
Unimplemented processing
Invalid operation

Description Example
FCMP R1, R2
FCMP [R1], R2

Supplementary Description

* The following tables show the correspondences between src and src2 values and the results of operations when DN
=0and DN=1.
(>: src2 > sre, <: src2 < sre, =: SIC2 == SIc)

When DN =0
src
Normalized ‘ +0 | -0) —o0 Denormalized QNaN SNaN
src2 | Normalized | Comparison
+0 <
= >
-0
+00 > =
—00 < =
Denormalized Unimplemented
processing
QNaN Ordered
classification
impossible
SNaN Invalid operation
(Ordered classification
impossible)
REJ09B0435-0100 Rev.1.00 -IENESAS Page 80 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
When DN =1
src
Normalized +0, -0, +00 —00 QNaN SNaN
+Denormalized | -Denormalized
src2 Normalized Comparison
+0, <
+Denormalized .
-0,
—Denormalized
+00 > =
—00 < =
QNaN Ordered
classification
impossible
SNaN Invalid operation
(Ordered classification
impossible)
REJ09B0435-0100 Rev.1.00 -IENESAS Page 81 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

F D IV Floating-point division
Floating-point DIVide
Floating-point operation instruction
Instruction Code

Syntax
Page: 206
FDIV src, dest
Operation

dest = dest / src;

Function

* This instruction divides the single-precision floating-point number stored in dest by that stored in src and places the
result in dest. Rounding of the result is in accord with the setting of the RM[1:0] bits in the FPSW.
* Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

Flag Change

Flag Change Condition

C -

Z v The flag is set if the result of the operation is +0 or —0; otherwise it is cleared.

S \ The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O -

Ccv \ The flag is set if an invalid operation exception is generated; otherwise it is cleared.

CO Y The flag is set if an overflow exception is generated; otherwise it is cleared.

Ccz S The flag is set if a division-by-zero exception is generated; otherwise it is cleared.

Cu \ The flag is set if an underflow exception is generated; otherwise it is cleared.

CX \ The flag is set if an inexact exception is generated; otherwise it is cleared.

CE S The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV \ The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO S The flag is set if an overflow exception is generated; otherwise it does not change.

Fz S The flag is set if a division-by-zero exception is generated; otherwise it does not change.
FU \ The flag is set if an underflow exception is generated; otherwise it does not change.

FX S The flag is set if an inexact exception is generated; otherwise it does not change.

Note: The FX, FU, FZ, FO, and FV flags do not change if any of the exception enable bits EX, EU, EZ, EO, and EV is 1.
The S and Z flags do not change when an exception is generated.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
FDIV src, dest L #IMM:32 Rd 7

L Rs Rd 3

L [Rs].L Rd 3

L dsp:8[Rs].L" Rd 4

L dsp:16[Rs].L" Rd 5

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will
be stored in the instruction code.

REJ09B0435-0100 Rev.1.00 RENESAS Page 82 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Possible Exceptions

Unimplemented processing
Invalid operation

Overflow

Underflow

Inexact

Division-by-zero

Description Example

FDIV R1, R2
FDIV [R1], R2

Supplementary Description

* The following tables show the correspondences between src and dest values and the results of operations when DN

=0and DN =1.
When DN =0
src
Normalized +0 -0 +o00 —0 Denormalized QNaN SNaN
dest | Normalized Division Division-by-zero 0
+0 , . +0 -0
0 Invalid operation
-0 -0 +0
+o0 +o00 —0
o0 Invalid operation
—0 —0 +o0
Denormalized Unimplemented
processing
QNaN QNaN
SNaN Invalid
operation
When DN =1
src
Normalized +0, -0, +00 —00 QNaN SNaN
+Denormalized | -Denormalized
dest| Normalized Division Division-by-zero 0
+0,
+Denormalized ,] *0 -0
0 Invalid operation
0, -0 +0
—Denormalized
+o0 +00 —00
) Invalid operation
—o0 —o0 +o00
QNaN QNaN
SNaN Invalid
operation
REJ09B0435-0100 Rev.1.00 -IENESAS Page 83 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

F M U L Floating-point multiplication
Floating-point MULtiply
Floating-point operation instruction
Instruction Code

Syntax
Page: 207
FMUL src, dest
Operation

dest = dest * src;

Function

* This instruction multiplies the single-precision floating-point number stored in dest by that stored in src and places
the result in dest. Rounding of the result is in accord with the setting of the RM[1:0] bits in the FPSW.
* Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined.

Flag Change

Flag Change Condition

C -

4 \ The flag is set if the result of the operation is +0 or —0; otherwise it is cleared.

S S The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O -

cv \ The flag is set if an invalid operation exception is generated; otherwise it is cleared.

CcO S The flag is set if an overflow exception is generated; otherwise it is cleared.

Ccz \ The value of the flag is always 0.

CuU S The flag is set if an underflow exception is generated; otherwise it is cleared.

CX S The flag is set if an inexact exception is generated; otherwise it is cleared.

CE \ The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV S The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO S The flag is set if an overflow exception is generated; otherwise it does not change.

Fz

FU \ The flag is set if an underflow exception is generated; otherwise it does not change.

FX S The flag is set if an inexact exception is generated; otherwise it does not change.

Note: The FX, FU, FO, and FV flags do not change if any of the exception enable bits EX, EU, EO, and EV is 1. The S
and Z flags do not change when an exception is generated.

REJ09B0435-0100 Rev.1.00 RENESAS Page 84 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
FMUL src, dest L #IMM:32 Rd 7

L Rs Rd 3

L [Rs].L Rd 3

L dsp:8[Rs].L" Rd 4

L dsp:16[Rs].L" Rd 5

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will
be stored in the instruction code.

Possible Exceptions

Unimplemented processing
Invalid operation
Overflow

Underflow

Inexact

Description Example

FMUL R1, R2

FMUL [R1], R2
Supplementary Description

* The following tables show the correspondences between src and dest values and the results of operations when DN

=0and DN =1.
When DN =0
src
Normalized | +0 | -0 +0 —0 Denormalized QNaN SNaN
dest | Normalized [Multiplication o0
+0 +0 -0 i)
Invalid operation
-0 -0 +0
+00 +00 —00
o0 Invalid operation
—0 —00 +o0
Denormalized Unimplemented
processing
QNaN QNaN
SNaN Invalid
operation
REJ09B0435-0100 Rev.1.00 -IENESAS Page 85 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
When DN =1
src
Normalized +0, -0, +00 —00 QNaN SNaN
+Denormalized | -Denormalized
dest| Normalized |Multiplication)
+0,
+Denormalized +0 -0) ,
Invalid operation
0, -0 +0
—Denormalized
+o0 +o00 —00
) Invalid operation
—0 —00 +00
QNaN QNaN
SNaN Invalid
operation

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 86 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

F S U B Floating-point subtraction
Floating-point SUBtract
Floating-point operation instruction
Instruction Code

Syntax
Page: 208
FSUB src, dest
Operation

dest = dest - src;

Function

« This instruction subtracts the single-precision floating-point number stored in src from that stored in dest and
places the result in dest. Rounding of the result is in accord with the setting of the RM[1:0] bits in the FPSW.

* Handling of denormalized numbers depends on the setting of the DN bit in the FPSW.

* The operation result is +0 when subtracting src from dest with both the same signs is exactly 0 except in the case of
a rounding mode towards —oo. The operation result is —0 when the rounding mode is towards —oo.

Flag Change

Flag Change Condition

C -

4 \ The flag is set if the result of the operation is +0 or —0; otherwise it is cleared.

S S The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O -

cv \ The flag is set if an invalid operation exception is generated; otherwise it is cleared.

CcO S The flag is set if an overflow exception is generated; otherwise it is cleared.

Ccz \ The value of the flag is always 0.

CuU S The flag is set if an underflow exception is generated; otherwise it is cleared.

CX S The flag is set if an inexact exception is generated; otherwise it is cleared.

CE \ The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV S The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO S The flag is set if an overflow exception is generated; otherwise it does not change.

Fz

FU \ The flag is set if an underflow exception is generated; otherwise it does not change.

FX S The flag is set if an inexact exception is generated; otherwise it does not change.

Note: The FX, FU, FO, and FV flags do not change if any of the exception enable bits EX, EU, EO, and EV is 1. The S
and Z flags do not change when an exception is generated.

REJ09B0435-0100 Rev.1.00 RENESAS Page 87 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 3

Instruction Descriptions

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
FSUB src, dest L #IMM:32 Rd 7

L Rs Rd 3

L [Rs].L Rd 3

L dsp:8[Rs].L" Rd 4

L dsp:16[Rs].L" Rd 5
Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual

value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will

be stored in the instruction code.

Possible Exceptions

Unimplemented processing
Invalid operation
Overflow
Underflow
Inexact

Description Example

FSUB
FSUB

R1, R2

[R1],

R2

Supplementary Description

* The following tables show the correspondences between src and dest values and the results of operations when DN

=0and DN =1.
When DN =0
src
Normalized | +0 -0 +0 —0 Denormalized QNaN SNaN
dest | Normalized |Subtraction
+0 * +0 —00
-0 -0 * +o0
+o0 Invalid
+00 .
operation
—0 Invalid
operation
Denormalized Unimplemented
processing
QNaN QNaN
SNaN Invalid
operation
REJ09B0435-0100 Rev.1.00 -IENESAS Page 88 of 278

June 11,

2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
When DN =1
src
Normalized +0, -0, +00 —00 QNaN SNaN
+Denormalized | -Denormalized
dest Normalized Subtraction
+0, "
+Denormalized 0 —0
-0, -0 " +o0
—Denormalized
+oo Invalid
+o0 .
operation
—0 Invalid
—a0 .
operation
QNaN QNaN
SNaN Invalid
operation

Note:

* The result is -0 when the rounding mode is set to rounding towards —o and +0 in other rounding modes.

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 89 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

FTO I Floating point to integer conversion
Float TO Integer

Floating-point operation instruction
Instruction Code

Syntax
Page: 209

FTOI src, dest

Operation

dest = (signed long) src;

Function

+ This instruction converts the single-precision floating-point number stored in src into a signed longword (32-bit)
integer and places the result in dest.
* The result is always rounded towards 0, regardless of the setting of the RM[1:0] bits in the FPSW.

Flag Change

Flag Change Condition

C -

Z v The flag is set if the result of the operation is 0; otherwise it is cleared.

S \ The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O -

Ccv \ The flag is set if an invalid operation exception is generated; otherwise it is cleared.

co Y The value of the flag is always 0.

cz S The value of the flag is always 0.

Cu \ The value of the flag is always 0.

CX \ The flag is set if an inexact exception is generated; otherwise it is cleared.

CE S The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV \ The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO -

Fz -

FU -

FX S The flag is set if an inexact exception is generated; otherwise it does not change.

Note: The FX and FV flags do not change if any of the exception enable bits EX and EV is 1. The S and Z flags do not
change when an exception is generated.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
FTOIl src, dest L Rs Rd 3

L [Rs].L Rd 3

L dsp:8[Rs].L" Rd 4

L dsp:16[Rs].L" Rd 5

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will
be stored in the instruction code.

REJ09B0435-0100 Rev.1.00 RENESAS Page 90 of 278
June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family

Section 3

Possible Exceptions

Unimplemented processing
Invalid operation
Inexact

Description Example

FTOI R1, R2
FTOI [R1], R2

Supplementary Description

* The following tables show the correspondences between src and dest values and the results of operations when DN

=0and DN =1.

When DN =0

src Value (exponent is shown without bias) dest

Exception

src=20 +00

When an invalid operation exception is Invalid operation
generated with the EV bit = 1: No change exception

127 = Exponent = 31 Other cases: 7FFFFFFFh

30 = Exponent 2 -126 00000000h to 7FFFFF80h None™"

+Denormalized number No change Unimplemented
processing exception
+0 00000000h None
src<0 -0
—Denormalized number No change Unimplemented
processing exception
30 = Exponent 2 -126 00000000h to 80000080h None™'

127 = Exponent = 31

When an invalid operation exception is
generated with the EV bit = 1: No change

Invalid operation
. *
exception™?

—0 Other cases: 80000000h
NaN QNaN When an invalid operation exception is Invalid operation
generated with the EV bit = 1: No change exception
Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

Notes: 1. An inexact exception occurs when the result is rounded.
2. No invalid operation exception occurs when src = CFO00000h.

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 91 of 278

Instruction Descriptions

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family

Section 3 Instruction Descriptions

When DN =1

src Value (exponent is shown without bias) dest

Exception

src=0 +00 When an invalid operation exception is Invalid operation
generated with the EV bit = 1: No change exception
127 = Exponent = 31 Other cases: 7TFFFFFFFh
30 = Exponent = -126 00000000h to 7FFFFF80h None™"
+0, +Denormalized number 00000000h None
src<0 —0, —Denormalized number
30 = Exponent = -126 00000000h to 80000080h None™"
127 = Exponent = 31 When an invalid operation exception is Invalid operation
generated with the EV bit = 1: No change exception*2
—0 Other cases: 80000000h
NaN QNaN When an invalid operation exception is Invalid operation
generated with the EV bit = 1: No change exception
Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

Notes: 1. An inexact exception occurs when the result is rounded.
2. No invalid operation exception occurs when src = CFO00000h.

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 92 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Soft int t
INT e e

System manipulation instruction
Syntax Instruction Code
Page: 209

INT src

Operation

tmp0 = PSW;

U =20;

I =20;

PM = 0;

tmpl = PC + 3;

PC = *(IntBase + src * 4);
SP = SP - 4;

*SP = tmpO0;

SP = SP - 4;

*SP = tmpl;

Function

* This instruction generates the unconditional trap which corresponds to the number specified as src.
e The INT instruction number (src) is in the range 0 < src < 255.

» This instruction causes a transition to supervisor mode, and clears the PM bit in the PSW to 0.

* This instruction clears the U and I bits in the PSW to 0.

Flag Change

* This instruction does not affect the states of flags.

* The state of the PSW before execution of this instruction is preserved on the stack.
Instruction Format

Operand Code Size
Syntax src (Byte)

INT src #IMM:8 3

Description Example

INT #0

REJ09B0435-0100 Rev.1.00 RENESAS Page 93 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

I TO F Integer to floating-point conversion
Integer TO Floating-point

Floating-point operation instruction
Instruction Code

Syntax
Page: 210
ITOF src, dest
Operation

dest = (float) src;

Function

» This instruction converts the signed longword (32-bit) integer stored in src into a single-precision floating-point
number and places the result in dest. Rounding of the result is in accord with the setting of the RM[1:0] bits in the
FPSW. 00000000h is handled as +0 regardless of the rounding mode.

Flag Change

Flag Change Condition

C -

Z v The flag is set if the result of the operation is +0; otherwise it is cleared.

S \ The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O -

Ccv \ The value of the flag is always 0.

co Y The value of the flag is always 0.

cz S The value of the flag is always 0.

Cu \ The value of the flag is always 0.

CX \ The flag is set if an inexact exception is generated; otherwise it is cleared.

CE S The value of the flag is always 0.

FV

FO -

Fz -

FU -

FX S The flag is set if an inexact exception is generated; otherwise it does not change.

Note: The FX flag does not change if the exception enable bit EX is 1. The S and Z flags do not change when an
exception is generated.

REJ09B0435-0100 Rev.1.00 RENESAS Page 94 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
ITOF src, dest L Rs Rd 3

L [Rs].memex Rd memex == UB)

3(

4 (memex != UB)
L dsp:8[Rs].memex* Rd 4 (memex == UB)
5(
5 (

memex != UB)

L dsp:16[Rs].memex” Rd memex == UB)

6 (memex != UB)

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Possible Exceptions

Inexact

Description Example

ITOF R1, R2
ITOF [R1], R2
ITOF 16[R1].L, R2

REJ09B0435-0100 Rev.1.00 RENESAS Page 95 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
J M P Unconditional jump
JuMP
Branch instruction
Syntax Instruction Code
Page: 211
JMP src
Operation

PC = src;

Function

* This instruction branches to the instruction specified by src.

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Operand Code Size
Syntax src (Byte)
JMP src Rs 2
Description Example
JMP R1
REJ09B0435-0100 Rev.1.00 RENESAS Page 96 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

J S R Jump to a subroutine
Jump SubRoutine

Branch instruction
Instruction Code

Syntax
Page: 211

JSR src

Operation

SP = SP - 4;
xSP = (PC +2);"
PC = src;

Note: * (PC + 2)is the address of the instruction following the JSR instruction.

Function

* This instruction causes the flow of execution to branch to the subroutine specified by src.

Flag Change

+ This instruction does not affect the states of flags.

Instruction Format

Operand Code Size
Syntax src (Byte)

JSR src Rs 2

Description Example

JSR R1

REJ09B0435-0100 Rev.1.00 RENESAS Page 97 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
M AC H I Multiply-Accumulate the high-order word
Multiply-ACcumulate Hlgh-order word
DSP instruction
Syntax Instruction Code
Page: 212

MACHI src, src?2

Operation

signed short tmpl, tmp2;

signed long long tmp3;

tmpl = (signed short) (src >> 16);

tmp2 = (signed short) (src2 >> 16);

tmp3 = (signed long) tmpl * (signed long) tmp2;
ACC = ACC + (tmp3 << 16);

Function

* This instruction multiplies the higher-order 16 bits of src by the higher-order 16 bits of src2, and adds the result to
the value in the accumulator (ACC). The addition is performed with the least significant bit of the result of
multiplication corresponding to bit 16 of ACC. The result of addition is stored in ACC. The higher-order 16 bits of

src and the higher-order 16 bits of src2 are treated as signed integers.

b31 b16 b15

b0

[Higher-order 16 bits|

| Src

X |Higher-order 16 bits‘

| src2

Sign extension |

«——Je | |

| Result of multiplication

+ | | |

ACC value before executing the
MACH] instruction

ACC value after executing the
MACHI instruction

b63 b48 b4a7 b32 b31 b16 b15

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

b0

Operand Code Size
Syntax src src2 (Byte)
MACHI src, src2 Rs Rs2 3
Description Example
MACHI R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 98 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
M AC LO Multiply-Accumulate the low-order word
Multiply-ACcumulate LOw-order word
DSP instruction
Syntax Instruction Code
Page: 212
MACLO src, src?2
Operation

signed short tmpl, tmp2;

signed long long tmp3;

tmpl = (signed short) src;

tmp2 = (signed short) src2;

tmp3 = (signed long) tmpl * (signed long) tmp2;
ACC = ACC + (tmp3 << 16);

Function

This instruction multiplies the lower-order 16 bits of src by the lower-order 16 bits of src2, and adds the result to
the value in the accumulator (ACC). The addition is performed with the least significant bit of the result of

multiplication corresponding to bit 16 of ACC. The result of addition is stored in ACC. The lower-order 16 bits of
src and the lower-order 16 bits of src2 are treated as signed integers.

b31 b16 b15 b0
| Lower-order 16 bits| src
X | ‘Lower—order 16 bitsl src2
Sign extension | <«—'e ‘ ‘ 0 | Resuit of muttiplication
+ | ‘ ‘ ‘ ACC value before executing the
MACLO instruction
| ‘ ‘ ‘ ACC value after executing the
MACLO instruction
b63 b48 b47 b32 b31 b16 b15 b0
Flag Change
* This instruction does not affect the states of flags.
Instruction Format
Operand Code Size
Syntax src src2 (Byte)
MACLO src, src2 Rs Rs2 3
Description Example
MACLO R1, R2
REJ09B0435-0100 Rev.1.00 n 2 ENESAS Page 99 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
M AX Selecting the highest value
MAXimum value select
Arithmetic/logic instruction
Syntax Instruction Code
Page: 213
MAX src, dest
Operation
if (src > dest)
dest = src;
Function
. This instruction compares src and dest as signed values and places whichever is greater in dest.
Flag Change
* This instruction does not affect the states of flags.
Instruction Format
Processing Operand Code Size
Syntax Size src dest (Byte)
MAX src, dest L #SIMM:8 Rd
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
L dsp:8[Rs].memex” Rd 4 (memex == UB)
5 (memex != UB)
L dsp:16[Rs].memex” Rd 5 (memex == UB)
6 (memex != UB)
Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual

value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example

MAX #10, R2
MAX R1, R2

MAX [R1], R2
MAX 3[R1].B, R2

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 100 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
M I N Selecting the lowest value
MINimum value select
Arithmetic/logic instruction
Syntax Instruction Code
Page: 214
MIN src, dest
Operation
if (src < dest)
dest = src;
Function
. This instruction compares src and dest as signed values and places whichever is smaller in dest.
Flag Change
* This instruction does not affect the states of flags.
Instruction Format
Processing Operand Code Size
Syntax Size src dest (Byte)
MIN src, dest L #SIMM:8 Rd
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
L dsp:8[Rs].memex” Rd 4 (memex == UB)
5 (memex != UB)
L dsp:16[Rs].memex” Rd 5 (memex == UB)
6 (memex != UB)
Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual

value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example

MIN #10, R2
MIN R1, R2

MIN [R1], R2
MIN 3[R1].B, R2

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 101 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
M OV Transferring data
MOVe
Data transfer instruction
Syntax Instruction Code
Page: 215
MOV.size src, dest
Operation
dest = src;
Function

* This instruction transfers src to dest as listed in the following table.

src

dest

Function

Immediate value

Register

Transfers the immediate value to the register. When the immediate value is
specified in less than 32 bits, it is transferred to the register after being zero-
extended if specified as #UIMM and sign-extended if specified as #SIMM.

Immediate value

Memory location

Transfers the immediate value to the memory location in the specified size.
When the immediate value is specified with a width in bits smaller than the
specified size, it is transferred to the memory location after being zero-extended
if specified as #UIMM and sign-extended if specified as #SIMM.

Register

Register

Transfers the data in the source register (src) to the destination register (dest).
When the size specifier is .B, the data is transferred to the register (dest) after
the byte of data in the LSB of the register (src) has been sign-extended to form
a longword of data. When the size specifier is .W, the data is transferred to the
register (dest) after the word of data from the LSB end of the register (src) has
bee sign-extended to form a longword of data.

Register

Memory location

Transfers the data in the register to the memory location. When the size
specifier is .B, the byte of data in the LSB of the register is transferred. When
the size specifier is .W, the word of data from the LSB end of the register is
transferred.

Memory location

Register

Transfers the data at the memory location to the register. When the size
specifier is .B or .W, the data at the memory location are sign-extended to form
a longword, which is transferred to the register.

Memory location

Memory location

Transfers the data with the specified size at the source memory location (src) to
the specified size at the destination memory location (dest).

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size
Syntax Size Size src dest (Byte)
MOV.size src, dest Store (short format)
B/W/L size Rs dsp:5[Rd]"" 2
(Rs = RO to R7) (Rd = RO to R7)
Load (short format)
B/W/L L dsp:5[Rs]™! Rd 2
(Rs = RO to R7) (Rd = RO to R7)
Set immediate value to register (short format)
L L #UIMM:4 Rd 2
REJ09B0435-0100 Rev.1.00 -2 ENESAS Page 102 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
Processing Operand Code Size
Syntax Size Size src dest (Byte)
MOV.size src, dest Set immediate value to memory location (short format)
B B #IMM:8 dsp:5[Rd]"’ 3
(Rd = RO to R7)
WiL size #UIMM:8 dsp:5[Rd]"" 3
(Rd = RO to R7)
Set immediate value to register
L L #UIMM:8"2 Rd 3
L L #SIMM:8™2 Rd 3
L L #SIMM:16 Rd 4
L L #SIMM:24 Rd 5
L L #IMM:32 Rd 6
Data transfer between registers (sign extension)
B/W L Rs Rd 2
Data transfer between registers (no sign extension)
L L Rs Rd 2
Set immediate value to memory location
B B #IMM:8 [Rd] 3
B B #IMM:8 dsp:8[Rd]"" 4
B B #IMM:8 dsp:16[Rd]"" 5
w w #SIMM:8 [Rd] 3
w w #SIMM:8 dsp:8[Rd]"’ 4
w w #SIMM:8 dsp:16[Rd]"" 5
w w #IMM: 16 [Rd] 4
w w #IMM:16 dsp:8[Rd]"" 5
w w #IMM:16 dsp:16[Rd]"" 6
L L #SIMM:8 [Rd] 3
L L #SIMM:8 dsp:8[Rd]"" 4
L L #SIMM:8 dsp:16 [Rd]"" 5
L L #SIMM:16 [Rd] 4
L L #SIMM: 16 dsp:8[Rd]"" 5
L L #SIMM: 16 dsp:16 [Rd]"" 6
L L #SIMM:24 [Rd] 5
L L #SIMM:24 dsp:8[Rd]"" 6
L L #SIMM:24 dsp:16 [Rd]"" 7
L L #IMM:32 [Rd] 6
L L #IMM:32 dsp:8[Rd]"" 7
L L #IMM:32 dsp:16 [Rd]"" 8
Load
B/W/L L [Rs] Rd 2
B/W/L L dsp:8[Rs]™" Rd 3
B/W/L L dsp:16[Rs]"" Rd 4
B/W/L L [Ri, Rb] Rd 3
Store
B/W/IL size Rs [Rd] 2
B/W/L size Rs dsp:8[Rd]"" 3
B/W/L size Rs dsp:16[Rd]*1 4
B/W/L size Rs [Ri, Rb] 3
REJ09B0435-0100 Rev.1.00 RENESAS Page 103 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
Processing Operand Code Size
Syntax Size Size src dest (Byte)
MOV.size src, dest Data transfer between memory locations

B/W/L size [Rs] [Rd] 2
B/W/L size [Rs] dsp:8[Rd]"" 3
B/W/L size [Rs] dsp:16[Rd]*1 4
B/W/L size dsp:8[Rs]" [Rd] 3
B/W/L size dsp:8[Rs]™" dsp:8[Rd]"" 4
B/W/L size dsp:8[Rs]™" dsp:16[Rd]"" 5
B/W/L size dsp:16[Rs]"" [Rd] 4
B/W/L size dsp:16[Rs] "’ dsp:8[Rd]"" 5
B/W/L size dsp:16[Rs] "’ dsp:16[Rd]"" 6
Store with post-increment*3

B/W/L size Rs [Rd+] 3
Store with pre-decrement*3

B/W/L size Rs [-Rd] 3
Load with post-increment™

B/W/L L [Rs+] Rd 3
Load with pre-decrement™

BWL L [-Rs] Rd 3

Notes: 1.

For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual

value multiplied by 2 when the size extension specifier is .W, or by 4 when the specifier is .L) as the
displacement value (dsp:5, dsp:8, dsp:16). With dsp:5, values from 0 to 62 (31 x 2) can be specified when the
size specifier is .W, or values from 0 to 124 (31 x 4) when the specifier is .L. With dsp:8, values from 0 to 510
(255 x 2) can be specified when the size specifier is .W, or values from 0 to 1020 (255 x 4) when the specifier is
.L. With dsp:16, values from 0 to 131070 (65535 x 2) can be specified when the size specifier is .W, or values
from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the

instruction code.

2. For values from 0 to 127, an instruction code for zero extension is always selected.
3. In cases of store with post-increment and store with pre-decrement, if the same register is specified for Rs and
Rd, the value before updating the address is transferred as the source.
4. In cases of load with post-increment and load with pre-decrement, if the same register is specified for Rs and
Rd, the data transferred from the memory location are saved in Rd.

Description Example

MOV.L #0, R2
MOV.L #128:8, R2
MOV.L #-128:8, R2
MOV.L R1l, R2
MOV.L #0, [R2]
MOV.W [R1], R2
MOV.W R1l, [R2]
MOV.W [R1l, R2], R3
MOV.W R1, [R2, R3]
MOV.W [R1], [R2]
MOV.B R1, [R2+]
MOV.B [R1+], R2
MOV.B R1l, [-R2]
MOV.B [-R1], R2

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 104 of 278

Under development Preliminary document

Specifications in this document are tentative and subject to change.

Section 3

Instruction Descriptions

RX Family
Syntax
MOVU.size src, dest
Operation

dest = src;

Function

* This instruction transfers src to dest as listed in the following table.

src dest

Transfer unsigned data

MOVe Unsigned data

Function

Data transfer instruction

Instruction Code
Page: 220

Register Register

Transfers the byte or word of data from the LSB in the source register (src) to
the destination register (dest), after zero-extension to form a longword data.

Memory location Register

Transfers the byte or word of data at the memory location to the register, after

zero-extension to form a longword data.

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size

Syntax Size Size src dest (Byte)
MOVU.size src, dest Load (short format)

BW L dsp:5[Rs]"" Rd 2

(Rs = RO to R7) (Rd = RO to R7)

Data transfer between registers (zero extension)

B/W L Rs Rd 2

Load

B/W L [Rs] Rd 2

BW L dsp:8[Rs]"’ Rd 3

B/W L dsp:16[Rs]"" Rd 4

B/W L [Ri, Rb] Rd 3

Load with post-increment*2

B/W L [Rs+] Rd 3

Load with pre-decrement™?

B/W L [-Rs] Rd 3

Notes: 1. For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W) as the displacement value (dsp:5, dsp:8, dsp:16).
With dsp:5, values from 0 to 62 (31 x 2) can be specified when the size specifier is .W. With dsp:8, values from
0 to 510 (255 x 2) can be specified when the size specifier is .W. With dsp:16, values from 0 to 131070 (65535
x 2) can be specified when the size specifier is .W. The value divided by 2 will be stored in the instruction code.
2. In cases of load with post-increment and load with pre-decrement, if the same register is specified for Rs and
Rd, the data transferred from the memory location are saved in Rd.

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 105 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Description Example

MOVU.W 2[R1], R2
MOVU.W R1, R2

MOVU.B [R1+], R2
MOVU.B [-R1], R2

REJ09B0435-0100 Rev.1.00 RENESAS Page 106 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Multiplicati
MUL e

Arithmetic/logic instruction
Instruction Code

Syntax
Page: 221
(1) MUL src, dest
(2) MUL src, src2, dest
Operation
(1) dest = src * dest;
(2) dest = src * src2;
Function

(1) This instruction multiplies src and dest and places the result in dest.
* The calculation is performed in 32 bits and the lower-order 32 bits of the result are placed.
» The operation result will be the same whether a singed or unsigned multiply is executed.
(2) This instruction multiplies src and src2 and places the result in dest.
* The calculation is performed in 32 bits and the lower-order 32 bits of the result are placed.
* The operation result will be the same whether a singed or unsigned multiply is executed.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined.

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size
Syntax Size src src2 dest (Byte)
(1) MUL src, dest L #UIMM:4 - Rd
L #SIMM:8 - Rd 3
L #SIMM: 16 - Rd 4
L #SIMM:24 - Rd 5
L #IMM:32 - Rd 6
L Rs - Rd 2
L [Rs].memex - Rd 2 (memex == UB)
3 (memex != UB)
L dsp:8[Rs].memex” - Rd 3 (memex == UB)
4 (memex != UB)
L dsp:16[Rs].memex” - Rd 4 (memex == UB)
5 (memex != UB)

(2) MUL src, src2, dest L Rs Rs2 Rd 3

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier .L. The value divided by 2 or 4 will be stored in the instruction
code.

REJ09B0435-0100 Rev.1.00 RENESAS Page 107 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Description Example

MUL #10, R2
MUL R1, R2
MUL [R1], R2
MUL 4[R1].W, R2
MUL R1, R2, R3
REJ09B0435-0100 Rev.1.00 RENESAS Page 108 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
M U L H I Muiltiply the high-order word
MULtiply Hlgh-order word

Syntax

DSP instruction

Instruction Code

Page: 223
MULHI src, src?2

Operation

signed short tmpl, tmp2;

signed long long tmp3;

tmpl = (signed short) (src >> 16);

tmp2 = (signed short) (src2 >> 16);

tmp3 = (signed long) tmpl * (signed long) tmp2;
ACC = (tmp3 << 16);

Function

* This instruction multiplies the higher-order 16 bits of src by the higher-order 16 bits of src2, and stores the result in
the accumulator (ACC). When the result is stored, the least significant bit of the result corresponds to bit 16 of
ACC, and the section corresponding to bits 63 to 48 of ACC is sign-extended. Moreover, bits 15 to 0 of ACC are
cleared to 0. The higher-order 16 bits of src and the higher-order 16 bits of src2 are treated as signed integers.

b31 b16 b15 b0
|Higher—order 16 bits‘ | src
X [Higher-order 16 bits| [src2
: ACC value after executing the
Sign-extended | <« o | | 0 | MULHI instruction 9
b63 b48 b47 b32 b31 b16 b15 b0

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Operand Code Size
Syntax src src2 (Byte)
MULHI src, src2 Rs Rs2 3
Description Example
MULHIT R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 109 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Multiply the low-ord d
MULLO MULtily LOw-order word

Syntax

DSP instruction

Instruction Code

Page: 223
MULLO src, src?2

Operation

signed short tmpl, tmp2;

signed long long tmp3;

tmpl = (signed short) src;

tmp2 = (signed short) src2;

tmp3 = (signed long) tmpl * (signed long) tmp2;
ACC = (tmp3 << 16);

Function

* This instruction multiplies the lower-order 16 bits of src by the lower-order 16 bits of src2, and stores the result in
the accumulator (ACC). When the result is stored, the least significant bit of the result corresponds to bit 16 of
ACC, and the section corresponding to bits 63 to 48 of ACC is sign-extended. Moreover, bits 15 to 0 of ACC are
cleared to 0. The lower-order 16 bits of src and the lower-order 16 bits of src2 are treated as signed integers.

b31 b16 b15 b0
| ‘Lower-order 16 bits| src

X | Lower-order 16 bits| src2
. ACC value after executing the
Sign-extended | . 0 MULLO instruction

b63 b48 ba7 b32 b31 b16 b15 b0

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Operand Code Size
Syntax src src2 (Byte)
MULLO src, src2 Rs Rs2 3
Description Example
MULLO R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 110 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
MVF AC H I Move the high-order longword from
accumulator
MoVe From ACcumulator High-order DSP instruction
Syntax longword Instruction Code
Page: 224

MVFACHI dest

Operation

dest = (signed long) (ACC >> 32);

Function

* This instruction moves the higher-order 32 bits of the accumulator (ACC) to dest.

b63 b32 b31 b0
I ACC |
N J

b31 T b0

| dest
Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Operand Code Size
Syntax dest (Byte)
MVFACHI dest Rd 3
Description Example
MVFACHI R1
REJ09B0435-0100 Rev.1.00 RENESAS Page 111 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
MVF AC M I Move the middle-order longword from
accumulator
MoVe From ACcumulator Mlddle-order DSP instruction
Syntax longword Instruction Code
Page: 224

MVFACMI dest

Operation

dest = (signed long) (ACC >> 16);

Function

* This instruction moves the contents of bits 47 to 16 of the accumulator (ACC) to dest.

b63 b48 b47 b32 b31 b16 b15 b0
ACC ‘ |
J
b31 Y b0
| dest
Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Operand Code Size
Syntax dest (Byte)
MVFACMI dest Rd 3
Description Example
MVFACMI RI1
REJ09B0435-0100 Rev.1.00 RENESAS Page 112 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

MVF C Transfer from a control register
MoVe From Control register
System manipulation instruction
Instruction Code

Syntax
Page: 225
MVEC src, dest
Operation
dest = src;
Function
» This instruction transfers src to dest.
* When the PC is specified as src, this instruction pushes its own address onto the stack.
Flag Change
+ This instruction does not affect the states of flags.
Instruction Format
Processing Operand Code Size
Syntax Size src” dest (Byte)
MVFC src, dest L Rx Rd 3
Note: * Selectable src: Registers PC, ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW
Description Example
MVEC UsSP, R1
REJ09B0435-0100 Rev.1.00 RENESAS Page 113 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
MVT AC H I Move the high-order longword
to accumulator
MoVe To ACcumulator High-order DSP instruction
Syntax longword Instruction Code
Page: 225

MVTACHI src

Operation

ACC = (ACC & OOOOOOOOFFFFFFFFh) | ((signed long long)src << 32);

Function

+ This instruction moves the contents of src to the higher-order 32 bits (bits 63 to 32) of the accumulator (ACC).

b31 b0
Src

ST

~
b63 b32 b31 b0

| ACC

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Operand Code Size
Syntax src (Byte)
MVTACHI src Rs 3
Description Example
MVTACHI R1
REJ09B0435-0100 Rev.1.00 RENESAS Page 114 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
MVT AC LO Move the low-order longword
to accumulator
MoVe To ACcumulator LOw-order DSP instruction
longword -
Syntax g Instruction Code
Page: 226
MVTACLO src
Operation
ACC = (ACC & FFFFFFFF00000000h) | src;
Function

* This instruction moves the contents of src to the lower-order 32 bits (bits 31 to 0) of the accumulator (ACC).

b31 b0
sre I
p
b63 b32 b31 b0
| ACC
Flag Change
* This instruction does not affect the states of flags.
Instruction Format
Operand Code Size
Syntax src (Byte)
MVTACLO src Rs 3
Description Example
MVTACLO R1
REJ09B0435-0100 Rev.1.00 RENESAS Page 115 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

MVTC Transfer to a control register
MoVe To Control register
System manipulation instruction
Instruction Code

Syntax
Page: 226
MVTC src, dest
Operation

dest = src;

Function

* This instruction transfers src to dest.
* Inuser mode, writing to the ISP, INTB, BPC, BPSW, and FINTV, and the IPL[3:0], PM, U, and I bits in the PSW is
ignored. In supervisor mode, writing to the PM bit in the PSW is ignored.

Flag Change

Flag Change Condition
C *

Z *

S %

O *

Note: * The flag changes only when dest is the PSW.

Instruction Format

Processing Operand _ Code Size
Syntax Size src dest (Byte)
MVTC src, dest L #SIMM:8 Rx 4

L #SIMM:16 Rx 5

L #SIMM:24 Rx 6

L #IMM:32 Rx 7

L Rs Rx 3

Note: * Selectable dest: Registers ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW
Note that the PC cannot be specified as dest.
Description Example

MVTC #0FFFFFO000h, INTB
MVTC R1, USP

REJ09B0435-0100 Rev.1.00 RENESAS Page 116 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

MVTI P L Interrupt priority level setting
MoVe To Interrupt Priority Level
System manipulation instruction

Instruction Code
Page: 227

Syntax

MVTIPL src

Operation

IPL = src;

Function

* This instruction transfers src to the IPL[3:0] bits in the PSW.

* This instruction is a privileged instruction. Attempting to execute this instruction in user mode generates a
privileged instruction exception.

* The value of src is an unsigned integer in the range 0 < src < 15.

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Operand Code Size
Syntax src (Byte)
MVTIPL src #IMM:4 3

Description Example

MVTIPL #2

Note: The MVTIPL instruction is not available in products of the RX610 Group. Use the MVTC instruction to write
interrupt priority levels to the processor interrupt-priority level (IPL[2:0]) bits in the processor status word (PSW).

REJ09B0435-0100 Rev.1.00 RENESAS Page 117 of 278
June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family

Section 3 Instruction Descriptions

NEG

Syntax

(1) NEG dest

(2) NEG src, dest

Operation

(1) dest
(2) dest

-dest;
-src;

Function

Two’s complementation

NEGate

Arithmetic/logic instruction
Instruction Code
Page: 228

(1) This instruction arithmetically inverts (takes the two's complement of) dest and places the result in dest.
(2) This instruction arithmetically inverts (takes the two's complement of) src and places the result in dest.

Flag Change

Flag Change Condition

C N The flag is set if dest is O after the operation; otherwise it is cleared.

The flag is set if dest is O after the operation; otherwise it is cleared.

Z \
S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
0 v

(1) The flag is set if dest before the operation was 80000000h; otherwise it is cleared.
(2) The flag is set if src before the operation was 80000000h; otherwise it is cleared.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
(1) NEG dest L - Rd 2
(2) NEG src, dest L Rs Rd 3
Description Example
NEG R1
NEG R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 118 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
N O P No operation
No OPeration

Syntax

Arithmetic/logic instruction
Instruction Code
Page: 228

NOP

Operation

/* No operation */

Function

+ This instruction executes no process. The operation will be continued from the next instruction.

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Syntax Code Size (Byte)
NOP 1

Description Example

NOP

REJ09B0435-0100 Rev.1.00 RENESAS Page 119 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

N O T Logical complementation
NOT
Arithmetic/logic instruction

Syntax Instruction Code
Page: 229

(1) NOT dest
(2) NOT src, dest

Operation

(1) dest
(2) dest

“dest;
“src;

Function

(1) This instruction logically inverts dest and places the result in dest.
(2) This instruction logically inverts src and places the result in dest.

Flag Change

Flag Change Condition

C -

4 \ The flag is set if dest is O after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1 ; otherwise it is cleared.
O -

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
(1) NOT dest L - Rd 2
(2) NOT src, dest L Rs Rd 3
Description Example
NOT R1
NOT R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 120 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Logical OR
OR ouia

Arithmetic/logic instruction
Instruction Code

Syntax
Page: 230
(1) OR src, dest
(2) OR src, src2, dest
Operation
(1) dest = dest | src;
(2) dest = src | src2;
Function
(1) This instruction takes the logical OR of dest and src and places the result in dest.
(2) This instruction takes the logical OR of src and src2 and places the result in dest.
Flag Change
Flag Change Condition
C -
4 \ The flag is set if dest is O after the operation; otherwise it is cleared.
S v The flag is set if the MSB of dest after the operation is 1 ; otherwise it is cleared.
O -
Instruction Format
Processing Operand Code Size
Syntax Size src src2 dest (Byte)
(1) OR src, dest L #UIMM:4 - Rd
L #SIMM:8 - Rd 3
L #SIMM:16 - Rd 4
L #SIMM:24 - Rd 5
L #IMM:32 - Rd 6
L Rs - Rd 2
L [Rs].memex - Rd 2 (memex == UB)
3 (memex != UB)
L dsp:8[Rs].memex” - Rd 3 (memex == UB)
4 (memex != UB)
L dsp:16[Rs].memex* - Rd 4 (memex == UB)
5 (memex != UB)
(2) OR src, src2, dest L Rs Rs2 Rd 3

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

REJ09B0435-0100 Rev.1.00 RENESAS Page 121 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Description Example

OR 48, R1
OR R1, R2
OR [R1], R2
OR 8[R1].L, R2
OR R1, R2, R3
REJ09B0435-0100 Rev.1.00 RENESAS Page 122 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
P O P Restoring data from stack to register
POP data from the stack
Data transfer instruction
Syntax Instruction Code
Page: 231
POP dest
Operation
tmp = *SP;

SP = SP + 4;
dest = tmp;

Function

. This instruction restores data from the stack and transfers it to dest.
* The stack pointer in use is specified by the U bit in the PSW.

Flag Change

+ This instruction does not affect the states of flags.

Instruction Format

Processing ©perand Code Size
Syntax Size dest (Byte)
POP dest L Rd 2
Description Example
POP R1
REJ09B0435-0100 Rev.1.00 RENESAS Page 123 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

P O P C Restoring a control register
POP Control register

Data transfer instruction
Instruction Code

Syntax
Page: 232

POPC dest

Operation

tmp = *SP;
SP = SP + 4;
dest = tmp;

Function

+ This instruction restores data from the stack and transfers it to the control register specified as dest.

* The stack pointer in use is specified by the U bit in the PSW.

. In user mode, writing to the ISP, INTB, BPC, BPSW, and FINTV, and the IPL[3:0], PM, U, and I bits in the PSW is
ignored. In supervisor mode, writing to the PM bit in the PSW is ignored.

Flag Change

Flag Change Condition
C %

Z *

S *

O %

Note: * The flag changes only when dest is the PSW.

Instruction Format

Processing ©perand Code Size
Syntax Size dest* (Byte)
POPC dest L Rx 2

Note: * Selectable dest: Registers ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW
Note that the PC cannot be specified as dest.

Description Example

POPC PSW

REJ09B0435-0100 Rev.1.00 RENESAS Page 124 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

P O P M Restoring multiple registers from the stack

POP Multiple registers
Data transfer instruction
Syntax Instruction Code
Page: 232

POPM dest-dest2

Operation

signed char i;

for (1 = register num(dest); i <= register num(dest2); i++) {
tmp = *SP;
SP = SP + 4;
register (i) = tmp;

}

Function

+ This instruction restores values from the stack to the block of registers in the range specified by dest and dest2.

* Therange is specified by first and last register numbers. Note that the condition (first register number < last register
number) must be satisfied.

* RO cannot be specified.

* The stack pointer in use is specified by the U bit in the PSW.

+ Registers are restored from the stack in the following order:

|R15|R14|R13|R12| |R2|R1|

A
Y

Restoration is in sequence from R1.

Flag Change

+ This instruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size
Syntax Size dest dest2 (Byte)
POPM dest-dest2 L Rd Rd2 2
(Rd = R1 to R14) (Rd2 = R2 to R15)

Description Example

POPM R1-R3

POPM R4-R8

REJ09B0435-0100 Rev.1.00 RENESAS Page 125 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

P U S H Saving data on the stack
PUSH data onto the stack

Syntax

Data transfer instruction
Instruction Code
Page: 233

PUSH.size src

Operation

tmp = src;

SP = SP -4 ";
*SP = tmp;

Note: * SPis always decremented by 4 even when the size specifier (.size) is .B or .W. The higher-order 24 and 16 bits
in the respective cases (.B and .W) are undefined.

Function

* This instruction pushes src onto the stack.

* When src is in register and the size specifier for the PUSH instruction is .B or .W, the byte or word of data from the
LSB in the register are saved respectively.

* The transfer to the stack is processed in longwords. When the size specifier is .B or .W, the higher-order 24 or 16
bits are undefined respectively.

+ The stack pointer in use is specified by the U bit in the PSW.

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size
Syntax Size Size src (Byte)
PUSH.size src B/W/L L Rs 2
B/W/L L [Rs] 2
B/WIL L dsp:8[Rs]" 3
B/WI/L L dsp:16[Rs]" 4

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
specifier is .W, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values from 0 to 131070
(65535 x 2) can be specified when the size specifier is .W, or values from 0 to 262140 (65535 x 4) when the
specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

Description Example

PUSH.B RI1
PUSH.L [R1]

REJ09B0435-0100 Rev.1.00 RENESAS Page 126 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Savi trol regist
PUSHC PUSH Control register

Data transfer instruction
Instruction Code

Syntax
Page: 234
PUSHC src
Operation
tmp = src;
SP = SP - 4;
*SP = tmp;
Function
+ This instruction pushes the control register specified by src onto the stack.
* The stack pointer in use is specified by the U bit in the PSW.
* When the PC is specified as src, this instruction pushes its own address onto the stack.
Flag Change
* This instruction does not affect the states of flags.
Instruction Format
Processing Operand Code Size
Syntax Size src* (Byte)
PUSHC src L Rx 2
Note: * Selectable src: Registers PC, ISP, USP, INTB, PSW, BPC, BPSW, FINTV, and FPSW
Description Example
PUSHC PSW
REJ09B0435-0100 Rev.1.00 RENESAS Page 127 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
P U S H M Saving multiple registers
PUSH Multiple registers

Syntax

Data transfer instruction
Instruction Code
Page: 234

PUSHM src—-src?2

Operation

signed char i;

for (i = register num(src2); i >= register num(src); i--) {
tmp = register(i);
SP = SP - 4;
*SP = tmp;

}

Function

+ This instruction saves values to the stack from the block of registers in the range specified by src and src2.

* Therange is specified by first and last register numbers. Note that the condition (first register number < last register
number) must be satisfied.

* RO cannot be specified.

* The stack pointer in use is specified by the U bit in the PSW.

+ Registers are saved in the stack in the following order:

|R15|R14|R13|R12| |R2|R1|

Saving is in sequence from R15.

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size
Syntax Size src src2 (Byte)
PUSHM src-src2 L Rs Rs2 2
(Rs = R1 to R14) (Rs2 = R2 to R15)

Description Example

PUSHM R1-R3

PUSHM R4-R8

REJ09B0435-0100 Rev.1.00 RENESAS Page 128 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
R ACW Round the accumulator word
Round ACcumulator Word
DSP instruction
Syntax Instruction Code
Page: 235
RACW src
Operation

signed long long tmp;

tmp = (signed long long) ACC << src;

tmp = tmp + 0000000080000000h;

if (tmp > (signed long long) 00007FFF00000000h)
ACC = 00007FFF00000000h;

else if (tmp < (signed long long) FFFF800000000000h)
ACC = FFFF800000000000h;

else
ACC = tmp & FFFFFFFF00000000h;

Function

. This instruction rounds the value of the accumulator into a word and stores the result in the accumulator.

b63 b48 b47 b32 b31 b16 b15 b0
ACC

RACW instruction
b63

Sign Data 0

* The RACW instruction is executed according to the following procedures.

Processing 1:
The value of the accumulator is shifted to the left by one or two bits as specified by src.

b63 b48 b47 b32 b31 b16 b15 b0

Shifted to the left by one or two bits

b63 b48 b47 b32 b31 b16 b15 b0
REJ09B0435-0100 Rev.1.00 RENESAS Page 129 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family

Section 3

Instruction Descriptions

Processing 2:

The value of the accumulator changes according to the value of 64 bits after the contents have been shifted to the

left by one or two bits.

b63 b48 b47 b32 b31 b16 b15 b0
A ¥]
b63 b0
> 0000 TFFF 0000 0000
Positive
values :
0000 7FFE 8000 0000 h | b63 b32 b31 b0
0000 7FFE 7FFF FFFF h R
: No carrying when bit 31 is 0
- y > Carrying when bit 31 is 1
0000 0000 0:000 0000k Bits 31 to 0 are cleared to 0
: b63 b32 b31 b0
FFFF 8000 8000 0000 h | | | o000 | ooo0 |
FFFF 8000 7FFF FFFF h
Negative :
values b63 b0
—— | FFFF | 8000 | 0000 [0000 |
\ 4]
Flag Change
* This instruction does not affect the states of flags.
Instruction Format
Operand Code Size
Syntax src (Byte)
RACW src #IMM:1 " 3
(IMM:1 =1 or 2)
Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter 1 or 2 as the immediate

(IMM:1). As the instruction code, the value minus 1 will be stored.

Description Example

#1
#2

RACW
RACW

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 130 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

- .
REVL REVerse Longword data

Data transfer instruction
Instruction Code

Syntax
Page: 235
REVL src, dest
Operation

Rd = { Rs[7:0], Rs[15:8], Rs[23:16], Rs[31:24] }

Function

* This instruction converts the endian byte order within a 32-bit datum, which is specified by src, and saves the result
in dest.

Flag Change

+ This instruction does not affect the states of flags.

Instruction Format

Operand Code Size
Syntax src dest (Byte)
REVL src, dest Rs Rd 3
Description Example
REVL R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 131 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

- .
REVW REVerse Word data

Data transfer instruction
Instruction Code

Syntax
Page: 236
REVW src, dest
Operation

Rd = { Rs[23:16], Rs[31:24], Rs[7:0], Rs[15:8] }

Function

* This instruction converts the endian byte order within the higher- and lower-order 16-bit data, which are specified
by src, and saves the result in dest.

Flag Change

+ This instruction does not affect the states of flags.

Instruction Format

Operand Code Size
Syntax src dest (Byte)
REVW src, dest Rs Rd 3
Description Example
REVW R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 132 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

R M P A Multiply-and-accumulate operation
Repeated MultiPly and Accumulate
Arithmetic/logic instruction

Instruction Code
Page: 236

Syntax

RMPA.size

Operation

while (R3 != 0) {
R6:R5:R4 = R6:R5:R4 + *R1 * *R2;
R1 = R1 + n;
R2 = R2 + n;
R3 = R3 - 1;

Notes: 1. If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.
2. When the size specifier (.size) is .B, .W, or .L, nis 1, 2, or 4, respectively.

Function

* This instruction performs a multiply-and-accumulate operation with the multiplicand addresses specified by R1,
the multiplier addresses specified by R2, and the number of multiply-and-accumulate operations specified by R3.
The operands and result are handled as signed values, and the result is placed in R6:R5:R4 as an 80-bit datum. Note
that the higher-order 16 bits of R6 are set to the value obtained by sign-extending the lower-order 16 bits of R6.

* The greatest value that is specifiable in R3 is 00010000h.

b31 b16 b15 b0 b31 b0 b31 b0
Sign-extended ¢ |® | | | | R6:R5:R4
R6 RS R4

¢ The data in R1 and R2 are undefined when instruction execution is completed.

* Specify the initial value in R6:R5:R4 before executing the instruction. Furthermore, be sure to set R6 to
FFFFFFFFh when R5:R4 is negative or to 00000000h if R5:R4 is positive.

* An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, R4, R5, R6, and PSW when an interrupt is generated and
restore them when execution is returned from the interrupt routine.

* Inexecution of the instruction, the data may be prefetched from the multiplicand addresses specified by R1 and the
multiplier addresses specified by R2, with R3 as the upper limit. For details of the data size to be prefetched, refer
to the hardware manual of each product.

Note: The accumulator (ACC) is used to perform the function. The value of ACC after executing the instruction is
undefined.

REJ09B0435-0100 Rev.1.00 RENESAS Page 133 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Flag Change

Flag Change Condition

C -

Z -

S \ The flag is set if the MSB of R6 is 1; otherwise it is cleared.

(0] S The flag is set if the R6:R5:R4 data is greater than 2 63 _1 or smaller than -2 % ; otherwise it is
cleared.

Instruction Format

Processing Code Size
Syntax Size Size (Byte)
RMPA .size B/WI/L size 2
Description Example
RMPA.W
REJ09B0435-0100 Rev.1.00 RENESAS Page 134 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

RO LC Rotation with carry to left
ROtate Left with Carry

Arithmetic/logic instruction
Instruction Code

Syntax
Page: 237
ROLC dest
Operation
dest <<= 1;
if (C ==) { dest &= FFFFFFFEh; }
else { dest |= 00000001h; }
Function
+ This instruction treats dest and the C flag as a unit, rotating the whole one bit to the left.
L{ MSB dest LSB
Flag Change
Flag Change Condition
C v The flag is set if the shifted-out bit is 1; otherwise it is cleared.
4 \ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S S The flag is set if the MSB of dest after the operation is 1 ; otherwise it is cleared.
O -
Instruction Format
Processing Operand Code Size
Syntax Size dest (Byte)
ROLC dest L Rd 2
Description Example
ROLC R1
REJ09B0435-0100 Rev.1.00 -IENESAS Page 135 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

RO RC Rotation with carry to right
ROtate Right with Carry

Arithmetic/logic instruction
Instruction Code

Syntax
Page: 237
RORC dest
Operation
dest >>= 1;
if (C ==) { dest &= T7FFFFFFFh; }
else { dest |= 80000000h; }
Function
* This instruction treats dest and the C flag as a unit, rotating the whole one bit to the right.
L»{ MSB dest LSB
Flag Change
Flag Change Condition
C v The flag is set if the shifted-out bit is 1; otherwise it is cleared.
4 \ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S S The flag is set if the MSB of dest after the operation is 1 ; otherwise it is cleared.
O -
Instruction Format
Processing Operand Code Size
Syntax Size dest (Byte)
RORC dest L Rd 2
Description Example
RORC R1
REJ09B0435-0100 Rev.1.00 -IENESAS Page 136 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
ROT L Rotation to left
ROTate Left
Arithmetic/logic instruction
Syntax Instruction Code
Page: 238
ROTL src, dest
Operation

unsigned long tmpO, tmpl;
tmp0 = src & 31;

tmpl = dest << tmpO0;

dest = dest >>

((unsigned long) (32 - tmpO0))

Function

tmpl;

* This instruction rotates dest leftward by the number of bit positions specified by src and saves the value in dest.
Bits overflowing from the MSB are transferred to the LSB and to the C flag.

» srcis an unsigned integer in the range of 0 <src < 31.
¢ When src is in register, only five bits in the LSB are valid.

|_SB|<J

[Cle!—|msB dest

Flag Change

Flag Change Condition

C v After the operation, this flag will have the same LSB value as dest. In addition, when src is 0,
this flag will have the same LSB value as dest.

4 \ The flag is set if dest is O after the operation; otherwise it is cleared.

S S The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

O -

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
ROTL src, dest L #IMM:5 Rd 3
L Rs Rd 3
Description Example
ROTL #1, R1
ROTL R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 137 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
ROT R Rotation to right
ROTate Right
Arithmetic/logic instruction
Syntax Instruction Code
Page: 238
ROTR src, dest
Operation
unsigned long tmpO, tmpl;
tmp0 = src & 31;
tmpl = (unsigned long) dest >> tmpO;
dest = (dest << (32 - tmpO0)) | tmpl;
Function

* This instruction rotates dest rightward by the number of bit positions specified by src and saves the value in dest.
Bits overflowing from the LSB are transferred to the MSB and to the C flag.

» srcis an unsigned integer in the range of 0 <src < 31.
When src is in register, only five bits in the LSB are valid.

L|MSB

dest Lse]—»[c]
Flag Change
Flag Change Condition
C v After the operation, this flag will have the same MSB value as dest. In addition, when src is 0,
this flag will have the same MSB value as dest.
4 \ The flag is set if dest is 0 after the operation; otherwise it is cleared.
S S The flag is set if the MSB of dest after the operation is 1 ; otherwise it is cleared.
O -

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
ROTR src, dest L #IMM:5 Rd 3
L Rs Rd 3
Description Example
ROTR #1, R1
ROTR R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 138 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

RO U N D Conversion from floating-point to integer
ROUND floating-point to integer
Floating-point operation instruction

Instruction Code
Page: 239

Syntax

ROUND src, dest

Operation

dest = (signed long) src;

Function

* This instruction converts the single-precision floating-point number stored in src into a signed longword (32-bit)
integer and places the result in dest. The result is rounded according to the setting of the RM[1:0] bits in the FPSW.

Bits RM[1:0] Rounding Mode

00b Round to the nearest value
01b Round towards 0

10b Round towards +oo

11b Round towards —o

Flag Change

Flag Change Condition

C -

Z v The flag is set if the result of the operation is 0; otherwise it is cleared.

S S The flag is set if the sign bit (bit 31) of the result of the operation is 1; otherwise it is cleared.
O -

Ccv Y The flag is set if an invalid operation exception is generated; otherwise it is cleared.

co \ The value of the flag is always 0.

Ccz S The value of the flag is always 0.

Cu Y The value of the flag is always 0.

CX S The flag is set if an inexact exception is generated; otherwise it is cleared.

CE S The flag is set if an unimplemented processing exception is generated; otherwise it is cleared.
FV \ The flag is set if an invalid operation exception is generated; otherwise it does not change.
FO -

Fz -

FU -

FX S The flag is set if an inexact exception is generated; otherwise it does not change.

Note: The FX and FV flags do not change if any of the exception enable bits EX and EV is 1. The S and Z flags do not
change when an exception is generated.

REJ09B0435-0100 Rev.1.00 RENESAS Page 139 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.
RX Family

Section 3 Instruction Descriptions

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
ROUND src, dest L Rs Rd 3

L [Rs].L Rd 3

L dsp:8[Rs].L" Rd 4

L dsp:16[Rs].L" Rd 5

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will
be stored in the instruction code.

Possible Exceptions

Unimplemented processing
Invalid operation
Inexact

Description Example
ROUND R1, R2
ROUND [R1], R2

Supplementary Description

* The following tables show the correspondences between src and dest values and the results of operations when DN
=0and DN =1.

When DN =0

src Value (exponent is shown without bias) dest Exception

src20 +00

When an invalid operation exception is Invalid operation
generated with the EV bit = 1: No change exception

127 = Exponent = 31 Other cases: 7TFFFFFFFh

30 = Exponent = -126 00000000h to 7FFFFF80h None™"

+Denormalized number No change Unimplemented
processing exception
+0 00000000h None
src<0 -0
—Denormalized number No change Unimplemented

processing exception

30 = Exponent 2 -126

00000000h to 80000080h

None™!

127 = Exponent = 31

When an invalid operation exception is
generated with the EV bit = 1: No change

Invalid operation
exception™?

—0 Other cases: 80000000h
NaN QNaN When an invalid operation exception is Invalid operation
generated with the EV bit = 1: No change exception
Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

Notes: 1. An inexact exception occurs when the result is rounded.
2. No invalid operation exception occurs when src = CFO00000h.

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 140 of 278

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family

Section 3 Instruction Descriptions

When DN =1

src Value (exponent is shown without bias) dest

Exception

src=0 +o0 When an invalid operation exception is Invalid operation
generated with the EV bit = 1: No change exception
127 = Exponent = 31 Other cases: 7TFFFFFFFh
30 = Exponent = —126 00000000h to 7FFFFF80h None™!
+0, +Denormalized number 00000000h None
src<0 —0, —Denormalized number
30 = Exponent = —126 00000000h to 80000080h None™!
127 = Exponent = 31 When an invalid operation exception is Invalid operation
generated with the EV bit = 1: No change exception*?
—0 Other cases: 80000000h
NaN QNaN When an invalid operation exception is Invalid operation
generated with the EV bit = 1: No change exception
Other cases:
SNaN Sign bit = 0: 7FFFFFFFh

Sign bit = 1: 80000000h

Notes: 1. Aninexact exception occurs when the result is rounded.
2. No invalid operation exception occurs when src = CFO00000h.

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 141 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

RTE Return from the exception
ReTurn from Exception
System manipulation instruction
Instruction Code

Syntax
Page: 239
RTE
Operation
PC = *SP;
SP = SP + 4;
tmp = *SP;
SP = SP + 4;
PSW = tmp;
Function

* This instruction returns execution from the exception handling routine by restoring the PC and PSW contents that
were preserved when the exception was accepted.

+ This instruction is a privileged instruction. Attempting to execute this instruction in user mode generates a
privileged instruction exception.

« Ifreturning is accompanied by a transition to user mode, the U bit in the PSW becomes 1.

Flag Change

Flag Change Condition
C *
Z *
S *
O *

Note: * The flags become the corresponding values on the stack.

Instruction Format

Syntax Code Size (Byte)
RTE 2

Description Example

RTE

REJ09B0435-0100 Rev.1.00 RENESAS Page 142 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

RT F I Return from the fast interrupt
ReTurn from Fast Interrupt

System manipulation instruction
Syntax Instruction Code
Page: 240

RTFI

Operation

PSW = BPSW;
PC = BPC;

Function

* This instruction returns execution from the fast-interrupt handler by restoring the PC and PSW contents that were
saved in the BPC and BPSW when the fast interrupt request was accepted.

* This instruction is a privileged instruction. Attempting to execute this instruction in user mode generates a
privileged instruction exception.

+ Ifreturning is accompanied by a transition to user mode, the U bit in the PSW becomes 1.

* The data in the BPC and BPSW are undefined when instruction execution is completed.

Flag Change

Flag Change Condition
C *
Z *
S *
O *

Note: * The flags become the corresponding values from the BPSW.

Instruction Format

Syntax Code Size (Byte)
RTFI 2

Description Example

RTFI

REJ09B0435-0100 Rev.1.00 RENESAS Page 143 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
RT S Returning from a subroutine
ReTurn from Subroutine
Branch instruction
Syntax Instruction Code
Page: 240
RTS
Operation
PC = *SP;
SP = SP + 4;
Function

. This instruction returns the flow of execution from a subroutine.

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Syntax Code Size (Byte)
RTS 1

Description Example

RTS

REJ09B0435-0100 Rev.1.00 RENESAS Page 144 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
RT S D Releasing stack frame and
returning from subroutine
Re'[gurn”fror? Sl:b"?(uftine and Branch instruction
eallocate stack frame i
Syntax Instruction Code
Page: 240

(1) RTSD src
(2) RTSD src, dest-dest2

Operation
(1) SP = SP + src;
PC = *SP;
SP = SP + 4;

(2) signed char i;
SP = SP + (src - (register num(dest2) - register num(dest) +1) * 4);
for (1 = register num(dest); i <= register num(dest2); i++) {
tmp = *SP;
SP = SP + 4;
register (i) = tmp;
}
PC = *SP;
SP = SP + 4;

Function

(1) This instruction returns the flow of execution from a subroutine after deallocating the stack frame for the
subroutine.
» Specify src to be the size of the stack frame (auto conversion area).

Before After
executing the executing the
instruction instruction
SP >
Number of bytes specified Auto.
by src conversion Direction of
area address
Return incrementing
addrgss Sp > .
Function v Function
argument argument
REJ09B0435-0100 Rev.1.00 -IENESAS Page 145 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.
RX Family

Section 3 Instruction Descriptions

(2) This instruction returns the flow of execution from a subroutine after deallocating the stack frame for the
subroutine and also restoring register values from the stack area.
» Specify src to be the total size of the stack frame (auto conversion area and register restore area).

Before
executing the
instruction

After
executing the
instruction

SP —»)

Auto.
conversion

area Direction of
address
incrementing

Number of bytes specified 2
by src

Register
restore area

Return
address

Function
argument

SP

\ 4

Function
argument

» This instruction restores values for the block of registers in the range specified by dest and dest2 from the stack.

» The range is specified by first and last register numbers. Note that the condition (first register number < last
register number) must be satisfied.

* RO cannot be specified.

» The stack pointer in use is specified by the U bit in the PSW.

» Registers are restored from the stack in the following order:

| Ri5 | R4 [R1Z | RIZ | e | Re | R1 |
Restoration is in sequence from R1.
Flag Change
* This instruction does not affect the states of flags.
Instruction Format
Operand Code Size
Syntax src dest dest2 (Byte)
(1)RTSD src #UIMM:8* - - 2

(2) RTSD src, dest-dest2 #UIMM:8° Rd (Rd=R1toR15) Rd2 (Rd2=R1 to R15) 3

Note: * For the RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the immediate value. With UIMM:8, values from 0 to 1020 (255 x 4) can be specified.
The value divided by 4 will be stored in the instruction code.

Description Example

RTSD #4
RTSD #16, R5-R7

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS Page 146 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

S AT Saturation of signed 32-bit data
SATurate signed 32-bit data

Arithmetic/logic instruction
Instruction Code

Syntax
Page: 241
SAT dest
Operation
if (O0==16&S ==1)

dest = 7FFFFFFFh;
else if (O ==1 && S ==)
dest = 80000000h;
Function

* This instruction performs a 32-bit signed saturation operation.

* When the O flag is 1 and the S flag is 1, the result of the operation is 7FFFFFFFh and it is placed in dest.
When the O flag is 1 and the S flag is 0, the result of the operation is 80000000h and it is placed in dest. In other
cases, the dest value does not change.

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Processing ©perand Code Size
Syntax Size dest (Byte)
SAT dest L Rd 2
Description Example
SAT R1
REJ09B0435-0100 Rev.1.00 RENESAS Page 147 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

S ATR Saturation of signed 64-bit data for RMPA
SATuRate signed 64-bit data for RMPA

Arithmetic/logic instruction
Instruction Code

Syntax
Page: 241

SATR

Operation

if (0O ==1 && S ==)

R6:R5:R4 = 000000007FFFFFFFFFFFFFFFD;
else if (0O ==1 && S ==)

R6:R5:R4 = FFFFFFFEF8000000000000000h;

Function

* This instruction performs a 64-bit signed saturation operation.

e When the O flag is 1 and the S flag is 0, the result of the operation is 000000007FFFFFFFFFFFFFFFh and it is
placed in R6:R5:R4. When the O flag is 1 and the S flag is 1, the result of the operation is
FFFFFFFF8000000000000000h and it is place in R6:R5:R4. In other cases, the R6:R5:R4 value does not change.

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Syntax Code Size (Byte)
SATR 2

Description Example

SATR

REJ09B0435-0100 Rev.1.00 RENESAS Page 148 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

S B B Subtraction with borrow

SuBtract with Borrow

Arithmetic/logic instruction

Syntax Instruction Code
Page: 242

SBB src, dest

Operation

dest = dest - src - !C;

Function

* This instruction subtracts src and the inverse of the C flag (borrow) from dest and places the result in dest.

Flag Change

Flag Change Condition

C N The flag is set if an unsigned operation produces no overflow; otherwise it is cleared.

Z v The flag is set if dest is 0 after the operation; otherwise it is cleared.
S S The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.
(0] S The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
SBB src, dest L Rs Rd 3

L [Rs].L Rd 4

L dsp:8[Rs].L” Rd 5

L dsp:16[Rs].L" Rd 6

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 4) as the displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 1020 (255 x 4)
can be specified; with dsp:16, values from 0 to 262140 (65535 x 4) can be specified. The value divided by 4 will
be stored in the instruction code.

Description Example

SBB R1, R2
SBB [R1], R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 149 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Conditi .
SC Cnd Store ngdilttilgr? éeol‘rl;lgigt]ionally S C Cnd
Data transfer instruction

Instruction Code
Page: 243

Syntax

SCCnd.size dest

Operation

if (Cnd)
dest = 1;
else
dest = 0;

Function

* This instruction moves the truth-value of the condition specified by Cnd to dest; that is, 1 or 0 is stored to dest if the
condition is true or false, respectively.
+ The following table lists the types of SCCrd.

SCCnd Condition Expression SCCnd Condition Expression
SCGEU, C==1 Equal to or greater than/ < SCLTU, C == Less than/ >
SCC Cflagis 1 SCNC Cflagis 0
SCEQ, Z== Equal to/ = SCNE, Z-== Not equal to/ #
SCz Zflagis 1 SCNZ Zflagis 0
SCGTU C & “Z==1 Greater than < SCLEU C & "Z ==0 Equal to or less than >
SCPzZz S-== Positive or zero 0< SCN S-== Negative 0>
SCGE S*0O== Equal to or greater than < SCLE (S*0)| Equal to or less thanas =
as signed integer Z== signed integer
SCGT (S*0)| Greater than as signed < SCLT S*0==1 Lessthan as signed >
Z== integer integer
SCO O== O flag is 1 SCNO O== Oflagis O
Flag Change
* This instruction does not affect the states of flags.
Instruction Format
Processing Operand Code Size

Syntax Size Size dest (Byte)
SCCnd.size dest L L Rd 3

B/WI/L size [Rd] 3

B/WIL size dsp:8[Rd]" 4

B/WIL size dsp:16[Rd]" 5

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
specifier is .W, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16, values from 0 to 131070
(65535 x 2) can be specified when the size specifier is .W, or values from 0 to 262140 (65535 x 4) when the
specifier is .L. The value divided by 2 or 4 will be stored in the instruction code.

REJ09B0435-0100 Rev.1.00 RENESAS Page 150 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Description Example

SCC.L R2
SCNE.W [R2]

REJ09B0435-0100 Rev.1.00 RENESAS Page 151 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

S C M P U String comparison
String CoMPare Until not equal
String manipulation instruction

Instruction Code
Page: 243

Syntax

SCMPU

Operation

unsigned char *R2, *R1l, tmpO, tmpl;
unsigned long R3;
while (R3 !'= 0) {

tmp0 = *R1++;

tmpl = *R2++;

R3--;

if (tmpO0 != tmpl || tmpO == "\0"') {

break;

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function

+ This instruction compares strings in successively higher addresses specified by R1, which indicates the source
address for comparision, and R2, which indicates the destination address for comparision, until the values do not
match or the null character "\0" (= 00h) is detected, with the number of bytes specified by R3 as the upper limit.

* Inexecution of the instruction, the data may be prefetched from the source address for comparison specified by R1
and the destination address for comparison specified by R2, with R3 as the upper limit. For details of the data size
to be prefetched, refer to the hardware manual of each product.

+ The contents of R1 and R2 are undefined upon completion of the instruction.

* An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change

Flag Change Condition

C N This flag is set if the operation of (*R1 — *R2) as unsigned integers produces a value greater
than or equal to 0; otherwise it is cleared.

4 \ This flag is set if the two strings have matched; otherwise it is cleared.

S -

O -

Instruction Format

Syntax Processing Size Code Size (Byte)
SCMPU B 2

Description Example

SCMPU

REJ09B0435-0100 Rev.1.00 RENESAS Page 152 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

S ET P SW Setting a flag or bit in the PSW
SET flag of PSW
System manipulation instruction

Instruction Code
Page: 244

Syntax

SETPSW dest

Operation

dest = 1;

Function

. This instruction clears the O, S, Z, or C flag, which is specified by dest, or the U or I bit.
* Inuser mode, writing to the U or I bit in the PSW will be ignored. In supervisor mode, all flags and bits can be

written to.
Flag Change
Flag Change Condition
C %
Z *
S *
O %

Note: * The specified flag is set to 1.

Instruction Format

Operand Code Size
Syntax dest (Byte)
SETPSW dest flag 2
Description Example
SETPSW C
SETPSW 27
REJ09B0435-0100 Rev.1.00 RENESAS Page 153 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

S H AR Arithmetic shift to the right
SHift Arithmetic Right

Arithmetic/logic instruction
Instruction Code

Syntax
Page: 245
(1) SHAR src, dest
(2) SHAR src, src2, dest
Operation
(1) dest = (signed long) dest >> (src & 31);
(2) dest = (signed long) src2 >> (src & 31);
Function

(1) This instruction arithmetically shifts dest to the right by the number of bit positions specified by src and saves the
value in dest.
 Bits overflowing from the LSB are transferred to the C flag.
* src is an unsigned in the range of 0 <src < 31.
» When src is in register, only five bits in the LSB are valid.

(2) After this instruction transfers src2 to dest, it arithmetically shifts dest to the right by the number of bit positions
specified by src and saves the value in dest.
* Bits overflowing from the LSB are transferred to the C flag.
* src is an unsigned integer in the range of 0 < src < 31.

mss dest Lse]——][C]

Flag Change

Flag Change Condition

C v The flag is set if the shifted-out bit is 1; otherwise it is cleared. However, when src is 0, this flag
is also cleared.

4 \ The flag is set if dest is O after the operation; otherwise it is cleared.

S S The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

o} \ The flag is cleared to 0.

Instruction Format

Processing Operand Code Size
Syntax Size src src2 dest (Byte)
(1) SHAR src, dest L #IMM:5 - Rd 2
L Rs - Rd 3
(2) SHAR src, src2, dest L #MM:5 Rs Rd 3
Description Example
SHAR #3, R2
SHAR R1, R2
SHAR #3, R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 154 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

S H L L Logical and arithmetic shift to the left
SHift Logical and arithmetic Left

Arithmetic/logic instruction
Instruction Code

Syntax
Page: 246
(1) SHLL src, dest
(2) SHLL src, src2, dest
Operation

(1) dest = dest << (src & 31);
(2) dest = src2 << (src & 31);

Function

(1) This instruction arithmetically shifts dest to the left by the number of bit positions specified by src and saves the
value in dest.
* Bits overflowing from the MSB are transferred to the C flag.
* When src is in register, only five bits in the LSB are valid.
* src is an unsigned integer in the range of 0 < src < 31.

(2) After this instruction transfers src2 to dest, it arithmetically shifts dest to the left by the number of bit positions
specified by src and saves the value in dest.
* Bits overflowing from the MSB are transferred to the C flag.
* src is an unsigned integer in the range of 0 < src < 31.

44 MSB dest LSBl«— 0

Flag Change

Flag Change Condition

C N The flag is set if the shifted-out bit is 1; otherwise it is cleared. However, when src is 0, this flag
is also cleared.

Z v The flag is set if dest is 0 after the operation; otherwise it is cleared.

S \ The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

(0] S This bit is cleared to 0 when the MSB of the result of the operation is equal to all bit values that

have been shifted out (i.e. the shift operation has not changed the sign); otherwise it is set to 1.
However, when scr is 0, this flag is also cleared.

Instruction Format

Processing Operand Code Size
Syntax Size src src2 dest (Byte)
(1) SHLL src, dest L #IMM:5 - Rd 2
L Rs - Rd 3
(2) SHLL src, src2, dest L #IMM:5 Rs Rd 3
Description Example
SHLL #3, R2
SHLL R1, R2
SHLL #3, R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 155 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

S H L R Logical shift to the right
SHift Logical Right

Arithmetic/logic instruction
Instruction Code

Syntax
Page: 247
(1) SHLR src, dest
(2) SHLR src, src2, dest
Operation
(1) dest = (unsigned long) dest >> (src & 31);
(2) dest = (unsigned long) src2 >> (src & 31);
Function

(1) This instruction logically shifts dest to the right by the number of bit positions specified by src and saves the value
in dest.
 Bits overflowing from the LSB are transferred to the C flag.
* src is an unsigned integer in the range of 0 <src < 31.
» When src is in register, only five bits in the LSB are valid.

(2) After this instruction transfers src2 to dest, it logically shifts dest to the right by the number of bit positions
specified by src and saves the value in dest.
* Bits overflowing from the LSB are transferred to the C flag.
* src is an unsigned integer in the range of 0 < src < 31.

0 —»MsSB dest LSB

Flag Change

Flag Change Condition

C N The flag is set if the shifted-out bit is 1; otherwise it is cleared. However, when src is 0, this flag
is also cleared.

Z v The flag is set if dest is 0 after the operation; otherwise it is cleared.

S \ The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

O -

Instruction Format

Processing Operand Code Size
Syntax Size src src2 dest (Byte)
(1) SHLR src, dest L #IMM:5 - Rd 2
L Rs - Rd 3
(2) SHLR src, src2, dest L #IMM:5 Rs Rd 3
Description Example
SHLR #3, R2
SHLR R1, R2
SHLR #3, R1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 156 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

S M OV B Transferring a string backward
Strings MOVe Backward
String manipulation instruction

Instruction Code
Page: 248

Syntax

SMOVB

Operation

unsigned char *R1, *R2;
unsigned long R3;
while (R3 != 0) {
*Rl-- = *R2--;
R3 = R3 - 1;

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function

* This instruction transfers a string consisting of the number of bytes specified by R3 from the source address
specified by R2 to the destination address specified by R1, with transfer proceeding in the direction of decreasing
addresses.

+ Inexecution of the instruction, data may be prefetched from the source address specified by R2, with R3 as the
upper limit. For details of the data size to be prefetched, refer to the hardware manual of each product.

* The destination address specified by R1 should not be included in the range of data to be prefetched, which starts
from the source address specified by R2.

e On completion of instruction execution, R1 and R2 indicate the next addresses in sequence from those for the last
transfer.

* An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change

+ This instruction does not affect the states of flags.

Instruction Format

Syntax Processing Size Code Size (Byte)
SMOVB B 2

Description Example

SMOVB

REJ09B0435-0100 Rev.1.00 RENESAS Page 157 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

S M OV F Transferring a string forward
Strings MOVe Forward
String manipulation instruction

Instruction Code
Page: 248

Syntax

SMOVEF

Operation

unsigned char *R1, *R2;
unsigned long R3;
while (R3 != 0) {
*R1++ = *R2++;
R3 = R3 - 1;

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function

* This instruction transfers a string consisting of the number of bytes specified by R3 from the source address
specified by R2 to the destination address specified by R1, with transfer proceeding in the direction of increasing
addresses.

* Inexecution of the instruction, data may be prefetched from the source address specified by R2, with R3 as the
upper limit. For details of the data size to be prefetched, refer to the hardware manual of each product.

* The destination address specified by R1 should not be included in the range of data to be prefetched, which starts
from the source address specified by R2.

e On completion of instruction execution, R1 and R2 indicate the next addresses in sequence from those for the last
transfer.

* An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change

+ This instruction does not affect the states of flags.

Instruction Format

Syntax Processing Size Code Size (Byte)
SMOVF B 2

Description Example

SMOVEF

REJ09B0435-0100 Rev.1.00 RENESAS Page 158 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

S M OVU Transferring a string
Strings MOVe while Unequal to zero
String manipulation instruction

Instruction Code
Page: 248

Syntax

SMOVU

Operation

unsigned char *R1, *R2, tmp;
unsigned long R3;
while (R3 !'= 0) {

tmp = *R2++;

*R1++ = tmp;

R3--;

if (tmp == '"\0'") {

break;

Note: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

Function

« This instruction transfers strings successively from the source address specified by R2 to the higher destination
addresses specified by R1 until the null character "\0" (= 00h) is detected, with the number of bytes specified by R3
as the upper limit. String transfer is completed after the null character has been transferred.

+ Inexecution of the instruction, data may be prefetched from the source address specified by R2, with R3 as the
upper limit. For details of the data size to be prefetched, refer to the hardware manual of each product.

* The destination address specified by R1 should not be included in the range of data to be prefetched, which starts
from the source address specified by R2.

* The contents of R1 and R2 are undefined upon completion of the instruction.

* An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Syntax Processing Size Code Size (Byte)
SMOVU B 2

Description Example

SMOVU

REJ09B0435-0100 Rev.1.00 RENESAS Page 159 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
S ST R Storing a string
String SToRe

Syntax

String manipulation instruction
Instruction Code
Page: 249

SSTR.size

Operation

unsigned { char | short | long } *R1l, R2;
unsigned long R3;
while (R3 !'= 0) {

*R1++ = R2;

R3 = R3 - 1;

N

Notes: If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

2. R1++: Incrementation is by the value corresponding to the size specifier (.size), i.e. by 1 for .B, 2 for .\W, and 4
for .L.

3. R2: How much of the value in R2 is stored depends on the size specifier (.size): the byte from the LSB end of
R2 is stored for .B, the word from the LSB end of R2 is stored for .W, and the longword in R2 is stored for .L.

Function

» This instruction stores the contents of R2 successively proceeding in the direction of increasing addresses specified
by R1 up to the number specified by R3.

* On completion of instruction execution, R1 indicates the next address in sequence from that for the last transfer.

* An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change

+ This instruction does not affect the states of flags.

Instruction Format

Syntax Size Processing Size Code Size (Byte)
SSTR.size B/W/L size 2

Description Example

SSTR.W

REJ09B0435-0100 Rev.1.00 RENESAS Page 160 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
ST N Z Transfer with condition
STore on Not Zero
Data transfer instruction
Syntax Instruction Code
Page: 249
STNZ src, dest
Operation
if (2 ==0)
dest = src;
Function
* This instruction moves src to dest when the Z flag is 0. dest does not change when the Z flag is 1.
Flag Change
* This instruction does not affect the states of flags.
Instruction Format
Processing Operand Code Size
Syntax Size src dest (Byte)
STNZ src, dest L #SIMM:8 Rd 4
L #SIMM: 16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
Description Example
STNZ #1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 161 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
STZ Transfer with condition
STore on Zero
Data transfer instruction
Syntax Instruction Code
Page: 250
STZ src, dest
Operation
if (2 ==1)
dest = src;
Function
* This instruction moves src to dest when the Z flag is 1. dest does not change when the Z flag is 0.
Flag Change
* This instruction does not affect the states of flags.
Instruction Format
Processing Operand Code Size
Syntax Size src dest (Byte)
STZ src, dest L #SIMM:8 Rd 4
L #SIMM: 16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
Description Example
STZ #1, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 162 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

S U B Subtraction without borrow
SUBtract

Arithmetic/logic instruction
Syntax Instruction Code
Page: 251
(1) SUB src, dest
(2) SUB src, src2, dest

Operation

(1) dest
(2) dest

dest - src;
src2 - src;

Function

(1) This instruction subtracts src from dest and places the result in dest.
(2) This instruction subtracts src from src2 and places the result in dest.

Flag Change

Flag Change Condition

C N The flag is set if an unsigned operation produces no overflow; otherwise it is cleared.
4 \ The flag is set if dest is 0 after the operation; otherwise it is cleared.

S v The flag is set if the MSB of dest after the operation is 1; otherwise it is cleared.

(0] S The flag is set if a signed operation produces an overflow; otherwise it is cleared.

Instruction Format

Processing Operand Code Size
Syntax Size src src2 dest (Byte)
(1) SUB src, dest L #UIMM:4 - Rd 2
L Rs - Rd 2
L [Rs].memex - Rd 2 (memex == UB)
3 (memex != UB)
L dsp:8[Rs].memex" - Rd 3 (memex == UB)
4 (memex != UB)
L dsp:16[Rs].memex” - Rd 4 (memex == UB)
5 (memex != UB)
(2) SUB src, src2, dest L Rs Rs2 Rd 3

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example

SUB #15, R2
SUB R1, R2
SUB [R1], R2
SUB 1[R1].B, R2
SUB R1, R2, R3
REJ09B0435-0100 Rev.1.00 RENESAS Page 163 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

S U N TI L Searching for a string
Search UNTIL equal string
String manipulation instruction

Instruction Code
Page: 252

Syntax

SUNTIL.size

Operation

unsigned { char | short | long } *R1;
unsigned long R2, R3, tmp;
while (R3 != 0) {

tmp = (unsigned long) *R1++;

if (tmp == R2) {
break;

Notes: 1. If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

2. R1++: Incrementation is by the value corresponding to the size specifier (.size), i.e. by 1 for .B, 2 for .\W, and 4
for .L.

Function

* This instruction searches a string for comparison from the first address specified by R1 for a match with the value
specified in R2, with the search proceeding in the direction of increasing addresses and the number specified by R3
as the upper limit on the number of comparisons. When the size specifier (.size) is .B or .W, the byte or word data
on the memory is compared with the value in R2 after being zero-extended to form a longword of data.

* Inexecution of the instruction, data may be prefetched from the destination address for comparison specified by
R1, with R3 as the upper limit. For details of the data size to be prefetched, refer to the hardware manual of each
product.

* Flags change according to the results of the operation "*R1 — R2".

« The value in R1 upon completion of instruction execution indicates the next address where the data matched.
Unless there was a match within the limit, the value in R1 is the next address in sequence from that for the last
comparison.

¢ The value in R3 on completion of instruction execution is the initial value minus the number of comparisons.

* An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change

Flag Change Condition
C N The flag is set if a comparison operation as unsigned integers results in any value equal to or
greater than 0; otherwise it is cleared.
4 S The flag is set if matched data is found; otherwise it is cleared.
S -
O -
REJ09B0435-0100 Rev.1.00 RENESAS Page 164 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Instruction Format

Syntax Size Processing Size Code Size (Byte)
SUNTIL.size B/WI/L L 2

Description Example

SUNTIL.W

REJ09B0435-0100 Rev.1.00 RENESAS Page 165 of 278
June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

S hing f tri
SWH I L E Searcf]a\g\(;Hlllr_% Sggqigfgtring

String manipulation instruction

Syntax Instruction Code

Page: 252

SWHILE.size

Operation

unsigned { char | short | long } *R1;
unsigned long R2, R3, tmp;
while (R3 != 0) {

tmp = (unsigned long) *R1++;

Notes: 1. If this instruction is executed with R3 set to 0, it is ignored and has no effect on registers and flags.

2. R1++: Incrementation is by the value corresponding to the size specifier (.size), i.e. by 1 for .B, 2 for .\W, and 4
for .L.

Function

This instruction searches a string for comparison from the first address specified by R1 for an unmatch with the
value specified in R2, with the search proceeding in the direction of increasing addresses and the number specified
by R3 as the upper limit on the number of comparisons. When the size specifier (.size) is. B or .W, the byte or word
data on the memory is compared with the value in R2 after being zero-extended to form a longword of data.

In execution of the instruction, data may be prefetched from the destination address for comparison specified by
R1, with R3 as the upper limit. For details of the data size to be prefetched, refer to the hardware manual of each
product.

Flags change according to the results of the operation "*R1 — R2".

The value in R1 upon completion of instruction execution indicates the next addresses where the data did not
match. If all the data contents match, the value in R1 is the next address in sequence from that for the last
comparison.

The value in R3 on completion of instruction execution is the initial value minus the number of comparisons.

An interrupt request during execution of this instruction will be accepted, so processing of the instruction will be
suspended. That is, execution of the instruction will continue on return from the interrupt processing routine.
However, be sure to save the contents of the R1, R2, R3, and PSW when an interrupt is generated and restore them
when execution is returned from the interrupt routine.

Flag Change

Flag Change Condition
C N The flag is set if a comparison operation as unsigned integers results in any value equal to or
greater than 0; otherwise it is cleared.
4 S The flag is set if all the data contents match; otherwise it is cleared.
S -
O -
REJ09B0435-0100 Rev.1.00 RENESAS Page 166 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Instruction Format

Syntax Size Processing Size Code Size (Byte)
SWHILE .size B/WI/L L 2

Description Example

SWHILE.W

REJ09B0435-0100 Rev.1.00 RENESAS Page 167 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

T ST Logical test
TeST logical

Arithmetic/logic instruction

Syntax Instruction Code

Page: 253

TST src, src?2
Operation

src2 & src;

Function

+ This instruction changes the flag states in the PSW according to the result of logical AND of src2 and src.

Flag Change

Flag Change Condition

C -

Z v The flag is set if the result of the operation is 0; otherwise it is cleared.

S S The flag is set if the MSB of the result of the operation is 1; otherwise it is cleared.
O -

Instruction Format

Processing Operand Code Size
Syntax Size src src2 (Byte)
TST src, src2 L #SIMM:8 Rs 4
L #SIMM:16 Rs 5
L #SIMM:24 Rs 6
L #IMM:32 Rs 7
L Rs Rs2 3
L [Rs].memex Rs2 3 (memex == UB)
4 (memex != UB)
L dsp:8[Rs].memex* Rs2 4 (memex == UB)
5 (memex != UB)
L dsp:16[Rs].memex* Rs2 5 (memex == UB)

6 (memex != UB)

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example

TST #7, R2
TST R1, R2
TST [R1], R2
TST 1[R1].UB, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 168 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions
WAIT watng
WAIT

System manipulation instruction

Syntax Instruction Code
Page: 254
WATT

Operation
Function

+ This instruction stops program execution. Program execution is then restarted by acceptance of a non-maskable
interrupt, interrupt, or generation of a reset.

+ This instruction is a privileged instruction. Attempting to execute this instruction in user mode generates a
privileged instruction exception.

e The I bit in the PSW becomes 1.

* The address of the PC saved at the generation of an interrupt is the one next to the WAIT instruction.

Note: For the power-down state when the execution of the program is stopped, refer to the hardware manual of each
product.
Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Syntax Code Size (Byte)
WAIT 2

Description Example

WAIT

REJ09B0435-0100 Rev.1.00 RENESAS Page 169 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Exch] /
XCHG

Data transfer instruction
Instruction Code

Syntax
Page: 254
XCHG src, dest
Operation
tmp = src;
src = dest;
dest = tmp;
Function
* This instruction exchanges the contents of src and dest as listed in the following table.
src dest Function
Register Register Exchanges the data in the source register (src) and the destination register
(dest).
Memory location Register Exchanges the data at the memory location and the register. When the size

extension specifier (.size) is .B or .UB, the byte of data in the LSB of the register
is exchanged with the data at the memory location. When the size extension
specifier (.size) is .W or .UW, the word of data in the LSB of the register is
exchanged with the data at the memory location. When the size extension
specifier is other than .L, the data at the memory location is transferred to the
register after being extended with the specified type of extension to form a
longword of data.

+ This instruction may be used for the exclusive control. For details, refer to the hardware manual of each product.

Flag Change

* This instruction does not affect the states of flags.

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
XCHG src, dest L Rs Rd 3
L [Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
L dsp:8[Rs].memex* Rd 4 (memex == UB)
5 (memex != UB)
L dsp:16[Rs].memex”* Rd 5 (memex == UB)

6 (memex != UB)

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier .L. The value divided by 2 or 4 will be stored in the instruction
code.

REJ09B0435-0100 Rev.1.00 RENESAS Page 170 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

Description Example

XCHG R1, R2
XCHG [R1].W, R2

REJ09B0435-0100 Rev.1.00 RENESAS Page 171 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 3 Instruction Descriptions

XO R Logical exclusive or

eXclusive OR logical

Arithmetic/logic instruction

Syntax Instruction Code
Page: 255

XOR src, dest

Operation

dest = dest © src;

Function

* This instruction exclusive-ORs dest and src and places the result in dest.

Flag Change

Flag Change Condition

C -

Z v The flag is set if dest is 0 after the operation; otherwise it is cleared.

S S The flag is set if the MSB of dest after the operation is 1 ; otherwise it is cleared.
O -

Instruction Format

Processing Operand Code Size
Syntax Size src dest (Byte)
XOR src, dest L #SIMM:8 Rd 4
L #SIMM:16 Rd 5
L #SIMM:24 Rd 6
L #IMM:32 Rd 7
L Rs Rd 3
L [Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
L dsp:8[Rs].memex* Rd 4 (memex == UB)
5 (memex != UB)
L dsp:16[Rs].memex* Rd 5 (memex == UB)

6 (memex != UB)

Note: * Forthe RX Family assembler manufactured by Renesas Technology Corp., enter a scaled value (the actual
value multiplied by 2 when the size extension specifier is .W or .UW, or by 4 when the specifier is .L) as the
displacement value (dsp:8, dsp:16). With dsp:8, values from 0 to 510 (255 x 2) can be specified when the size
extension specifier is .W or .UW, or values from 0 to 1020 (255 x 4) when the specifier is .L. With dsp:16,
values from 0 to 131070 (65535 x 2) can be specified when the size extension specifier is .W or .UW, or values
from 0 to 262140 (65535 x 4) when the specifier is .L. The value divided by 2 or 4 will be stored in the
instruction code.

Description Example

XOR #8, R1
XOR R1, R2
XOR [R1], R2
XOR 16[R1].L, R2
REJ09B0435-0100 Rev.1.00 RENESAS Page 172 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 4

Instruction Code

4.1

Section 4 Instruction Code

Guide to This Section

This section describes instruction codes by showing the respective opcodes.

The following shows how to read this section by using an actual page as an example.

ADD

1) (Code Size)
Syntax src src2 dest Code Size (Byte)
(1) ADD src, dest #UIMM:4 - Rd 2
(Instruction code for three #SIMM:8 - Rd 3
operands)
#SIMM:16 - Rd 4
#SIMM:24 - Rd 5
#IMM:32 - Rd 6
(2) ADD src, dest Rs - Rd 2
[Rs].memex - Rd 2 (memex == UB)
3 (memex !|= UB)
(2) dsp:8[Rs].memex - Rd 3 (memex == UB)
4 (memex != UB)
dsp:16[Rs].memex - Rd 4 (memex == UB)
5 (memex !|= UB)
(3) ADD src, src2, dest #SIMM:8 Rs Rd 3
#SIMM: 16 Rs Rd 4
#SIMM:24 Rs Rd 5
#IMM:32 Rs Rd 6
_ (4) ADD src, src2, dest Rs Rs2 Rd 3)
(38) ————((1) ADD src, dest)
/b7 0 b b0 I
[o[1]1]oJolo 1 o] immpo [o |
imm[3:0] src rd[3:0] dest
0000b to 1111b |#UIMM:4 |0 to 15 0000b to 1111b |Rd |R0 (SP) to R15
(2) ADD src, dest
When memex == UB or src == Rs
(4) b7 b0 b7 b0 1d[1:0] src
[o]1Tolo 1 o w0 rs301, [rdzor, | 11b None
00b None
o1b
When memex != UB
b7 memex b0 b7 b0 b7 b0 1d[1:0] src
[oToJoJofo[1[1 o mmofoo 1ol rs301, [30, | 11b None
00b None
mi[1:0] |[memex 1d[1:0] |src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |R0 (SP) to R15
01b w 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]
g J
REJ09B0435-0100 Rev.1.00 RENESAS Page 173 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code

(1) Mnemonic

Indicates the mnemonic name of the instruction explained on the given page.

(2) List of Code Size

Indicates the number of bytes the instruction requires. An individual RX CPU instruction takes up from one to eight bytes.

(3) Syntax

Indicates the syntax of the instruction using symbols.

(4) Instruction Code

Indicates the instruction code. The code in parentheses may be selected or omitted depending on src/dest to be selected.

See figure 4.1

When memex == UB or src == Rs - n
b0 b7 1d[1:0] src

b7 —_b0

[o]1]0]0]1]o0w:01[C_ rs3:01, X ra[3:0], J 11b None

L L x/ T) 00b None
\

The contents of the byte atthe The contents of the byte at 01b
address of the instruction (address of the instruction + 1) 10b
See figure 4.1
When memex != UB o M
b7 memex b0 b7 b0\ b7 b0 1d[1:0] src
[oToToTolo T Tolnrae o[oCaro\ oo [o] / ftb none
00b N
_ /A AN o
The contents of the byte atthe The contents of tlé)yte at The contents of the byte at =
address of the instruction (address of the instruction + 1) (address of the instruction + 2) 10b
_ i AN
(mi[1:0])|memex Id[1:0]) |src qrs[3:0)/rd[3:0] > src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |RO (SP)to R15
01b w 00b [Rs]
10b L 01b dsp:8[Rs]
b uw 10b dsp:16[Rs]
REJ09B0435-0100 Rev.1.00 RENESAS Page 174 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family

Section 4

Instruction Code

The contents of the operand, that is the byte at (address of the instruction +2) or (following address of the instruction +3) in
the previous page, are arranged as shown in figure 4.1.

+0 +1 +2 +3
N N N
4
#IMM:8
#SIMM:8 b7 b0
#UIMM:8 8 bits
dsp:8
pcdsp:8
ﬁ's'\ﬂ\'\/lﬂlu_% b7 b0 b15 b8
dsp:16. Lower-order 8 bits Higher-order 8 bits
pcdsp:16
) b7 b0 b15 b8 b23 b16
#SIMM:24 Lower-order 8 bits Middle 8 bits Higher-order 8 bits
pcdsp:24
b7 b0 b15 b8 b23 b16 b31 b24

#IMM:32 Lower-order 8 bits Middle-lower-order 8 bits |Midd|e-higher-order 8 bits| Higher-order 8 bits

Figure 4.1 Immediate (IMM) and Displacement (dsp) Values

The abbreviations such as for rs, rd, 1d, and mi represent the following.

rs: Source register

rs2: Second source register

rd: Destination register

rd2: Second destination register

ri: Index register

rb: Base register

li: Length of immediate

Id: Length of displacement

Ids: Length of source displacement
Idd: Length of destination displacement
mi: Memory extension size infix
imm: Immediate

dsp: Displacement

cd: Condition code

cr: Control register

cb: Control bit

sz: Size specifier

ad: Addressing

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 175 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code

4.2 Instruction Code Described in Detail

The following pages give details of the instruction codes for the RX CPU.

REJ09B0435-0100 Rev.1.00 RENESAS Page 176 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size

Syntax src dest Code Size (Byte)

(1) ABS dest - Rd 2

(2) ABS src, dest Rs Rd 3

(1) ABS dest

b0 b7 bo
[o[1]a]1]1]1][1]ofolof1]0] raz0
rd[3:0] dest
0000b to 1111b |Rd __ |RO (SP) to R15
(2) ABS src, dest
b7 b0 b7 bo
[1]171]1]1[1]ofolofolofol1]1[1]1] o0 rd[3:0]
rs[3:0]/rd[3:0] src/dest
0000b to 1111b |Rs/Rd _|RO (SP) to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 177 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) ADC src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5

#SIMM:24 Rd 6

#IMM:32 Rd 7
(2) ADC src, dest Rs Rd 3
(3) ADC src, dest [Rs].L Rd 4

dsp:8[Rs].L Rd 5

dsp:16[Rs].L Rd 6

(1) ADC src, dest

b7 b0 b7 b0 b7 b0 li[1:0] src
[1]1]1[al1[1]ofr]ofr[1]1]mro]ofolofo[1]0] razo | 01b
106
11b [#siMm:24 |
00b [#IMM:32
1i[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |Rd |RO (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

(2) ADC src, dest

b7 b0 b7 bO b7 bo
|1‘1‘1‘1‘1‘1‘0‘0|0‘0‘0‘0‘1‘o‘ld[1:01| rs[3:0] ‘ rd[3:0]
Id[1:0] |[src rs[3:0]/rd[3:0] src/dest

11b Rs 0000b to 1111b |Rs/Rd |R0 (SP) to R15

(3) ADC src, dest

b7 memex b0 b7 b0 b7 b0 b7 b0 1d[1:0] src
[ololololol[1]1]o]mito]1]o]o]olmmrafolololofolof1]o] o ra[z0] | 00b None
mi[1:0] |memex Id[1:0] |src rs[3:0]/rd[3:0] src/dest
10b L 00b [Rs] 0000b to 1111b |Rs/Rd |R0 (SP) to R15
01b dsp:8[Rs]
10b dsp:16[Rs]
REJ09B0435-0100 Rev.1.00 RENESAS Page 178 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src src2 dest Code Size (Byte)
(1) ADD src, dest #UIMM:4 - Rd 2
(Instruction code for three #SIMM:8 - Rd 3
operands)
#SIMM:16 - Rd 4
#SIMM:24 - Rd 5
#IMM:32 - Rd 6
(2) ADD src, dest Rs - Rd 2
[Rs].memex - Rd 2 (memex == UB)
3 (memex != UB)
dsp:8[Rs].memex - Rd 3 (memex == UB)
4 (memex != UB)
dsp:16[Rs].memex - Rd 4 (memex == UB)
5 (memex != UB)
(3) ADD src, src2, dest #SIMM:8 Rs Rd 3
#SIMM:16 Rs Rd 4
#SIMM:24 Rs Rd 5
#IMM:32 Rs Rd 6
(4) ADD src, src2, dest Rs Rs2 Rd 3
(1) ADD src, dest
b0 b7 b0
[o[1]11]ofofof1]0] immaoy [rzo |
imm[3:0] src rd[3:0] dest
0000b to 1111b |#UIMM:4 |0 to 15 0000b to 1111b |Rd |RO (SP)to R15
(2) ADD src, dest
When memex == UB or src == Rs
b7 b0 b7 b0 Id[1:0] src
[o]1]o]o|1]o0|o| rs30], | B0 | 11b None
00b None
ot

10b |dsp:16

When memex != UB

b7 memex b0 b7 b0 b7 b0 1d[1:0] src
[o]o]ololol1][1]o]mitofo0o]o]1]0]w:0i] rsi301, | ra3:0] | 11b None

00b None

01b
mi[1:0] |memex 1d[1:0] |src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |R0 (SP)to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 179 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code

(3) ADD src, src2, dest

b7 b0 b7 b0 li[1:0] src
[o[111]1]ofolo] w230 | rao | 01b
b [#sIMM:24 |
00b [#MM:32 |
1i[1:0] src rs2[3:0]/rd[3:0] src2/dest
01b #SIMM:8 0000b to 1111b |Rs/Rd |R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32

(4) ADD src, src2, dest

b7 b0 b7 bO b7 bo

[1]11]al1[1]1]1]ofol1]0] razo 30 | rs230] |

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest

0000b to 1111b Rs/Rs2/Rd |R0 (SP) to R15

REJ09B0435-0100 Rev.1.00 RENESAS Page 180 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src src2 dest Code Size (Byte)
(1) AND src, dest #UIMM:4 - Rd 2
(2) AND src, dest #SIMM:8 - Rd 3
#SIMM:16 - Rd 4
#SIMM:24 - Rd 5
#IMM:32 - Rd 6
(3) AND src, dest Rs - Rd 2
[Rs].memex - Rd 2 (memex == UB)
3 (memex != UB)
dsp:8[Rs].memex - Rd 3 (memex == UB)
4 (memex != UB)
dsp:16[Rs].memex - Rd 4 (memex == UB)
5 (memex != UB)
(4) AND src, src2, dest Rs Rs2 Rd 3
(1) AND src, dest
b0 b0
[o[1]1]ofo[1]0lo] immzoy [o |
imm[3:0] src rd[3:0] dest
0000b to 1111b | #UIMM:4 ‘ O0to 15 0000b to 1111b | Rd ‘ RO (SP) to R15
(2) AND src, dest
b7 b0 b7 b0 li[1:0] src
o[1]11]1]o]1 o]olo[1]o] a0 | o1b [#SMms]

10b [#SIMM:16

11 [#SIMM:24
00b [#IMM:32 |
li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |[Rd | RO (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
REJ09B0435-0100 Rev.1.00 RENESAS Page 181 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code

(3) AND src, dest
When memex == UB or src == Rs

b7 b0 b7 b0 Id[1:0] src
[o[1]o]1]o]o]ro| rs3:00 | rd30] | 11b None
00b None
105
When memex != UB
memex b0 b7 b0 b7 b0 1d[1:0] src
[o]olofolol1]1]o]mitoo]1]o]o]o| rs@:0 | rd30 | b None
00b None
mi[1:0] | memex Id[1:0] |src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b | Rs/Rd ‘ RO (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]

(4) AND src, src2, dest

b7 b0 b7 b0 b7 b0

[1]17a]a]a[1]1[1]o[1]o]o] a0 30 | rs230] |

rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest

0000b to 1111b Rs/Rs2/Rd ‘ RO (SP) to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 182 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) BCLR src, dest #IMM:3 [Rd].B 2
#IMM:3 dsp:8[Rd].B 3
#IMM:3 dsp:16[Rd].B 4
(2) BCLR src, dest Rs [Rd].B 3
Rs dsp:8[Rd].B 4
Rs dsp:16[Rd].B 5
(3) BCLR src, dest #IMM:5 Rd 2
(4) BCLR src, dest Rs Rd 3

(1) BCLR src, dest

b7 b0 b7 b0 Id[1:0] dest

[1]1]11]1]o]olro] razop [1]immp2o | 00b - None

1d[1:0] dest rd[3:0] dest imm[2:0] src

00b [Rd] 0000b to 1111b | Rd ‘ RO (SP) to R15 000b to 111b #MM:3 [0to7
01b dsp:8[Rd]

10b dsp:16[Rd]

(2) BCLR src, dest

b7 b0 b7 b0 b7 b0 Id[1:0] dest
[1]1/1]1[1]1]ofofol1][1]0]0]1]mro] rz0o rs30] | 00b - None

01b

10
Id[1:0] |dest rs[3:0]/rd[3:0] src/dest
00b [Rd] 0000b to 1111b | Rs/Rd ‘ RO (SP) to R15
01b dsp:8[Rd]
10b dsp:16[Rd]

(3) BCLR src, dest

b7 b0 b7 b0

ol _mmes [_wor]

imm[4:0] src rd[3:0] dest

00000b to 11111b |[#IMM:5 |0 to 31 0000bto 1111b [Rd [RO (SP) to R15

REJ09B0435-0100 Rev.1.00 RENESAS Page 183 of 278

June 11, 2010

Under development Preliminary document

RX Family

Specifications in this document are tentative and subject to change.

Instruction Code

(4) BCLR src, dest

b0 b7 b0 b7 b0
[1]171]1]1[1]ofolo[1][1]0]0o]1 o] razo 1s[3:0]

Id[1:0] |dest rs[3:0]/rd[3:0] src/dest

11b Rd 0000b to 1111b | Rs/Rd | RO (SP) to R15

REJ09B0435-0100 Rev.1.00 RENESAS Page 184 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family

Section 4

Instruction Code

BCnd

Code Size

Syntax src Code Size (Byte)
(1) BCnd.S src pcdsp:3 1

(2) BCnd.B src pcdsp:8 2

(3) BCnd.W src pcdsp:16 3

(1) BCnd.S src

b7
[o]o]o]1]cd] aspr2zoy”

Note: * dsp[2:0] specifies pcdsp:3 = src.

cd BCnd dsp[2:0] | Branch Distance

Ob BEQ, BZ 011b 3

1b BNE, BNZ 100b 4
101b 5
110b 6
111b 7
000b 8
001b 9
010b 10

(2) BCnd.B src

b7 b0 src

[o[ol1]o] camo; | [pcasp:8?]

Note: * Address indicated by pcdsp:8 = src minus the address of the instruction

cd[3:0] [BCnd cd[3:0] [BCnd

0000b |BEQ,BZ 1000b |BGE

0001b |BNE, BNZ 1001b |BLT

0010b |BGEU,BC [1010b |BGT

0011b |BLTU,BNC [1011b |BLE

0100b |BGTU 1100b [BO
0101b BLEU 1101b BNO
0110b BPZ 1110b BRA.B
0111b BN 1111b Reserved

BCnd

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 185 of 278

Under development Preliminary document

RX Family

Specifications in this document are tentative and subject to change.

Section 4

Instruction Code

(3) BCndW src

Src

b7 b
[olol1[1]1]0]1]cd| [ocasprer |

Note: * Address indicated by pcdsp:16 = src minus the address of the instruction

cd BCnd
Ob BEQ, BZ
1b BNE, BNZ

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 186 of 278

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) BMCnd src, dest #IMM:3 [Rd].B 3
#IMM:3 dsp:8[Rd].B 4
#IMM:3 dsp:16[Rd].B 5
(2) BMCnd src, dest #IMM:5 Rd 3
(1) BMCnd src, dest
b7 b0 b7 b0 b7 b0 1d[1:0] dest
[1117a[al1[1]ofola1]1]1] immzo0 [0 rafz0p cd30] | 00b . None
imm[2:0] src 1d[1:0] dest
000b to 111b |[#IMM:3 [0to 7 00b [Rd]
01b dsp:8[Rd]
10b dsp:16[Rd]
rd[3:0] dest cd[3:0] BMCnd cd[3:0] BMCnd
0000b to 1111b |Rd |R0 (SP) to R15 0000b BMEQ, BMZ 1000b BMGE
0001b BMNE, BMNZ 1001b BMLT
0010b BMGEU, BMC |1010b BMGT
0011b BMLTU, BMNC |1011b BMLE
0100b BMGTU 1100b BMO
0101b BMLEU 1101b BMNO
0110b BMPZ 1110b Reserved
0111b BMN 1111b Reserved
(2) BMCnd src, dest
b0 b7 b0 b7 b0
Ll [afelefalofafala 1] mmwor [oo, | ooy
imm[4:0] src cd[3:0] BMCnd cd[3:0] BMCnd
00000b to 11111b |#IMM:5 |O to 31 0000b BMEQ, BMZ 1000b BMGE
0001b BMNE, BMNZ 1001b BMLT
0010b BMGEU, BMC |1010b BMGT
0011b BMLTU, BMNC [1011b BMLE
0100b BMGTU 1100b BMO
0101b BMLEU 1101b BMNO
0110b BMPZ 1110b Reserved
0111b BMN 1111b Reserved
rd[3:0] dest
0000b to 1111b [Rd |RO (SP) to R15
REJ09B0435-0100 Rev.1.00 -IENESAS Page 187 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) BNOT src, dest #IMM:3 [Rd].B 3

#IMM:3 dsp:8[Rd].B 4

#IMM:3 dsp:16[Rd].B 5
(2) BNOT src, dest Rs [Rd].B 3

Rs dsp:8[Rd].B 4

Rs dsp:16[Rd].B 5
(3) BNOT src, dest #IMM:5 Rd 3
(4) BNOT src, dest Rs Rd 3
(1) BNOT src, dest

b0 b7 0 b7 b0 Id[1:0] dest
[1]a a1 [a]1]olof1]1]1] imm2o [wro| oy [1]1]1]1] 00b . None
imm[2:0] src 1d[1:0] dest
000b to 111b #IMM:3 Oto7 00b [Rd]
01b dsp:8[Rd]
10b dsp:16[Rd]

rd[3:0] dest
0000bto 1111b [Rd [RO (SP)to R15
(2) BNOT src, dest
b7 b0 b7 b0 b7 b0 1d[1:0] dest
[1]171]1]1[1]ofolo[1][1]o]1]1 o] razop s3] | 00b . None
Id[1:0] |dest rs[3:0]/rd[3:0] src/dest
00b [Rd] 0000b to 1111b |Rs/Rd |RO(SP)R)R15
01b dsp:8[Rd]
10b dsp:16[Rd]
REJ09B0435-0100 Rev.1.00 -IENESAS Page 188 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code

(3) BNOT src, dest

0 b7 b0 b7 b0
|1‘1‘1‘1‘1‘1‘0‘1|1‘1‘1‘ imm{4:0] |1|1|1‘1‘ rd[3:0]
imm[4:0] src rd[3:0] dest
00000b to 11111b |#IMM:5 |O to 31 0000b to 1111b |Rd |R0 (SP) to R15
(4) BNOT src, dest
b7 b0 b7 b0 b7 b0
[1]171]a]1[1]ofolo[r][1]o]1]1 o] razo 1s[3:0]
Id[1:0] |dest rs[3:0]/rd[3:0] src/dest
11b Rd 0000b to 1111b |Rs/Rd |RO (SP) to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 189 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size

Syntax src Code Size (Byte)

(1) BRA.S src pcdsp:3 1

(2) BRAB src pcdsp:8 2

(3) BRAW src pcdsp:16 3

(4) BRA.A src pcdsp:24 4

(5) BRA.L src Rs 2

(1) BRA.S src

b7
[oo]ofo]1] aspr0p

Note: * dsp[2:0] specifies pcdsp:3 = src.

dsp[2:0] |Branch Distance
011b
100b
101b
110b
111b
000b
001b
010b

S2lOo|o|N|o|g|b~|lw

(2) BRA.B src

b7 b0 src
[o]o]1To[1T11 o] [ocdsps?]

Note: * Address indicated by pcdsp:8 = src minus the address of the instruction

(3) BRAW src

b7 b0 src
[ofo[1]1]1]0]o]o] [peaspier]

Note: * Address indicated by pcdsp:16 = src minus the address of the instruction

(4) BRA.A src

src
[o]o]ololol1T0 0] [poasp2a® |

Note: * Address indicated by pcdsp:24 = src minus the address of the instruction

REJ09B0435-0100 Rev.1.00 RENESAS Page 190 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 4

Instruction Code

(5) BRA.L src

b0

b0 b7
[o[1[1]1[1]1]1][1]o1]0lo] rs@oy

rs[3:0]

src

0000b to 1111b |Rs

|RO (SP) to R15

BRK

Code Size

Syntax

Code Size (Byte)

(1) BRK

1

(1) BRK

[olofofofofofofo]

BSET

BRK

BSET

Code Size
Syntax src dest Code Size (Byte)
(1) BSET src, dest #IMM:3 [Rd].B 2
#IMM:3 dsp:8[Rd].B 3
#IMM:3 dsp:16[Rd].B 4
(2) BSET src, dest Rs [Rd].B 3
Rs dsp:8[Rd].B 4
Rs dsp:16[Rd].B 5
(3) BSET src, dest #IMM:5 Rd 2
(4) BSET src, dest Rs Rd 3
(1) BSET src, dest
b7 b0 b7 b0 Id[1:0] dest
[1]111]1]0]o]wo] razop [o] immp2o | 00b - None
1d[1:0] |dest rd[3:0] dest imm[2:0] src
00b [Rd] 0000b to 1111b |Rd |RO (SP) to R15 000b to 111b #IMM:3 |0to7
01b dsp:8[Rd]
10b dsp:16[Rd]
REJ09B0435-0100 Rev.1.00 -IENESAS Page 191 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code

(2) BSET src, dest

b7 b0 b7 b0 b7 bo Id[1:0] dest
[1]171]1]1]1]ofolo[1][1]0]0 0 o] ro s3] | 00b - None

10b [dsp:16

Id[1:0] |dest rs[3:0]/rd[3:0] src/dest

00b [Rd] 0000b to 1111b |Rs/Rd |R0 (SP)to R15
01b dsp:8[Rd]

10b dsp:16[Rd]

(3) BSET src, dest

b7 b0 b7 b0

|0‘1‘1‘1‘1‘0‘0‘ imm[4:0] rd[3:0] I

imm[4:0] src rd[3:0] dest

00000b to 11111b #IMM:5 |0t0 31 0000b to 1111b |Rd |R0 (SP) to R15

(4) BSET src, dest

b0

b0 b7 b0 b7
[1]171]1]1[1]ofolo[1][1]o]0 0 mmo] rz0 1s[3:0]

Id[1:0] |dest rs[3:0]/rd[3:0] src/dest
11b Rd 0000b to 1111b |Rs/Rd |R0(SP)toR15

REJ09B0435-0100 Rev.1.00 RENESAS Page 192 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size

Syntax src Code Size (Byte)

(1) BSRW src pcdsp:16 3

(2) BSR.A src pcdsp:24 4

(3) BSR.L src Rs 2

(1) BSR.W src

b7 b0 src
Lolof1[1[r]ofof1] [ocsspis®

Note: * Address indicated by pcdsp:16 = src minus the address of the instruction

(2) BSR.A src

src
[o]ofololol1To[1] [pcasp2a® |

Note: * Address indicated by pcdsp:24 = src minus the address of the instruction

(3) BSR.L src

b0 b7 b0
|0\1‘1\1‘1\1\1‘1|0‘1\0\1‘ 1s[3:0]
rs[3:0] src
0000b to 1111b [Rs [RO (SP) to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 193 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src src2 Code Size (Byte)
(1) BTST src, src2 #IMM:3 [Rs2].B 2
#IMM:3 dsp:8[Rs2].B 3
#IMM:3 dsp:16[Rs2].B 4
(2) BTST src, src2 Rs [Rs2].B 3
Rs dsp:8[Rs2].B 4
Rs dsp:16[Rs2].B 5
(3) BTST src, src2 #IMM:5 Rs2 2
(4) BTST src, src2 Rs Rs2 3

(1) BTST src, src2

b7 b0 b7 bo Id[1:0] src2
[1]111]1 o] 1[aa] rs230 [o] immp2o | 00b None

01b
I1d[1:0] |src2 rs2[3:0] src2 imm[2:0] src
00b [Rs2] 0000b to 1111b [Rs2 |R0 (SP) to R15 000b to 111b #MM:3 |0to7
01b dsp:8[Rs2]
10b dsp:16[Rs2]

(2) BTST src, src2

b0 b7 b0 b7 b0 Id[1:0] src2
[1]11]1]1[1]ofolofr[1]o1 0 mro| r2z0 [rsiz0) | 00b None

01b
Id[1:0] [src2 rs[3:0]/rs2[3:0] src/src2
00b [Rs2] 0000b to 1111b_|Rs/Rs2 _|RO (SP) to R15
01b dsp:8[Rs2]
10b dsp:16[Rs2]

(3) BTST src, src2

b7 b0 b7 b0

[o[11a]1[1]1]0] imm@op [rs230p |

imm[4:0] src rs2[3:0] src2

00000b to 11111b #IMM:5 |0 to 31 0000b to 1111b |Rs2 |R0 (SP) to R15

REJ09B0435-0100 Rev.1.00 RENESAS Page 194 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.
RX Family

Section 4 Instruction Code

(4) BTST src, src2

b0 b7 b0
|1\1\1\1\1\1\o\o|o\1\1\0\1\o\|d[1:01| r52[3:0] \ 1s[3:0]
Id[1:0] [src2 rs[3:0]/rs2[3:0] src/src2
11b Rs2 0000b to 1111b [Rs/Rs2 |RO (SP) to R15

REJ09B0435-0100 Rev.1.00 RENESAS Page 195 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

Section 4 Instruction Code

RX Family

Code Size

Syntax dest Code Size (Byte)
(1) CLRPSW dest flag 2

(1) CLRPSW dest

b0

b0 b7
|0‘1‘1‘1‘1‘1‘1‘1|1‘0‘1‘1‘ cb[3:0]

cb[3:0] |dest

0000b flag C

0001b 4

0010b S

0011b (0]

0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b I

1001b U

1010b Reserved
1011b Reserved
1100b Reserved
1101b Reserved
1110b Reserved
1111b Reserved

CLRPSW

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 196 of 278

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src src2 Code Size (Byte)
(1) CMP src, src2 #UIMM:4 Rs 2
(2) CMP src, src2 #UIMM:8 Rs 3
(3) CMP src, src2 #SIMM:8 Rs 3
#SIMM:16 Rs 4
#SIMM:24 Rs 5
#IMM:32 Rs 6
(4) CMP src, src2 Rs Rs2 2
[Rs].memex Rs2 2 (memex == UB)
3 (memex != UB)
dsp:8[Rs].memex Rs2 3 (memex == UB)
4 (memex != UB)
dsp:16[Rs].memex Rs2 4 (memex == UB)
5 (memex != UB)
(1) CMP src, src2

b0

b0 b7
[o[1]1]o]ofofo[1] immpao

rs2[3:0] |

imm[3:0] src rs2[3:0] src2
0000b to 1111b |[#UIMM:4 |0 to 15 0000b to 1111b |Rs |R0 (SP) to R15
(2) CMP src, src2

b0 b7 bo src
[o[1]1]1]of1]ol1]ol1]ol1] w230y | [rumm]
rs2[3:0] src2
0000bto 1111b |Rs |RO (SP)to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 197 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
(3) CMP src, src2
b7 b0 b7 b0 li[1:0] src
[o[1]11]1]o]1]mo][olofolo] w230 | 01b
11b [#sIMM:24
00b [#MM:32 |

li[1:0] src rs2[3:0] src2
01b #SIMM:8 0000b to 1111b |Rs |RO (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
(4) CMP src, src2
When memex == UB or src == Rs
b7 b0 b7 b0 1d[1:0] src
[ol1]ofo]o]1]wmo| rso; | rd30] | b None

00b None

01b
When memex != UB

memex b0 b7 b0 b7 b0 Id[1:0] src
[ololololof1[1]o mirojjo]o]o]|1]wm:0[rsf30] | rd30] | b None
00b None
01b

mi[1:0] |memex Id[1:0] |src rs[3:0]/rs2[3:0] src/src2
00b B 11b Rs 0000b to 1111b |Rs/Rs2 |RO (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]
REJ09B0435-0100 Rev.1.00 RENESAS Page 198 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) DIV src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(2) DIV src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)
5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)
6 (memex != UB)
(1) DIV src, dest
b7 bo_b7 b0 b7 b0 li[1:0] src
[1]1/a1[a]1]ola]ol1[1]1]umofolo[1]o]o][o] rzo | 01b
10b [#SIMM:16
11b [#siMM:24 |
00b [#MM:32 |
1i[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |Rd |RO (SP)to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
REJ09B0435-0100 Rev.1.00 RENESAS Page 199 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code

(2) DIV src, dest

When memex == UB or src == Rs
b7 b0 b7 b0 b7 b0 Id[1:0] src
[1]1]171[1]1]o]o]olol[1]0]0]o]uma] a0, 3o | 1o None

00b None

01b

10

When memex != UB

b7 memex b0 b7 b0 b7 b0 b7 b0 Id[1:0] src
[ololofolo[1]1]o]m:0/1]0]0]olwrofolofolo[1]o]o]o] w30 rd[3:0]. 11 None
00b None
o1b
100
mi[1:0] |memex Id[1:0] |src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]
REJ09B0435-0100 Rev.1.00 RENESAS Page 200 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) DIVU src, dest #SIMM:8 Rd 4
#SIMM: 16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(2) DIVU src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)
5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)
6 (memex != UB)
(1) DIVU src, dest
b7 bO b7 bO_b7 li[1:0] Src
[1]a]1la[ala]ofafola[1]1]mofolof1]olol1] razo | 01b
11b [#SIMM:24
00b [#IMM:32 |
li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |Rd |RO (SP)to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
(2) DIVU src, dest
When memex == UB or src == Rs
b7 b0 b7 b0 b7 b0 Id[1:0] src
[1]1]1]1][1]1]o]ofolo[1]o]o]1] o] w0 rd[3:0] 11b None
00b None
01b

When memex != UB

10b |dsp:16

b7 memex b0 b7 b0 b7 b0 b7 bO Id[1:0] src
[ololololol1]1]o]mira1]ofo]ofwmafolofolo[1]o[o]1] wmo | razo | 11
00b
100
mi[1:0] |memex 1d[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b [Rs/Rd |R0 (SP) to R15
01b w 00b [Rs]
10b L 01b dsp:8[Rs]
b uw 10b dsp:16[Rs]

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 201 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) EMUL src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(2) EMUL src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)
5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)
6 (memex != UB)
(1) EMUL src, dest
b7 bo_b7 b0 b7 b0 li[1:0] src
[1]a]1l1[ala]of1]ola[1]1]mofolofol1][1]0] razo | 01b
105
11 [#siMM:24 |
00b [#IMM:32 |
li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1110b |Rd |R0 (SP) to R14
10b #SIMM: 16
11b #SIMM:24
00b #IMM:32
(2) EMUL src, dest
When memex == UB or src == Rs
b7 b0 b7 b0 b7 b0 1d[1:0] src
[1]1]1]1][1]1]o]ofolofol1][1]0]wmro] w0 rd[3:0] 11b None
00b None
01b
When memex !=UB
b7 memex b0 b7 b0 b7 b0 b7 b0 1d[1:0] src
[ololololol1]1]o]mof1]o]o]o]wrafolofolofol1[1]o] wmo | razo | 11b None
00b None
01b
100
mi[1:0] |memex Id[1:0] |src rs[3:0] src
00b B 11b Rs 0000b to 1111b [Rs |R0 (SP) to R15
01b w 00b [Rs]
10b L 01b dsp:8[Rs] rd[3:0] dest
11b uw 10b dsp:16[Rs] 0000b to 1110b |Rd |R0 (SP) to R14

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 202 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) EMULU src, dest #SIMM:8 Rd 4
#SIMM: 16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(2) EMULU src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)
5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)
6 (memex != UB)
(1) EMULU src, dest
b7 bo_b7 b0 b7 b0 li[1:0] src
[1]a]1la[alafofafola[a]1]mofolofol1][1]1] razo | 01b
11 [#siMM:24 |
00b [#IMM:32 |
li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1110b |Rd |R0 (SP) to R14
10b #SIMM: 16
11b #SIMM:24
00b #IMM:32
(2) EMULU src, dest
When memex == UB or src == Rs
b7 b0 b7 b0 b7 bo 1d[1:0] src
[1]1]1]1][1[1]o]ofolofol1][1]1 o] w0 rd[3:0] 11b None
00b None
01b
When memex !=UB
b7 memex b0 b7 b0 b7 b0 b7 b0 Id[1:0] src
[ololololol1]1]o]miral1]ofo]ofwmrafolofolofol1[1]1] wmor | razo | 1o None
00b None
01b
100
mi[1:0] |memex Id[1:0] |src rs[3:0] src
00b B 11b Rs 0000b to 1111b |Rs |R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs] rd[3:0] dest
11b uw 10b dsp:16[Rs] 0000b to 1110b |Rd [RO (SP) to R14

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 203 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) FADD src, dest #IMM:32 Rd 7
(2) FADD src, dest Rs Rd 3
[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

(1) FADD src, dest

b7 b0 b7 b0 b7 bo src
[1]101]1]1[1]of1]of1][1]1]olof1]o]ofo[1]0o] iz | [emm32
rd[3:0] dest

0000b to 1111b _|Rd RO (SP) to R15

(2) FADD src, dest

b7 b0 b7 b0 b7 b0 1d[1:0] src
[Te o] [oTo o 1 [o[oqa] soor |] / 1o tow
00b None
01b
Id[1:0] |src rs[3:0)/rd[3:0] src/dest
11b Rs 0000b to 1111b |Rs/Rd |RO (SP)to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]
REJ09B0435-0100 Rev.1.00 RENESAS Page 204 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src src2 Code Size (Byte)
(1) FCMP src, src2 #IMM:32 Rs2 7
(2) FCMP src, src2 Rs Rs2 3
[Rs].L Rs2 3
dsp:8[Rs].L Rs2 4
dsp:16[Rs].L Rs2 5

(1) FCMP src, src2

b7 b0 b7 b0 b7 bo src
[1]101]a]1[1]of1]ofr][1]1]olof1]o]ofofol1] rs230p | [rmma2
rs2[3:0] src2

0000bto 1111 _|Rs2 __|RO (SP) to R15

(2) FCMP src, src2

b7 b0 b7 b0 b7 b0 1d[1:0] src
[1]1]11]1]1]1]ofol1]olofolo]1]ao] rsop | rs230] | 11b None
00b None
01b
Id[1:0] |src rs[3:0]/rs2[3:0] src/src2
11b Rs 0000b to 1111b |Rs/Rs2 |RO (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]
REJ09B0435-0100 Rev.1.00 RENESAS Page 205 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) FDIV src, dest #IMM:32 Rd 7
(2) FDIV src, dest Rs Rd 3
[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5
(1) FDIV src, dest
b0 b7 b0 b7 b0 src
[1]101]1]1[1]of1]of1][1]1]olof1]o]ol1][o]o] im0 | [smm32
rd[3:0] dest
0000b to 1111b_|Rd [RO (SP) to R15
(2) FDIV src, dest
b0 b7 b0 b7 b0 1d[1:0] src
[1]1]1]1]1]1]ofo]1]olo[1]o]o o] rsp301 rd[30] | 11b None
00b None

10b |dsp:16

Id[1:0] |src rs[3:0)/rd[3:0] src/dest

11b Rs 0000b to 1111b |Rs/Rd |RO (SP)to R15
00b [Rs]

01b dsp:8[Rs]

10b dsp:16[Rs]

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS Page 206 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) FMUL src, dest #IMM:32 Rd 7
(2) FMUL src, dest Rs Rd 3
[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5
(1) FMUL src, dest
b0 b7 b0 b7 b0 src
[1]11]1]1[1]ofr]ofr[1]1]olol1]o]ofo[1]1] oy | [emm32
rd[3:0] dest
0000b to 1111b |Rd [RO (SP) to R15
(2) FMUL src, dest
b0 b7 b0 b7 b0 1d[1:0] src
[1]1]11]1]1]1]ofol1]olofol1]1]ao] rsp301 rd[30] | 11b None
00b None
Id[1:0] |src rs[3:0)/rd[3:0] src/dest
11b Rs 0000b to 1111b [Rs/Rd |RO (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 207 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) FSUB src, dest #IMM:32 Rd 7
(2) FSUB src, dest Rs Rd 3
[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5
(1) FSUB src, dest
b0 b7 b0 b7 b0 src
[1]101]1]1[1]of1]of1][1]1]olol1]o]ofofolo] im0 | [emm32
rd[3:0] dest
0000b to 1111b |Rd [RO (SP) to R15
(2) FSUB src, dest
bo b7 b0 b7 bo 1d[1:0] src
[1]1]1]1]1]1]ofo]1]0olo[olo]o 0] rsp301 rd[30] | 11b None
00b None
1d[1:0] src rs[3:0)/rd[3:0] src/dest
11b Rs 0000b to 1111b |Rs/Rd |RO (SP) to R15
00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 208 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) FTOI src, dest Rs Rd 3
[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

(1) FTOI src, dest

b0 b7 b0 b7 b0 1d[1:0] src

[1]1]a]1]1]1]ofol1]olo[1]o]1]amo] rsa01 30| 11b None
00b None
01b

Id[1:0] |src rs[3:0)/rd[3:0] src/dest

11b Rs 0000b to 1111b |Rs/Rd |R0 (SP) to R15

00b [Rs]

01b dsp:8[Rs]

10b dsp:16[Rs]

INT INT

Code Size

Syntax src Code Size (Byte)
(1) INT src #IMM:8 3

(1) INT src

src

b7 b0 b7 b0
[ol1]+T1Tol 1 o[1Jo1]1To]0oololo] [amma]

REJ09B0435-0100 Rev.1.00 RENESAS Page 209 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) ITOF src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)
5 (memex = UB)
dsp:16[Rs].memex Rd 5 (memex == UB)
6 (memex != UB)
(1) ITOF src, dest
When memex == UB or src == Rs
b7 b0 b7 b0 b7 b0 Id[1:0] src
[1]1]1]1]1]1]ofofol1]o[olo]1]ao] rsp301 rd[3:0] None

When memex != UB

None

b7 memex b0 b7 b0 b7 b0 b7 b0 d[1:0] src
[ololololof[1]1]o]m0/1]0]0]olwro]olofol1[o]ofol1] 3o rd[3:0] 11b None
00b None
o1b
100
mi[1:0] |memex Id[1:0] |src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]
REJ09B0435-0100 Rev.1.00 RENESAS Page 210 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

Section 4

Instruction Code

RX Family

Code Size

Syntax src Code Size (Byte)
(1) JMP src Rs 2

(1) JMP src

b0

b0 b7
[o[1]1]1]1]1]1][1]o]o]olo] rs@o

rs[3:0] src
0000b to 1111b |Rs |RO (SP) to R15

JSR

Code Size
Syntax src Code Size (Byte)
(1) JSR src Rs 2

(1) JSR src

b0

b0 b7
[o[1la]r]a]1[1[1]olofol1] 30

rs[3:0] src
0000b to 1111b |Rs |RO (SP)to R15

JMP

JSR

REJ09B0435-0100 Rev.1.00

RENESAS
June 11, 2010

Page 211 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size

Syntax src src2 Code Size (Byte)

(1) MACHI src, src2 Rs Rs2 3

(1) MACHI src, src2

b0 b7 b0 b7 b0
[1]1]171[1]1]of1]olofoolo[1]olo] m@o | w230 |

rs[3:0]/rs2[3:0] src/src2
0000b to 1111b |Rs/Rs2 |RO (SP) to R15

MACLO MACLO

Code Size
Syntax src src2 Code Size (Byte)
(1) MACLO src, src2 Rs Rs2 3

(1) MACLO src, src2

b0 b7 b0 b7 b0

[1]11]1]1[1]o[1]ofolofolol1]ol1] 'm0y | rs2300 |

rs[3:0])/rs2[3:0] src/src2

0000b to 1111b_|Rs/Rs2 RO (SP) to R15

REJ09B0435-0100 Rev.1.00 RENESAS Page 212 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) MAX src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(2) MAX src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)
5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)
6 (memex != UB)
(1) MAX src, dest
b7 b7 b7 b0 li[1:0] src

b0 b0
[1]1[a71[a[1]ola]ol1[1]1]umofolofof1]o][o] razo |

01b |#SIMM:8
10b [#SIMM:16

11b [#siMM:24 |
00b [#IMM:32 |
1i[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |Rd |R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
(2) MAX src, dest
When memex == UB or src == Rs
bO b7 b0 b7 bO Id[1:0] src
[1]1]11]1]1]1]ofofololo[1]o]o uao] rsp301 rd[3:0] 11b None
00b None
01b
100
When memex != UB
b7 memex b0 b7 b0 b7 b0 b7 b0 1d[1:0] src
[olololofof[1]1]o]mito]1]/0]o]olurofololofolo[1]o]o] wm@o | o | 11b None
00b None
o1b
100
mi[1:0] |memex Id[1:0] |src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |R0 (SP) to R15
01b w 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 213 of 278

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family

Section 4

Instruction Code

MIN

MIN

Code Size
Syntax src dest Code Size (Byte)
(1) MIN src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(2) MIN src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)
5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)
6 (memex != UB)
(1) MIN src, dest
b0 b7 b0 b7 b0 Ii[1:0] src
[1]11[ala[1lofr]ofr[1]1]uwro]ofofol1][ol1] w0 | o1b [#sivvis
b [#SIMM:24
00b [#MM:32 |

1i[1:0] src rd[3:0] dest

01b #SIMM:8 0000b to 1111b |Rd |RO (SP)to R15
10b #SIMM:16

11b #SIMM:24

00b #IMM:32

(2) MIN src, dest

When memex == UB or src == Rs

b0 Id[1:0] src

b0 b7 b0 b7
[1]1]11]1]1]1]ofofololo[1]o]1 ao] rsp301

None

30| 11b

When memex != UB

00b None

b7 memex b0 b7 b0 b7 b0 _b7 bo d[1:0] src
[ololololof[1]1]o]mio]1]0]o]olurofofolofolof[1]o]1] ws@o | w0 | 116 None
00b None
01b
100
mi[1:0] |memex Id[1:0] |src rs[3:0)/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |R0 (SP)to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
b uw 10b dsp:16[Rs]
REJ09B0435-0100 Rev.1.00 RENESAS Page 214 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Processing Code Size
Syntax Size Size src dest (Byte)
(1) MOV.size src, dest B/W/L size Rs dsp:5[Rd] 2
(Rs = R0 to R7) (Rd = RO to R7)
(2) MOV.size src, dest B/W/L L dsp:5[Rs] Rd 2
(Rs = R0 to R7) (Rd = RO to R7)
(3) MOV.size src, dest L L #UIMM:4 Rd 2
(4) MOV.size src, dest B B #IMM:8 dsp:5[Rd] 3
(Rd = RO to R7)
W/L size #UIMM:8 dsp:5[Rd] 3
(Rd = RO to R7)
(5) MOV.size src, dest L L #UIMM:8 Rd 3
(6) MOV.size src, dest L L #SIMM:8 Rd 3
L L #SIMM:16 Rd 4
L L #SIMM:24 Rd 5
L L #IMM:32 Rd 6
(7) MOV.size src, dest B/W L Rs Rd 2
L L Rs Rd 2
(8) MOV.size src, dest B B #IMM:8 [Rd] 3
B B #IMM:8 dsp:8[Rd] 4
B B #IMM:8 dsp:16[Rd] 5
w w #SIMM:8 [Rd] 3
w w #SIMM:8 dsp:8[Rd] 4
w w #SIMM:8 dsp:16[Rd] 5
w w #IMM:16 [Rd] 4
w w #IMM:16 dsp:8[Rd] 5
w w #IMM:16 dsp:16[Rd] 6
L L #SIMM:8 [Rd] 3
L L #SIMM:8 dsp:8[Rd] 4
L L #SIMM:8 dsp:16 [Rd] 5
L L #SIMM:16 [Rd] 4
L L #SIMM:16 dsp:8[Rd] 5
L L #SIMM:16 dsp:16 [Rd] 6
L L #SIMM:24 [Rd] 5
L L #SIMM:24 dsp:8[Rd] 6
L L #SIMM:24 dsp:16 [Rd] 7
L L #IMM:32 [Rd] 6
L L #IMM:32 dsp:8[Rd] 7
L L #IMM:32 dsp:16 [Rd] 8
(9) MOV.size src, dest B/W/L L [Rs] Rd 2
B/W/LL L dsp:8[Rs] Rd 3
B/W/L L dsp:16[Rs] Rd 4
(10)MOV.size src, dest B/W/L L [Ri, Rb] Rd 3
(11)MOV.size src, dest B/W/L size Rs [Rd] 2
B/W/L size Rs dsp:8[Rd] 3
B/W/L size Rs dsp:16[Rd] 4
REJ09B0435-0100 Rev.1.00 RENESAS Page 215 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Processing Code Size

Syntax Size Size src dest (Byte)

(12)MOV.size src, dest B/W/L size Rs [Ri, Rb] 3

(13)MOV.size src, dest B/WIL size [Rs] [Rd] 2
B/W/L size [Rs] dsp:8[Rd] 3
B/W/L size [Rs] dsp:16[Rd] 4
B/W/L size dsp:8[Rs] [Rd] 3
B/W/L size dsp:8[Rs] dsp:8[Rd] 4
B/W/L size dsp:8[Rs] dsp:16[Rd] 5
B/W/L size dsp:16[Rs] [Rd] 4
B/W/L size dsp:16[Rs] dsp:8[Rd] 5
B/W/L size dsp:16[Rs] dsp:16[Rd] 6

(14)MOV.size src, dest B/WIL size Rs [Rd+] 3
B/W/L size Rs [-Rd] 3

(15)MOV.size src, dest B/W/L L [Rs+] Rd 3
B/W/L L [-Rs] Rd 3

(1) MOV.size src, dest

b7 b0 b7 b0

[To [0 [T [wza] weo |

dsp[4:0]

sz[1:0] |[Size dsp[4:0] dsp:5 rs[2:0]/rd[2:0] src/dest

00b B 00000b to 11111b |0 to 31 000b to 111b Rs/Rd |RO (SP) to R7

01b w

10b L

(2) MOV.size src, dest

b7 b0 b7 b0

[To[=mal I _T 1 veor [e |

dsp[4:0]

sz[1:0] |[Size dsp[4:0] dsp:5 rs[2:0]/rd[2:0] src/dest

00b B 00000b to 11111b |0 to 31 000b to 111b Rs/Rd |R0 (SP) to R7

01b w

10b L

(3) MOV.size src, dest

b7 b0 b7 b0

[o[1]1]olol1][1]o] immzoy | rao)

imm[3:0] src rd[3:0] dest

0000b to 1111b #UIMM:4

[0to 15

0000b to 1111b |Rd

[RO (SP) to R15

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 216 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code

(4) MOV.size src, dest

b7 b0 b7 b0 Src
[o[ol1]1]1]1]sa10 Q\rg[zzq] % L] N
dsp[4:0] #UIMM:8

sz[1:0] |[Size dsp[4:0] dsp:5 rd[2:0] dest
00b B 00000b to 11111b |0 to 31 000b to 111b Rd |R0 (SP) to R7
01b w

10b L

(5) MOV.size src, dest

b7 b0 b7 b0 src

[oT TaT1o[4ToltJo[1]o0o] wpo | [Umms]

rd[3:0] dest

0000b to 1111b |Rd [RO (SP) to R15
(6) MOV.size src, dest

b0 li[1:0] src

b7 b0 b7
|1‘1‘1‘1‘1‘0‘1‘1| rd[3:0] ‘Ii[1‘:0]|1‘0| 01b [#siMM3 |

11b [#sIMM:24 |
00b [#MM:32 |
1i[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b [Rd |R0 (SP) to R15
10b #SIMM: 16
11b #SIMM:24
00b #IMM:32
(7) MOV.size src, dest
b7 b0 b7 b0
[1]1]satal1[1]1]1] wmop [rozop
sz[1:0] |[Size rs[3:0]/rd[3:0] src/dest
00b B 0000b to 1111b |Rs/Rd |R0 (SP)to R15
01b W
10b L
REJ09B0435-0100 Rev.1.00 -IENESAS Page 217 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code

(8) MOV.size src, dest

b7 b0 b7 bo Id[1:0] dest li[1:0] src
[1]111]1][1]o0 o] oo [iirop [szr0] 00b - None 01b

10

10b 11b [#SIMM:24 |

00b [#IMM:32 |
1d[1:0] |dest rd[3:0] dest li[1:0] src sz[1:0] |Size
00b [Rd] 0000b to 1111b |Rd |RO (SP) to R15 01b #SIMM:8 00b B
01b dsp:8[Rd] 10b #SIMM: 16 01b W
10b dsp:16[Rd] 11b #SIMM:24 10b L
00b #IMM:32

(9) MOV.ssize src, dest

b7 b0 b7 b0 1d[1:0] src

[1]1]szror] 1] 1 o] rsiz0p | oo | 00b None

sz[1:0] |Size 1d[1:0] |src rs[3:0]/rd[3:0] src/dest

00b B 00b [Rs] 0000bto 11116 |Rs/Rd __ |RO (SP) to R15
01b W 01b dsp:8[Rs]

10b L 10b dsp:16[Rs]

(10) MOV.size src, dest

b0 b7 b0 b7 b0
[11ala[ala[1]1[olo]1]sara] vzop | rofzop rd[3:0]

sz[1:0] |[Size ri[3:0]/rb[3:0]/rd[3:0] src/dest

00b B 0000b to 1111b Ri/Rb/Rd |R0 (SP) to R15
01b w

10b L

(11) MOV.size src, dest

b7 b0 b7 b0 Id[1:0] dest

[1] 1 satofomo[11 ooy [sz | 00b - None

10b |[dsp:16

sz[1:0] |Size Id[1:0] |dest rs[3:0]/rd[3:0] src/dest

00b B 00b [Rd] 0000b to 1111b |Rs/Rd [RO (SP) to R15

01b W 01b dsp:8[Rd]

10b L 10b dsp:16[Rd]

REJ09B0435-0100 Rev.1.00 RENESAS Page 218 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code

(12) MOV.size src, dest

b0 b7 b0 b7 b0

|1‘1‘1‘1‘1‘1‘1‘0|0‘0‘u¢m‘ 1i[3:0] | 1b[3:0] 1s[3:0]

sz[1:0] |[Size rs[3:0]/ri[3:0]/rb[3:0] src/dest

00b B 0000b to 1111b Rs/Ri/Rb |RO (SP)to R15

01b w

10b L

(13) MOV.size src, dest

b7 b0 b7 bo Ids[1:0] src Idd[1:0] dest

[1] 1] szt0p adpropliospro)] sz0p [rzo) | 00b None 00b None

sz[1:0] |[Size Ids[1:0]/Idd[1:0] |src/dest rs[3:0]/rd[3:0] src/dest
00b B 00b [Rs)/[Rd] 0000b to 1111b |Rs/Rd |RO (SP)to R15
01b w 01b dsp:8[Rs]/dsp:8[Rd]

10b L 10b dsp:16[Rs]/dsp:16[Rd]

(14) MOV.size src, dest

b7 b0 b7 b0 b7 b0

[1]1]171[1]1]o[1]olo]1]o0 adt0)sato)| a0 | rsiz0 |

ad[1:0] |Addressing sz[1:0] |Size rs[3:0]/rd[3:0] src/dest

00b Rs, [Rd+] 00b B 0000b to 1111b |Rs/Rd |R0 (SP)to R15

01b Rs, [-Rd] 01b w

10b L

(15) MOV.size src, dest

b7 b0 b7 b0 b7 b0

[1]171]1]1[1]o[1]o]o]1]o0 adrosAro)| sz} | w30 |

ad[1:0] |Addressing sz[1:0] |Size rs[3:0]/rd[3:0] src/dest

10b [Rs+], Rd 00b B 0000b to 1111b |Rs/Rd |RO (SP)to R15

11b [-Rs], Rd 01b w

10b L

REJ09B0435-0100 Rev.1.00 -IENESAS Page 219 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax Size Processing Size src dest Code Size (Byte)
(1) MOVU.size src, dest B/W L dsp:5[Rs] Rd 2
(Rs=R0toR7) (Rd=RO0toR7)
(2) MOVU.size src, dest B/W L Rs Rd 2
B/W L [Rs] Rd 2
B/W L dsp:8[Rs] Rd 3
B/W L dsp:16[Rs] Rd 4
(3) MOVU.size src, dest B/W L [Ri, Rb] Rd 3
(4) MOVU.size src, dest B/W L [Rs+] Rd 3
B/W L [-Rs] Rd 3
(1) MOVU.size src, dest
b7 b0 b7 b0
Lrloltfrfeel |] 20 | | izol |
dsp[4:0]
sz Size dsp[4:0] dsp:5 rs[2:0]/rd[2:0] src/dest
Ob B 00000b to 11111b |0 to 31 000b to 111b Rs/Rd |RO (SP) to R7
1b w
(2) MOVU.size src, dest
b7 b0 b7 b0 Id[1:0] src
o[1]o]1]1]szliarno| rsz0p [3oy | 11b None
00b None
otb
sz Size Id[1:0] |src rs[3:0]/rd[3:0] src/dest
Ob B 11b Rs 0000b to 1111b |Rs/Rd |R0 (SP)to R15
1b w 00b [Rs]
01b dsp:8[Rs]
10b dsp:16[Rs]
(3) MOVU.size src, dest
b7 b0 b7 b0 b7 b0
[1]alafala[alaola]1]o]sz] vizoy | ooy rd[3:0]
sz Size ri[3:0]/rb[3:0]/rd[3:0] src/dest

Ob B 0000b to 1111b

Ri/Rb/Rd [RO (SP) to R15

1b w

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 220 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code

(4) MOVU.size src, dest

b0 b7 b0 b0
[1]1]1]1[1]1]o[1]olol1]1 a0 o0sz| w0 | razoy |

ad[1:0] |Addressing sz Size rs[3:0]/rd[3:0] src/dest

10b [Rs+], Rd Ob B 0000b to 1111b |Rs/Rd |RO (SP)to R15
11b [-Rs], Rd 1b w

MUL MUL

Code Size
Syntax src src2 dest Code Size (Byte)
(1) MUL src, dest #UIMM:4 - Rd 2
(2) MUL src, dest #SIMM:8 - Rd 3
#SIMM:16 - Rd 4
#SIMM:24 - Rd 5
#IMM:32 - Rd 6
(3) MUL src, dest Rs - Rd 2
[Rs].memex - Rd 2 (memex == UB)
3 (memex != UB)
dsp:8[Rs].memex - Rd 3 (memex == UB)
4 (memex != UB)
dsp:16[Rs].memex - Rd 4 (memex == UB)
5 (memex != UB)
(4) MUL src, src2, dest Rs Rs2 Rd 3
(1) MUL src, dest
b0 b7 b0
[o[1]1]ofolol1[1] immaoy | razo) |
imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 |O to 15 0000b to 1111b |Rd |R0 (SP) to R15
REJ09B0435-0100 Rev.1.00 -IENESAS Page 221 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
(2) MUL src, dest
b7 b0 b7 bo li[1:0] src
|0‘1‘1‘1‘0‘1‘Ii[1‘:0]|0‘0‘0‘1‘ rd[3:0] I 01b
100 [#SIMM:16
11b [#sIMM:24 |
00b [#MM:32 |
1i[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |Rd |R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
(3) MUL src, dest
When memex == UB or src == Rs
b7 b0 b7 b0 Id[1:0] src
[ol1]ofo]1]1]wd:0] rs3o] | rd30] | 11b None
00b None
106
When memex != UB
b7 memex b0 b7 b0 b7 b0 Id[1:0] src
[ololofolol1]1]o]mitojofo]1]1]o| rs(3:01 | rd30] | 11b None
00b None
otb
106
mi[1:0] |memex Id[1:0] |src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b [Rs/Rd |R0 (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]
(4) MUL src, src2, dest
b0 b7 b0 b7 b0
[1]a[ala[a]1]1[1]olo[1]1] raoy s30] | rs230] |
rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest
0000b to 1111b Rs/Rs2/Rd [RO (SP) to R15
REJ09B0435-0100 Rev.1.00 -IENESAS Page 222 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 4 Instruction Code

MULHI

MULHI

Code Size
Syntax src src2 Code Size (Byte)
(1) MULHI src, src2 Rs Rs2 3
(1) MULHI src, src2
b0 b7 b0 b7 b0
[1]1/171[1]1]of1]olofoolofololo] m@o | w230 |
rs[3:0]/rs2[3:0] src/src2
0000b to 1111b Rs/Rs2 |RO (SP)to R15
Code Size
Syntax src src2 Code Size (Byte)
(1) MULLO src, src2 Rs Rs2 3
(1) MULLO src, src2
b0 b7 b0 b7 b0
[1]1]1]1]1[1]o[1]o]olo]olololol1] 'm0y | rs2307 |
rs[3:0]/rs2[3:0] src/src2
0000b to 1111b Rs/Rs2 |RO (SP)to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 223 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
MVFACHI MVFACHI
Code Size

Syntax dest Code Size (Byte)

(1) MVFACHI dest Rd 3

(1) MVFACHI dest

b0

b0 b7 b0 b7
[1]1[1]1[1]1]ol1]olofolr[1]1]1][1]ofo]o]o] rmoy

rd[3:0] dest
0000b to 1111b Rd |RO (SP) to R15

MVFACMI MVFACMI

Code Size
Syntax dest Code Size (Byte)
(1) MVFACMI dest Rd 3

(1) MVFACMI dest

b0

b0 b7 b0 b7
[1]11]al1[1]of1]ofolola[1]1][1]1]ofof[1]0] w30

rd[3:0] dest
0000b to 1111b Rd [RO (SP) to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 224 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) MVFC src, dest Rx Rd 3
(1) MVFC src, dest
b0 b7 b0 b7 b0
Ll [afelefaloftfols]1olt]olr]o] omo, | rapor |
cr[3:0] src rd[3:0] dest
0000b Rx PSW 0000b to 1111b Rd |R0(SP)k)R15
0001b PC
0010b USP
0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved
Code Size
Syntax src Code Size (Byte)
(1) MVTACHI src Rs 3
(1) MVTACHI src
b0 b7 b0 b7 b0
Lr[1ls[e]+][+]olsfofolof1]ofr][1][r]ofofolo] w0,
rs[3:0] src
0000b to 1111b |Rs |RO(SP)k)R15
REJ09B0435-0100 Rev.1.00 -IENESAS Page 225 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
MVTACLO MVTACLO
Code Size

Syntax src Code Size (Byte)

(1) MVTACLO src Rs 3

(1) MVTACLO src

b0 b7 b0 b7 b0
Ll [1[e]t][1lof1]olofofr]of1/e]1]ofofof[1] rwa
rs[3:0] src
0000b to 1111b |Rs |R0 (SP)to R15
Code Size
Syntax src dest Code Size (Byte)
(1) MVTC src, dest #SIMM:8 Rx 4
#SIMM:16 Rx 5
#SIMM:24 Rx 6
#IMM:32 Rx 7
(2) MVTC src, dest Rs Rx 3
(1) MVTC src, dest
bO b7 bo b7 bO li[1:0] src
[1]1la[ala[alofr]ofr[a]1]mo][1]1]ofofolo] a0 | 01b [#SIMM:8]
106
11b [#SIMM:24 |
00b [#IMM:32 |
1i[1:0] src cr[3:0] dest
01b #SIMM:8 0000b Rx PSW
10b #SIMM:16 0001b Reserved
11b #SIMM:24 0010b USsSP
00b #IMM:32 0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved
REJ09B0435-0100 Rev.1.00 RENESAS Page 226 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
(2) MVTC src, dest
b0 b7 b0 b0
[111[1]1[1]1]ol1]ol1[1]of1]ololo] mmoy | ci30
cr[3:0] dest rs[3:0] src
0000b Rx PSW 0000b to 1111b Rs |R0 (SP)to R15
0001b Reserved
0010b USP
0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved
Code Size
Syntax src Code Size (Byte)
(1) MVTIPL src #IMM:4 3

(1) MVTIPL src

b0

b0 b7 b0 b7
[o[1]1]1]ol1]o[1]o[1][1]1]0lo]olofolo]o]o] immszo |

imm[3:0]
0000b to 1111b

#IMM:4
O0to 15

Note:

The MVTIPL instruction is not available in products of the RX610 Group. Use the MVTC instruction to write interrupt

priority levels to the processor interrupt-priority level (IPL[2:0]) bits in the processor status word (PSW).

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 227 of 278

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family

Section 4 Instruction Code

NEG

Code Size

Syntax

src dest

NEG

Code Size (Byte)

(1) NEG dest

2

(2) NEG src, dest

Rs Rd

3

(1) NEG dest

b7 b0 b7

b0

[o[1]a]1]1]1][1]ofololol1] 30

rd[3:0] dest

0000b to 1111b |Rd

[RO (SP) to R15

(2) NEG src, dest

b0

b0 b7 b0 b7
[1]171]1]1]1]ofolofolofolol1[1]1] o rd[3:0]

rs[3:0]/rd[3:0] src/dest

0000b to 1111b |Rs/Rd |R0 (SP) to R15

NOP

Code Size

Syntax

Code Size (Byte)

(1) NOP

1

(1) NOP

[olofolofofof1]1]

NOP

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 228 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size

Syntax src dest Code Size (Byte)

(1) NOT dest - Rd 2

(2) NOT src, dest Rs Rd 3

(1) NOT dest

b0 b7 b0
[o[1]1]1]1]1][1]o]olololo] 30
rd[3:0] dest
0000b to 1111b _|Rd [RO (SP) to R15
(2) NOT src, dest
b0 b7 b0 b7 b0
[1]10a]ala[1]ofolofola[r1[1]0[1]1] o rd[3:0]
rs[3:0]/rd[3:0] src/dest
0000b to 1111b [Rs/Rd |R0 (SP)to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 229 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 4

Instruction Code

OR

Code Size
Syntax src src2 dest Code Size (Byte)
(1) OR src, dest #UIMM:4 - Rd 2
(2) OR src, dest #SIMM:8 - Rd 3
#SIMM:16 - Rd 4
#SIMM:24 - Rd 5
#IMM:32 - Rd 6
(3) OR src, dest Rs - Rd 2
[Rs].memex - Rd 2 (memex == UB)
3 (memex != UB)
dsp:8[Rs].memex - Rd 3 (memex == UB)
4 (memex != UB)
dsp:16[Rs].memex - Rd 4 (memex == UB)
5 (memex != UB)
(4) OR src, src2, dest Rs Rs2 Rd 3
(1) OR src, dest
b0 b7 b0
[o[1]1]olof1]ol1] immpaoy [o |
imm[3:0] src rd[3:0] dest

0000b to 1111b

#UIMM:4 [0 to 15

0000b to 1111b

Rd [RO (SP) to R15

()

b7

OR src, dest

b0 b7 b0

o[1111 o] umro][olo]1]1]

30|

li[1:0]
oo

10b [#SIMM:16

OR

11 [#SIMM:24 |
00b [#MM:32 |
li[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |Rd |R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
REJ09B0435-0100 Rev.1.00 RENESAS Page 230 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code

(3) OR src, dest
When memex == UB or src == Rs

b7 b0 b7 b0 Id[1:0] src
[ol1]ol1]o]1 o] rs3:0 | rd30], | 11b None

00b None

106

When memex != UB

memex b0 b7 b0 b7 b0 1d[1:0] src

[o]olofolol1]1]o]mitoo]1]o0]1]to| rs3:00 | ra30] | 11b None

00b None

otb
mi[1:0] |memex Id[1:0] |src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |RO (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]

(4) OR src, src2, dest

b0 b7 b0 b7 bo
[11ala]ala[1]a]1]ol1]ol1] a0 s[30] | rs230] |
rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest

0000b to 1111b Rs/Rs2/Rd |R0 (SP) to R15

POP POP

Code Size
Syntax dest Code Size (Byte)
(1) POP dest Rd 2

(1) POP dest

b0 b7 b0
|0\1\1\1\1\1\1\o|1\0\1\1\ rd[3:0]
rd[3:0] dest
0000b to 1111b _|Rd [RO (SP) to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 231 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

Section 4

Instruction Code

RX Family

Code Size

Syntax dest Code Size (Byte)
(1) POPC dest Rx 2

(1) POPC dest

b0

b0 b7
|0‘1‘1‘1‘1‘1‘1‘0|1‘1‘1‘o‘ cr[3:0]

cr[3:0] dest
0000b Rx PSW
0001b Reserved
0010b USP
0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved

POPM

POPC

POPM

Code Size
Syntax dest dest2 Code Size (Byte)
(1) POPM dest-dest2 Rd Rd2 2
(1) POPM dest-dest2
b0 b7 b0
[o[1l1]oa[1][1]1] ‘3o [razzo |
rd[3:0] dest rd2[3:0] dest2
0001b to 1110b |Rd |R1 to R14 0010b to 1111b |[Rd2 R2 to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 232 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src Code Size (Byte)
(1) PUSH.size src Rs 2
(2) PUSH.size src [Rs] 2
dsp:8[Rs] 3
dsp:16[Rs] 4

(1) PUSH.size src

b0 b7 b0

|0‘1‘1‘1‘1‘1‘1‘0|1‘0‘sz[3:0]‘ 1s[3:0]

sz[1:0] |[Size rs[3:0] src

00b B 0000b to 1111b |Rs |RO (SP) to R15

01b w

10b L

(2) PUSH.size src

b7 b0 b7 b0 1d[1:0] src

[1]1]11]1]o]1]wmo] oy |1]0]sz10)] 00b None

1d[1:0] src rs[3:0] src sz[1:0] |Size
00b [Rs] 0000b to 1111b |Rs |RO (SP) to R15 00b B
01b dsp:8[Rs] 01b w
10b dsp:16[Rs] 10b L
REJ09B0435-0100 Rev.1.00 -IENESAS Page 233 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
PUSHC PUSHC
Code Size

Syntax src Code Size (Byte)

(1) PUSHC src Rx 2

(1) PUSHC src

b0

b0 b7
|0‘1‘1‘1‘1‘1‘1‘0|1‘1‘0‘0‘ cr3:0]

cr[3:0] src
0000b Rx PSW
0001b PC
0010b USP
0011b FPSW
0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b BPSW
1001b BPC
1010b ISP
1011b FINTV
1100b INTB
1101b to 1111b Reserved

PUSHM

PUSHM

Code Size
Syntax src src2 Code Size (Byte)
(1) PUSHM src-src2 Rs Rs2 2
(1) PUSHM src-src2
b0 b7 b0
[o[1]11]o1]1][1]0] w30y [rs230 |
rs[3:0] src rs2[3:0] src2
0001b to 1110b [Rs |R1 to R14 0010b to 1111b |Rs2 R2 to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 234 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size

Syntax src Code Size (Byte)

(1) RACW src #IMM:1 3

(1) RACW src

b7 b0 b7 b0 b7 b0
[1]1]71[1]1]1]of1]olofol1[1]o]o]ofo]o]ofmo]olo]o]

imm src
Obto 1b [#IMM:1 |1 to 2

REVL REVL

Code Size
Syntax src dest Code Size (Byte)
(1) REVL src, dest Rs Rd 3

(1) REVL src, dest

b7 b0 b7 b0 b7 b0
[1]ala]ala[1lo[1]olr[1]ofol1[1]1] rs@o rd[3:0]
rs[3:0]/rd[3:0] src/dest

0000b to 1111b |Rs/Rd |R0 (SP) to R15

REJ09B0435-0100 Rev.1.00 RENESAS Page 235 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size

Syntax src dest Code Size (Byte)

(1) REVW src, dest Rs Rd 3

(1) REVW src, dest

b0
rs[i‘i:O] ‘ ‘ rd[i?:O] ‘

Llolefofefefofe]o]e]r]ofofa]o]r]

rs[3:0]/rd[3:0] src/dest
0000b to 1111b |Rs/Rd |R0 (SP) to R15

RMPA RMPA

Code Size
Syntax Size Code Size (Byte)
(1) RMPA.size B 2

w 2

L 2

(1) RMPA.size

b0 b7
[of1[a]1[1]1[1]1[1]0]0lo]1]1]szr0]

sz[1:0] |Size

00b B

01b W

10b L

REJ09B0435-0100 Rev.1.00 RENESAS Page 236 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size

Syntax dest Code Size (Byte)

(1) ROLC dest Rd 2

(1) ROLC dest

b0 b7 bo
|0‘1‘1‘1‘1‘1‘1‘0|0‘1‘0‘1‘ rd[3:0]
rd[3:0] dest
0000b to 11110 |Rd RO (SP) to R15

RORC RORC

Code Size
Syntax dest Code Size (Byte)
(1) RORC dest Rd 2

(1) RORC dest

b0 b7 b0
|0\1\1\1\1\1\1\0|0\1\0\0\ rd[3:0]
rd[3:0] dest
0000b to 1111b _|Rd [RO (SP) to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 237 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size

Syntax src dest Code Size (Byte)

(1) ROTL src, dest #IMM:5 Rd 3

(2) ROTL src, dest Rs Rd 3

(1) ROTL src, dest

b7 b0 b7 b0 b7 b0

KA ENKN EREN CIEN A KN KA KR KN KRR e

imm[4:0] src rd[3:0] dest

00000b to 11111b |#IMM:5 |O to 31 0000b to 1111b |Rd |RO (SP) to R15

(2) ROTL src, dest

b0

b0 b7 b0 b7
[1]ala[ala[1lo[1]ol1][1]ofol1][1]0] rs@o rd[3:0]

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd |R0 (SP)to R15

ROTR

ROTR

Code Size
Syntax src dest Code Size (Byte)
(1) ROTR src, dest #IMM:5 Rd 3
(2) ROTR src, dest Rs Rd 3
(1) ROTR src, dest
b0 b7 b0
Lol folefofolsfolnfrfoft[r]o] —mmaor [razor, |
imm[4:0] src rd[3:0] dest
00000b to 11111b |#IMM:5 |O to 31 0000b to 1111b |Rd |R0 (SP) to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 238 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code

(2) ROTR src, dest

b0

b0 b7 bO b7
|1\1\1\1\1\1\0\1|o\1\1\o\o\1\0\0| 1s[3:0] rd[3:0]

rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd |RO (SP)to R15

ROUND ROUND

Code Size

Syntax src dest Code Size (Byte)

(1) ROUND src, dest Rs Rd 3
[Rs].L Rd 3
dsp:8[Rs].L Rd 4
dsp:16[Rs].L Rd 5

(1) ROUND src, dest

b0 b7 b0 b7 b0 Id[1:0] src
[1]171]1]1[1]ofol1]olo[1]1]0] o] w0 rd[30] | 11b None
00b None

Id[1:0] |[src rs[3:0)/rd[3:0] src/dest

11b Rs 0000b to 1111b |Rs/Rd |R0 (SP)to R15

00b [Rs]

01b dsp:8[Rs]

10b dsp:16[Rs]

RTE RTE

Code Size
Syntax Code Size (Byte)
(1) RTE 2
(1) RTE
b7 b0 b7 b0

Lol+lslsft][a1]r]r]ofof1]of1]o]1]

REJ09B0435-0100 Rev.1.00 RENESAS Page 239 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.
RX Family

Section 4 Instruction Code

RTFI

Code Size

Syntax Code Size (Byte)
(1) RTFI 2

(1) RTFI

b0 b7
Lofr[olelelololr]rTofofr]of1]o]o]

RTS

Code Size

Syntax Code Size (Byte)
(1) RTS 1

(1) RTS

[olofolofofof1]o]

RTSD

RTFI

RTS

RTSD

Code Size

Syntax src dest dest2 Code Size (Byte)
(1) RTSD src #UIMM:8 - - 2

(2) RTSD src, dest-dest2 #UIMM:8 Rd Rd2 3

(1) RTSD src

Src

b7 b0
[o[1]1Tool11]1] [umme]

(2) RTSD src, dest-dest2

b7 b0 b7 bo src

[ofola[r1[a]1[1]1] w0y [razop | [rumwvis]

rd[3:0]/rd2[3:0] dest/dest2

0001b to 1111b Rd/Rd2 |R1 to R15

REJ09B0435-0100 Rev.1.00 RENESAS Page 240 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size

Syntax dest Code Size (Byte)

(1) SAT dest Rd 2

(1) SAT dest

b0 b7 bo
|0‘1‘1‘1‘1‘1‘1‘0|0‘0‘1‘1‘ rd[3:0]
rd[3:0] dest
0000b to 11110 |Rd RO (SP) to R15

SATR SATR

Code Size

Syntax Code Size (Byte)
(1) SATR 2

(1) SATR

b0 b7
Lofr]s]t[1]1]1]r]r]ofo]1]ofof1]1]

REJ09B0435-0100 Rev.1.00 RENESAS Page 241 of 278
June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) SBB src, dest Rs Rd 3
(2) SBB src, dest [Rs].L Rd 4

dsp:8[Rs].L Rd 5

dsp:16[Rs].L Rd 6
(1) SBB src, dest

b0 b7 b0 b7 bO

[1]1/171[1]1]o]ofolololo]o]o]umo] 0 rd[3:0]
Id[1:0] |src rs[3:0]/rd[3:0] src/dest
11b Rs 0000b to 1111b [Rs/Rd |RO (SP) to R15
(2) SBB src, dest
b7 memex bo b7 bo b7 bo b7 b0 Id[1:0] src
[ololofolo[1]1]o]1]o]1]0]oo]aro[olof[o]ofolofo]o] o rd[3:0] 00b None

10b | dsp:16

Id[1:0] |src rs[3:0])/rd[3:0] src/dest

00b [Rs] 0000b to 1111b |Rs/Rd [RO (SP) to R15

01b dsp:8[Rs]

10b dsp:16[Rs]

REJ09B0435-0100 Rev.1.00 RENESAS Page 242 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax Size dest Code Size (Byte)
(1) SCCnd.size dest L Rd 3
B/W/L [Rd] 3
B/WI/L dsp:8[Rd] 4
B/WI/L dsp:16[Rd] 5

(1) SCCnd.size dest

b0 b7 b0 b0 Id[1:0] dest
[11101]al1[1]ofol1]1]o]1]sarofmdrro)] rarz0p cd30] | 11b None
00b None
01b
sz[1:0] |Size Id[1:0] |dest rd[3:0] dest
00b B 11b Rd 0000b to 1111b |Rd |R0 (SP)to R15
01b w 00b [Rd]
10b L 01b dsp:8[Rd]
10b dsp:16[Rd]
cd[3:0] [SCCnd cd[3:0] [SCCnd

0000b SCEQ, SCZ |1000b SCGE

0001b SCNE, SCNZ |1001b SCLT

0010b SCGEU, SCC |1010b SCGT

0011b SCLTU, SCNC|1011b SCLE

0100b SCGTU 1100b SCO
0101b SCLEU 1101b SCNO
0110b SCPZ 1110b Reserved
0111b SCN 1111b Reserved

SCMPU SCMPU

Code Size

Syntax Code Size (Byte)
(1) SCMPU 2

(1) SCMPU

b0 b7
Lolrlr]e]1][1]1]r]r]ofofofofof1]1]

REJ09B0435-0100 Rev.1.00 RENESAS Page 243 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
SETPSW SETPSW
Code Size

Syntax dest Code Size (Byte)

(1) SETPSW dest flag 2

(1) SETPSW dest

b0

b0 b7
[o[1]r]1[a]a]1[1]1]o[1]0] b0

cb[3:0] dest
0000b flag C

0001b 4

0010b S

0011b (0]

0100b Reserved
0101b Reserved
0110b Reserved
0111b Reserved
1000b I

1001b U

1010b Reserved
1011b Reserved
1100b Reserved
1101b Reserved
1110b Reserved
1111b Reserved
REJ09B0435-0100 Rev.1.00 RENESAS Page 244 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src src2 dest Code Size (Byte)
(1) SHAR src, dest #IMM:5 - Rd 2
(2) SHAR src, dest Rs - Rd 3
(3) SHAR src, src2, dest #IMM:5 Rs Rd 3
(1) SHAR src, dest
b7 b0 b7
Lo[1[+]of+]of+] mmwoy [o) |
imm[4:0] src rd[3:0] dest

00000b to 11111b

#IMM:5 [0 to 31

0000b to 1111b |Rd

[RO (SP) to R15

(2) SHAR src, dest

b0 b7 b0 b7 b0
|1\1\1\1\1\1\0\1|o\1\1\o\o\o\0\1| 1s[3:0] rd[3:0]
rs[3:0]/rd[3:0] src/dest
0000b to 1111b |Rs/Rd _ |RO (SP) to R15
(3) SHAR src, src2, dest

b0 b7 b0 b7 b0
[1]1a[ala[1lof1]1]o1] imm@op | rs230p | 30 |
imm[4:0] src rs2[3:0]/rd[3:0] src2/dest
00000b to 11111b #IMM:5 |O to 31 0000b to 1111b |Rs/Rd |R0 (SP) to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 245 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4

Instruction Code

SHLL

SHLL

Code Size

Syntax src src2 dest Code Size (Byte)
(1) SHLL src, dest #IMM:5 - Rd 2

(2) SHLL src, dest Rs - Rd 3

(8) SHLL src, src2, dest #IMM:5 Rs Rd 3

(1) SHLL src, dest

b7 b0 b7 b0

Lo o] _mmso] ol

imm[4:0] src rd[3:0] dest

00000b to 11111b |#IMM:5 |0 to 31 0000b to 1111b |Rd |R0 (SP) to R15

(2) SHLL src, dest

b0 b7 b0
|1\1\1\1\1\1\0\1|o\1\1\o\o\o\1\0| 1s[3:0] rd[3:0]
rs[3:0]/rd[3:0] src/dest
0000b to 1111b |Rs/Rd _ |RO (SP) to R15
(3) SHLL src, src2, dest
b0 b7 b0 b7 b0
[111la]ala[1]o[1]1]1]o] immuao rs230] | rd[z0] |
imm[4:0] src rs2[3:0]/rd[3:0] src2/dest
00000b to 11111b #IMM:5 |O to 31 0000b to 1111b [Rs/Rd |R0 (SP) to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 246 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4

Instruction Code

SHLR

SHLR

Code Size

Syntax src src2 dest Code Size (Byte)
(1) SHLR src, dest #IMM:5 - Rd 2

(2) SHLR src, dest Rs - Rd 3

(8) SHLR src, src2, dest #IMM:5 Rs Rd 3

(1) SHLR src, dest

b7 b0 b7 b0

[o[i olo] im0l

imm[4:0] src rd[3:0] dest

00000b to 11111b |#IMM:5 |0 to 31 0000b to 1111b |Rd |R0 (SP) to R15

(2) SHLR src, dest

b0 b7 b0
[1]1/171[1]1]o[1]ol1][1]0]ofololo] 'm0 rd[3:0]
rs[3:0]/rd[3:0] src/dest
0000b to 1111b Rs/Rd |RO (SP)to R15
(3) SHLR src, src2, dest
b0 b7 b0 b7 b0
[1]11]a]1[1]o[1]1]o]0] immuo rs230] | rd[z0] |
imm[4:0] src rs2[3:0]/rd[3:0] src2/dest
00000b to 11111b #IMM:5 |O to 31 0000b to 1111b [Rs/Rd |R0 (SP) to R15
REJ09B0435-0100 Rev.1.00 RENESAS Page 247 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change
RX Family

SMOVB

Code Size

Section 4 Instruction Code

SMOVB

Syntax

Code Size (Byte)
(1) SMOVB

2

(1) SMOVB

b0 b7 b0
Lofr[olofefefefefefofofofr]o]1]s]

SMOVF

Code Size

SMOVF

Syntax

Code Size (Byte)
(1) SMOVF

2

(1) SMOVF

b7 b0 b7 b0

Lolrlslsf[t]efer]r]ofofofa]]r]r]

SMOVU

Code Size

SMOVU

Syntax

Code Size (Byte)
(1) SMOVU

2

(1) SMOVU

b0 b7 b0
Lofr]s]t[1]1]1]r]r]ofolofof]r]1]

REJ09B0435-0100 Rev.1.00

RENESAS Page 248 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax Size Processing Size Code Size (Byte)
(1) SSTR.size B B 2
w w 2
L L 2

(1) SSTR.size

b0 b7
[o[11a]r[1]1[1]1]1]o][olo]1]0]sr0]

sz[1:0] |[Size
00b B
01b w
10b L

STNZ

STNZ

Code Size
Syntax src dest Code Size (Byte)
(1) STNZ src, dest #SIMM:8 Rd 4

#SIMM:16 Rd 5

#SIMM:24 Rd 6

#IMM:32 Rd 7

(1) STNZ src, dest

b0

b0 b7 bO b7
[17alafala[alofr]ola[a]1]mofofof1]1][1]1]

rd[30] |

01b [#SIMM:8
10b |#SIMM:16

src

11b [#SIMM:24

00b [#IMM:32

1i[1:0] src rd[3:0] dest

01b #SIMM:8 0000b to 1111b |Rd |R0 (SP) to R15

10b #SIMM:16

11b #SIMM:24

00b #IMM:32

REJ09B0435-0100 Rev.1.00 RENESAS Page 249 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) STZ src, dest #SIMM:8 Rd 4
#SIMM:16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7

(1) STZ src, dest

b0 b7 b0 b7 bO li[1:0] src
[1]a[ala[a[1lola]ola1[a]1]mololo[1]1][1][0] razo | 0o [#SIMM8
b [#SIMM:24 |
00b [#MM:32 |
1i[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b (Rd |R0 (SP)to R15
10b #SIMM: 16
11b #SIMM:24
00b #IMM:32
REJ09B0435-0100 Rev.1.00 RENESAS Page 250 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src src2 dest Code Size (Byte)
(1) SUB src, dest #UIMM:4 - Rd 2
(2) SUB src, dest Rs - Rd 2
[Rs].memex - Rd 2 (memex == UB)
3 (memex != UB)
dsp:8[Rs].memex - Rd 3 (memex == UB)
4 (memex != UB)
dsp:16[Rs].memex - Rd 4 (memex == UB)
5 (memex != UB)
(3) SUB src, src2, dest Rs Rs2 Rd 3
(1) SUB src, dest
b0 b7 b0
[o/1]1]o]ofolo]o] imm=o] | raz0)
imm[3:0] src rd[3:0] dest
0000b to 1111b #UIMM:4 |O to 15 0000b to 1111b |Rd |R0 (SP)to R15

(2) SUB src, dest
When memex == UB or src == Rs

b0 b7 b0 Id[1:0] src
[o]1]0]o/ololuto| rs301 | rdi3:01 | 11b None
00b None

10b |dsp:16

When memex != UB

memex b0 b7 7 b0 Id[1:0] src
[o]olofolol1]1]o]mitoo]olo]o]o| rs@:0] | rdi3o | b None
00b None
106
mi[1:0] |memex 1d[1:0] src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |RO (SP) to R15
01b W 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]
(3) SUB src, src2, dest
b0 b7 b0 b7 b0
[1]11]1]1[1]1]1]ofololo] 30 s[30] | rs2i30] |
rs[3:0]/rs2[3:0]/rd[3:0] src/src2/dest
0000b to 1111b Rs/Rs2/Rd |RO (SP) to R15
REJ09B0435-0100 Rev.1.00 I!ENESAS Page 251 of 278

June 11, 2010

Under development Preliminary document

RX Family

Specifications in this document are tentative and subject to change.

Section 4 Instruction Code

SUNTIL

SUNTIL

Code Size
Syntax Size Processing Size Code Size (Byte)
(1) SUNTIL.size B B 2

w w 2

L L 2

(1) SUNTIL.size

b0 b7
[o[11a]1][1]1]1]1]1]o][0]o]o]o0]szt0l

sz[1:0] |[Size
00b B
01b w
10b L

SWHILE

SWHILE

Code Size
Syntax Size Processing Size Code Size (Byte)
(1) SWHILE.size B B 2

W w 2

L L 2

(1) SWHILE.size

b0 b7
o[1111 [1]1[1]1]1]o][olo]o]1]sAt0]

sz[1:0] |Size
00b B
01b w
10b L

REJ09B0435-0100 Rev.1.00

June 11, 2010

RENESAS

Page 252 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src src2 Code Size (Byte)
(1) TST src, src2 #SIMM:8 Rs 4
#SIMM: 16 Rs 5
#SIMM:24 Rs 6
#IMM:32 Rs 7
(2) TST src, src2 Rs Rs2 3
[Rs].memex Rs2 3 (memex == UB)
4 (memex != UB)
dsp:8[Rs].memex Rs2 4 (memex == UB)
5 (memex != UB)
dsp:16[Rs].memex Rs2 5 (memex == UB)
6 (memex != UB)
(1) TST src, src2
b7 b0 b7 bo b7 b0 li[1:0] src
[1]1[ala[a]1]ola]ola1[1]1]umololo[1]1]o][o] w230 | 0tb [#SIMM:]
11b [#siMM:24 |
00b [#IMM:32 |
1i[1:0] src rs2[3:0] src2
01b #SIMM:8 0000b to 1111b [Rs |R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
(2) TST src,src2
When memex == UB or src == Rs
b0 b7 b0 b7 b0 1d[1:0] sre
[1]1]1]1]1[1]ofolofol1]1]ololmto] rsizo) | rs2z0p | 11b None
00b None
When memex != UB
o7 memex b0 ld[1:0] src
[ololololo[1]1]o]mira1/o]olofwrafolofolof1][1]0]0o] o | w230 | 11b None
00b None
01b -dsp:8
mi[1:0] |memex Id[1:0] |src rs[3:0)/rs2[3:0] src/src2
00b B 11b Rs 0000b to 1111b Rs/Rs2 |R0 (SP)to R15
01b w 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]
REJ09B0435-0100 Rev.1.00 -IENESAS Page 253 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 4 Instruction Code

WAIT

Code Size

Syntax

Code Size (Byte)

(1) WAIT

2

(1) WAIT

b0 b7
Lofr[olofefefefefefofofr]ofr]1]o]

XCHG

WAIT

XCHG

Code Size
Syntax src dest Code Size (Byte)
(1) XCHG src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)
5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)
6 (memex != UB)
(1) XCHG src, dest
When memex == UB or src == Rs
b0 b7 b0 b7 b0 Id[1:0] src
[1]171]1]1]1]ofolo[1]o]o]o o o] rspo rd[3:0] 11 None
00b None
When memex != UB
b7 memex b0 b7 b0 b7 b0 b7 b0 1d[1:0] src
[olololofof1]1]o]mito]1/0]o]ouwrofofolo[1]o]oolo] w0 rd[3:0] 11b None
00b None
100
mi[1:0] |memex Id[1:0] |src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |R0 (SP) to R15
01b w 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]
REJ09B0435-0100 Rev.1.00 -IENESAS Page 254 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 4 Instruction Code
Code Size
Syntax src dest Code Size (Byte)
(1) XOR src, dest #SIMM:8 Rd 4
#SIMM: 16 Rd 5
#SIMM:24 Rd 6
#IMM:32 Rd 7
(2) XOR src, dest Rs Rd 3
[Rs].memex Rd 3 (memex == UB)
4 (memex != UB)
dsp:8[Rs].memex Rd 4 (memex == UB)
5 (memex != UB)
dsp:16[Rs].memex Rd 5 (memex == UB)
6 (memex != UB)
(1) XOR src, dest
b7 b0 b7 b0 b7 b0 li[1:0] src
[1]1]ala[a]1lola]ol1[1]1]imololo[1]1]o[1] rzo | 0t [#siMm:s]
11b [#siMM:24 |
00b [#IMM:32 |
1i[1:0] src rd[3:0] dest
01b #SIMM:8 0000b to 1111b |Rd |R0 (SP) to R15
10b #SIMM:16
11b #SIMM:24
00b #IMM:32
(2) XOR src, dest
When memex == UB or src == Rs
b0 b7 b0 b7 b0 1d[1:0] sre
[1]171]1]1[1]ofolofol1]1]0]1]wma] rs@o rd[3:0] 11b None
00b None
When memex != UB
b7 memex b0 b7 b0 b7 b0 b7 b0 Id[1:0] src
[ololololof[1]1]o]mitof1]0]olofwofofofolof1][1]0o[1] o | 30 | 11b None
00b None
01b -dsp:8
mi[1:0] |memex Id[1:0] |src rs[3:0]/rd[3:0] src/dest
00b B 11b Rs 0000b to 1111b |Rs/Rd |R0 (SP) to R15
01b w 00b [Rs]
10b L 01b dsp:8[Rs]
11b uw 10b dsp:16[Rs]
REJ09B0435-0100 Rev.1.00 -IENESAS Page 255 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 5 Exceptions

Section 5 Exceptions

5.1 Types of Exception

During the execution of a program by the CPU, the occurrence of certain events may necessitate suspending execution of
the main flow of the program and starting the execution of another flow. Such events are called exceptions.

The RX CPU supports the eight types of exception listed in figure 5.1.

The occurrence of an exception causes the processor mode to switch to supervisor mode.

Exceptions Undefined instruction exception
Privileged instruction exception
Access exception
Floating-point exceptions
Reset

Non-maskable interrupt

Interrupts

Unconditional trap

Figure 5.1 Types of Exception

REJ09B0435-0100 Rev.1.00 RENESAS Page 256 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 5 Exceptions

5.1.1 Undefined Instruction Exception

An undefined instruction exception occurs when execution of an undefined instruction (an instruction not implemented)
is detected.

5.1.2 Privileged Instruction Exception

A privileged instruction exception occurs when execution of a privileged instruction is detected while operation is in user
mode. Privileged instructions can only be executed in supervisor mode.

5.1.3 Access Exception

When it detects an error in memory access, the CPU generates an access exception. Detection of memory protection
errors for memory protection units generates exceptions of two types: instruction-access exceptions and operand-access
exceptions.

5.1.4 Floating-Point Exceptions

Floating-point exceptions include the five specified in the IEEE754 standard, namely overflow, underflow, inexact,
division-by-zero, and invalid operation, and a further floating-point exception that is generated on the detection of
unimplemented processing. The exception processing of floating-point exceptions is masked when the EX, EU, EZ, EO,
or EV bit in FPSW is 0.

5.1.5 Reset

A reset through input of the reset signal to the CPU causes the exception handling. This has the highest priority of any
exception and is always accepted.

5.1.6 Non-Maskable Interrupt

The non-maskable interrupt is generated by input of the non-maskable interrupt signal to the CPU and is only used when
the occurrence of a fatal fault has been detected in the system. Never end the exception handling routine for the non-
maskable interrupt with an attempt to return to the program that was being executed at the time of interrupt generation.

5.1.7 Interrupts

Interrupts are generated by the input of interrupt signals to the CPU. The interrupt with the highest priority can be
selected for handling as a fast interrupt. In the case of the fast interrupt, hardware pre-processing and hardware post-
processing are handled fast. The priority level of the fast interrupt is fifteen (the highest)*. The exception processing of
interrupts is masked when the I bit in PSW is 0.

Note: * The priority level of the fast interrupt is seven (the highest) in products of the RX610 Group.
5.1.8 Unconditional Trap

An unconditional trap is generated when the INT or BRK instruction is executed.

REJ09B0435-0100 Rev.1.00 RENESAS Page 257 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family

Section 5 Exceptions

5.2

Exception Handling Procedure

For exception handling, part of the processing is handled automatically by hardware and part is handled by a program
(the exception handling routine) that has been written by the user. Figure 5.2 shows the handling procedure when an
exception other than a reset is accepted.

interrupt

interrupt

Exception handling
routine other than
the non-maskable

Non-maskable

Generation of an exception event request

A
Instruction
C

Instruction
B

Instruction
A

Exception request

and the exception is
accepted.

Hardware pre-processing

(For the fast interrupt)
PC —» BPC

PSW — BPSW

u=o0

1=0

PM =0

Switch to the
supervisor mode

The program is suspended

Restarting of the program

Instruction
D

Instruction
C

A

* Instruction canceling type
(UND, PIE, ACE, and FPE)
« Instruction suspending type

(Reception of an El during execution of the RMPA
instruction or a string manipulation instruction)

« Instruction completion type
(El and TRAP)

Transition to the user mode when the

PM bit in the PSW is 1.

(For the fast interrupt)

(For exceptions other than the fast interrupt) BPC —> PC
PC — Preserved on the stack (ISP) BPSW — PSW
PSW — Preserved on the stack (ISP)
u=o0 (For exceptions other than the fast interrupt)
I=0 Stack - PC
PM=0 Stack — PSW
Hardware post-processing
Read the . .
vector. Processing of user-written program code
Branch to the
start of the
handler. (:
i (For the fast interrupt)
GSPG(::(L Restoration of RTFI instruction
r‘; izters Handler general-
resgrved on processing purpose (For exceptions other than the fast
P the stack registers interrupt)
\ RTE instruction

Non-maskable
interrupt processing

End of the program or resetting of the system

Legend

UND: Undefined instruction exception
PIE: Privileged instruction exception
ACE: Access exception

FPE: Floating-point exception

El: Interrupt

TRAP: Unconditional trap

Figure 5.2 Outline of the Exception Handling Procedure

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 258 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 5 Exceptions

When an exception is accepted, hardware processing by the RX CPU is followed by vector access to acquire the address
of the branch destination. A vector address is allocated to each exception. The branch destination address of the
exception handling routine for the given exception is written to each vector address.

Hardware pre-processing by the RX CPU handles saving of the contents of the program counter (PC) and processor
status word (PSW). In the case of the fast interrupt, the contents are saved in the backup PC (BPC) and the backup PSW
(BPSW), respectively. In the case of other exceptions, the contents are preserved in the stack area. General purpose
registers and control registers other than the PC and PSW that are to be used within the exception handling routine must
be preserved on the stack by user program code at the start of the exception handling routine.

On completion of processing by most exception handling routine, registers preserved under program control are restored
and the RTE instruction is executed to restore execution from the exception handling routine to the original program. For
return from the fast interrupt, the RTFI instruction is used instead. In the case of the non-maskable interrupt, however,
end the program or reset the system without returning to the original program.

Hardware post-processing by the RX CPU handles restoration of the pre-exception contents of the PC and PSW. In the
case of the fast interrupt, the contents of the BPC and BPSW are restored to the PC and PSW, respectively. In the case of
other exceptions, the contents are restored from the stack area to the PC and PSW.

REJ09B0435-0100 Rev.1.00 RENESAS Page 259 of 278
June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family

Section 5 Exceptions

5.3

Acceptance of Exceptions

When an exception occurs, the CPU suspends the execution of the program and processing branches to the start of the

exception handling routine.

5.3.1

Timing of Acceptance and Saved PC Value

Table 5.1 lists the timing of acceptance and program counter (PC) value to be saved for each type of exception event.

Table 5.1

Exception

Timing of Acceptance and Saved PC Value

Type of Handling

Timing of Acceptance

Value Saved in the BPC/
on the Stack

Undefined instruction exception

Instruction canceling
type

During instruction
execution

PC value of the instruction
that is generated by the
exception

Privileged instruction exception

Instruction canceling
type

During instruction
execution

PC value of the instruction
that is generated by the
exception

Access exception

Instruction canceling
type

During instruction
execution

PC value of the instruction
that is generated by the
exception

Floating-point exceptions

Instruction canceling
type

During instruction
execution

PC value of the instruction
that is generated by the
exception

Reset Program Any machine cycle None
abandonment type
Non- During execution of the Instruction During instruction PC value of the instruction
maskable RMPA, SCMPU, SMOVB, suspending type execution being executed
interrupt SMOVF, SMOVU, SSTR,
SUNTIL, and SWHILE
instructions
Other than the above Instruction completion At the next break PC value of the next
type between instructions instruction
Interrupts During execution of the Instruction During instruction PC value of the instruction
RMPA, SCMPU, SMOVB, suspending type execution being executed

SMOVF, SMOVU, SSTR,
SUNTIL, and SWHILE
instructions

Other than the above

Instruction completion
type

At the next break
between instructions

PC value of the next
instruction

Unconditional trap

Instruction completion
type

At the next break
between instructions

PC value of the next
instruction

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 260 of 278

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family

Section 5 Exceptions

5.3.2 Vector and Site for Preserving the PC and PSW

The vector for each type of exception and the site for preserving the contents of the program counter (PC) and processor

status word (PSW) are listed in table 5.2.

Table 5.2 Vector and Site for Preserving the PC and PSW

Site for Preserving the PC

Exception Vector and PSW

Undefined instruction exception Fixed vector table Stack

Privileged instruction exception Fixed vector table Stack

Access exception Fixed vector table Stack

Floating-point exceptions Fixed vector table Stack

Reset Fixed vector table Nowhere

Non-maskable interrupt Fixed vector table Stack

Interrupts Fast interrupt FINTV BPC and BPSW
Other than the above Relocatable vector table (INTB) Stack

Unconditional trap Relocatable vector table (INTB) Stack

REJ09B0435-0100 Rev.1.00
June 11, 2010

RENESAS

Page 261 of 278

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 5 Exceptions

5.4 Hardware Processing for Accepting and Returning from Exceptions
This section describes the hardware processing for accepting and returning from an exception other than a reset.

(1) Hardware pre-processing for accepting an exception
(a) Preserving the PSW

(For the fast interrupt)
PSW — BPSW

(For other exceptions)
PSW — Stack area

Note: The FPSW is not preserved by hardware pre-processing. Therefore, if this is used within the exception
handling routine for floating-point instructions, the user should ensure that it is preserved in the stack area
from within the exception handling routine.

(b) Updating of the PM, U, and I bits in the PSW

I: Cleared to 0
U: Cleared to 0
PM: Cleared to 0

(¢) Preserving the PC

(For the fast interrupt)
PC — BPC

(For other exceptions)
PC — Stack area

(d) Set the branch-destination address of the exception handling routine in the PC

Processing is shifted to the exception handling routine by acquiring the vector corresponding to the exception
and branching accordingly.

(2) Hardware post-processing for executing RTE and RTFI instructions
(a) Restoring the PSW

(For the fast interrupt)
BPSW — PSW

(For other exceptions)
Stack area — PSW

(b) Restoring the PC

(For the fast interrupt)
BPC — PC
(For other exceptions)

Stack area — PC

REJ09B0435-0100 Rev.1.00 RENESAS Page 262 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 5 Exceptions

5.5 Hardware Pre-processing

The sequences of hardware pre-processing from reception of each exception request to execution of the associated
exception handling routine are explained below.

5541 Undefined Instruction Exception

(1) The value of the processor status word (PSW) is saved on the stack (ISP).

(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are
cleared to 0.

(3) The value of the program counter (PC) is saved on the stack (ISP).
(4) The address of the processing routine is fetched from the vector address, FFFFFFDCh.
(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.2 Privileged Instruction Exception

(1) The value of the processor status word (PSW) is saved on the stack (ISP).

(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are
cleared to 0.

(3) The value of the program counter (PC) is saved on the stack (ISP).
(4) The address of the processing routine is fetched from the vector address, FFFFFFDOh.
(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

553 Access Exception

(1) The value of the processor status word (PSW) is saved on the stack (ISP).

(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are
cleared to 0.

(3) The value of the program counter (PC) is saved on the stack (ISP).
(4) The address of the processing routine is fetched from the vector address, FFFFFFD4h.
(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.4 Floating-Point Exceptions

(1) The value of the processor status word (PSW) is saved on the stack (ISP).

(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are
cleared to 0.

(3) The value of the program counter (PC) is saved on the stack (ISP).
(4) The address of the processing routine is fetched from the vector address, FFFFFFE4h.
(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.5 Reset

(1) The control registers are initialized.
(2) The address of the processing routine is fetched from the vector address, FFFFFFFCh.
(3) The PC is set to the fetched address.

REJ09B0435-0100 Rev.1.00 RENESAS Page 263 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 5 Exceptions

5.5.6 Non-Maskable Interrupt

(1) The value of the processor status word (PSW) is saved on the stack (ISP).

(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are
cleared to 0.

(3) If the interrupt was generated during the execution of an RMPA, SCMPU, SMOVB, SMOVF, SMOVU, SSTR,
SUNTIL, or SWHILE instruction, the value of the program counter (PC) for that instruction is saved on the stack
(ISP). For other instructions, the PC value of the next instruction is saved.

(4) The processor interrupt priority level bits (IPL[3:0]) in the PSW are set to Fh.
(5) The address of the processing routine is fetched from the vector address, FFFFFFF8h.
(6) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.7 Interrupts

(1) The value of the processor status word (PSW) is saved on the stack (ISP) or, for the fast interrupt, in the backup PSW
(BPSW).

(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are
cleared to 0.

(3) If the interrupt was generated during the execution of an RMPA, SCMPU, SMOVB, SMOVF, SMOVU, SSTR,
SUNTIL, or SWHILE instruction, the value of the program counter (PC) for that instruction is saved. For other
instructions, the PC value of the next instruction is saved. Saving of the PC is in the backup PC (BPC) for fast
interrupts and on the stack for other interrupts.

(4) The processor interrupt priority level bits (IPL[3:0]) in the PSW indicate the interrupt priority level of the interrupt.

(5) The address of the processing routine for an interrupt source other than the fast interrupt is fetched from the
relocatable vector table. For the fast interrupt, the address is fetched from the fast interrupt vector register (FINTV).

(6) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

5.5.8 Unconditional Trap

(1) The value of the processor status word (PSW) is saved on the stack (ISP).

(2) The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in the PSW are
cleared to 0.

(3) The value of the program counter (PC) is saved on the stack (ISP).

(4) For the INT instruction, the value at the vector corresponding to the INT instruction number is fetched from the
relocatable vector table.
For the BRK instruction, the value at the vector from the start address is fetched from the relocatable vector table.

(5) The PC is set to the fetched address and processing branches to the start of the exception handling routine.

REJ09B0435-0100 Rev.1.00 RENESAS Page 264 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Section 5 Exceptions

5.6 Return from Exception Handling Routines

Executing the instructions listed in table 5.3 at the end of the corresponding exception handling routines restores the
values of the program counter (PC) and processor status word (PSW) that were saved on the stack or in control registers
(BPC and BPSW) immediately before the exception handling sequence.

Table 5.3 Return from Exception Handling Routines

Exception Instruction for Return
Undefined instruction exception RTE
Privileged instruction exception RTE
Access exception RTE
Floating-point exceptions RTE
Reset Return is impossible
Non-maskable interrupt Return is impossible
Interrupts Fast interrupt RTFI

Other than the above RTE
Unconditional trap RTE

5.7 Order of Priority for Exceptions

The order of priority for exceptions is given in table 5.4. When multiple exceptions are generated at the same time, the
exception with the highest priority is accepted first.

Table 5.4 Order of Priority for Exceptions

Order of Priority Exception
High 1 Reset
A 2 Non-maskable interrupt
3 Interrupts
4 Instruction access exception
5 Undefined instruction exception

Privileged instruction exception

6 Unconditional trap
7 Operand access exception
Low 8 Floating-point exceptions
REJ09B0435-0100 Rev.1.00 RENESAS Page 265 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family Index
Index
Numerics F
0 flush bit of denormalized number (DN bit) 26 fast interrupt vector register (FINTV).....c..cceeeeeeneeen. 23
FINTYV (fast interrupt vector register).......cc...cuuueeene.. 23
A fixed vector tablec.oeeuiiiniiiiiiiieiie e, 34
floating-POINt c..evurernrerriiriiriieeeireerereereereennnens 31
ACC (accumulator)ooevvvuueiiiiiiiiiiiiii e 26 floating-point error summary flag (FS flag)............... 26
ACCESS EXCEPLION ..vvvvnnniiiiiiniiiii e, 257 fl0ating-pOInt EXCEPHONS ..v..vevveveveeeeerereeeerereerenens 27
accumulator (ACC) ce.uveeuiiieniiiiiiiiiiieiie e, 26 floating-point rounding-mode setting bits
(RM[L:0] BItS)uueeerernneerennnnerenneeereenereeennneeeennns 25
B floating-point status word (FPSW)c.cccoiiiennnneen. 24
FO flag (overflow flag)ccoeevueernvinrinirineeineennennns 26
backup PC (BPC)..euuiiniiiiiiiiiiieii e, 23 FPSW (floating-point status Word) «.........evrveveveeeeens 24
backup PSW (BPSW) ..t 23 FS flag (floating-point error summary flag)............... 26
Ditwise OPErationsceueeeurerureunrenreneeneenreenrennnenn. 32 FU flag (underflow flag) «..vvveeeeeeeeeeeerereeerreeneenes 26
BPC (backup PC)..ceuuvieniiiiiiiiiiiiiiiiiicccicceeee, 23 FV flag (invalid operation flag) «...........eeveveeeeereenns 26
BPSW (backup PSW) ...ovmiimiiiiiiiiciiiis 23 FX flag (inexact flag)........cceeevvreevuveeeireeeeineeeennennn 26
C FZ flag (division-by-zero flag)c..cceuvvevvueiennnennn. 26
G
C flag (carry flag) coeeueeeueeenreeirenniennrennrennreneeeeennnnns 22
carry flag (C flag) oeeueenieiieiiieiiei e, 22 general-purpose registers (RO (SP) t0 R15) w.vvreee..... 19
CE flag (unimplemented processing cause flag)......... 25
CO flag (overflow cause flag)cceeeuveenrerniennnennnen. 25 1
coNtrol re@ister direCt.....vuurernrernrennrennrennrenneennennnnns 41
CONEIO] TEEISTETS . vueeenneineineenieen et e e e e eeneeeneeneees 19 I bit (interrupt enable bit)......cuueereeereereriiinrerninnnnes 22
CU flag (underflow cause flag).........cceveuneenrernennnens 25 IMMEAIALE 1uuevnirniernreireiereereereeereereereereenneenns 39
CV flag (invalid operation cause flag)........c....ccuu...e. 25 indexed register indir€cteevvveereeeeueeeeennnenneennnnn. 41
CX flag (inexact cause flag)ccceeevvurernreinnnrennnnenn. 25 inexact cause flag (CX flag) ...c.veeeuiieinireinieeinnennnnss 25
CZ flag (division-by-zero cause flag)..............coeuunn. 25 inexact exception enable bit (EX bit)ccceevvvennennnen. 26
inexact flag (FX flag)......oeevviririiiiiiiiiiiiineiinennennns 26
D INTB (interrupt table register)ccceeeevureeeurernnnennns. 20
INEEZET veveeenneinetnetn ettt et et et een e een e eaneenes 31
division-by-zero cause flag (CZ flag)........ocoovvneev. 25 interrupt enable bit (T BIt)....c.eveveeeeeererrereeeerereeneas 22
division-by-zero exception enable bit (EZ bit) 26 interrupt stack pointer (ISP)cccveeeevvuveeeeernnneen. 20
division-by-zero flag (FZ flag)coceviinvicncinnncss 26 interrupt table register (INTB)ccoevviniiiiniiinnnneee. 20
DN bit (0 flush bit of denormalized number).............. 26 INECITUPES « e eeeneeene et et et e et e et e eeeaeeeeneeenas 257
invalid operation cause flag (CV flag).......cc.ccceuuneeee. 25
E invalid operation exception enable bit (EV bit) 26
)) . invalid operation flag (FV flag)cc.cccevviiniiinnnnenn. 26
EO bit (overflow exception enable bit)..................... 26 .) L
EU bit (underflow exception enable bit) 26 IPLB,:O] bits (processo.r interrupt priority level)......... >
o) i)) ISP (interrupt stack pointer)cceeeevuerevnieennrennnnss 20
EV bit (invalid operation exception enable bit) 26
EX bit (inexact exception enable bit)coeeuvenrennenns 26
EZ bit (division-by-zero exception enable bit) 26
REJ09B0435-0100 Rev.1.00 RENESAS Page 266 of 278

June 11, 2010

Under development Preliminary document

Specifications in this document are tentative and subject to change.

RX Family Index
N Rounding to the nearest value.........cceeevnvenneennennnennns 25
Rounding towards 00ceeuieiiiiiiiiiiiiiiieieeeeenns 25
NaN (Not a Number)oocoviniiniiiin 28 Rounding towards —00c.eeeeuveeeruveesineeesineeennnenns 25
non-maskable Ierruptoocveeeviiniiiiiiniinninn 257 Rounding towards 0ccoeeeeuvrrereeeeeeseeenveennnns 25
o S
O flag (overflow flag)ocoooiiiiiiiniinii, 22 S flag (sigN flag) ..eeeeeeeeevrrreeeeeeeeeeeirreeeeeeee e 22
order of priority for exceptionscccoeiiiiniiinn 265 sign flag (S flag) ..cevvuereeeeeerieeiiiereeeiieee e eeeeenn 22
overflow cause flag (CO flag)ccoeciiiiiiiiinins 25 8iZe eXtension SPECIfiervvvurerurernrernrennrennrennrennnnns 48
overflow exception enable bit (EO bit).........c...cc..... 26 SIZ€ SPECITIET .ooeeiiiiiiiiiiiiii 45
overflow flag (FO flag) ..., 26 SNaN (Signaling NaN)ccovvvreeeviuvreeeeiveeeeennns 28
overflow flag (O flag)c.cooeeniiiiiiniinnininin, 22 stack pointer (RO (SP))..ccooovvviiiiiiiiiiiiiiiiiii 19
stack pointer select bit (U bit).....cceuvevnvennrennrennrennnnns 22
P SETIIES ettt eene et et et et e et et e e e e e e e e e e eeaeeen 32
SUPETVISOT NOAC tvuvevnernriinrinnriinernnerneereerneereennnens 30
PC (program COUNter) «...c.uveeureunrennrennrenneenneennennnenes 20
PM bit (processor mode select bit)c..eeeenereennnenne.. 22 U
post-increment register indirect..........eeeueeenreenrennnens. 41
pre-decrement register indirectooceevveeniienneenne. 41 U bit (stack pointer select bit)...........evvveeereeeeeeeeennnns 22
privileged InStruction..........cooceeeiiiiiiiiinin. 30 UNCONditional trap ...covvvvveeeeeeeeeeiirreeeeeeeeeeennnnnee. 257
privileged instruction exceptioncoceevieeneenne 257 undefined instruction €XCeptioneveveveveenns 257
processor interrupt priority level (IPL[3:0] bits)......... 22 underflow cause flag (CU flag)......cccvvveereeeeeennnnnen. 25
PrOCESSOr MOAE 1evuivunirnerieereeneeneeeeereeenneerneenneenns 30 underflow exception enable bit (EU bit) 26
processor mode select bit (PM bit)cooveenniennin. 22 underflow flag (FU flag)cccoeeeeevvveeeeeineeeeeennnen. 26
processor status word (PSW)......ccoevvviviiininnrennnnn. 21 unimplemented processing cause flag (CE flag) 25
program counter (PC)oooiviiiiiiniini 20 USET MO . .vveeeeeerieeeeerreeeesireeeeeareeeeesasreeeeeaneeens 30
program counter relativeo...cooeeniiiniiniiinnienne. 42 user stack pointer (USP).........uuvvvvveeerevereeereeeeeennenns 20
PSW (processor status Word)..........coceeeeuieniinnienn. 21 USP (user Stack POINtET)ccevvveeeeerrveeeeeriveeeeennns 20
PSW dir€Ct «eeuneenieinieiiieiic et 41
\%
Q
VECTOT taDIE ceeueeieiiii i 34
QNaN (Quiet NaN) ceuueiuiinreenreenreieenreneeeneeeneennnens 28
Z
R
Z f1ag (Zer0 flag)..ceuveuniiniineeineiieireireneeeieeenennnes 22
RO (SP) to R15 (general-purpose registers) 19 T N »
TEEISTET (1) evneernrennrenerneerneeraeenneeenrennreneeneeensenneenes 46
TEISLET dIr€Ct .evvueeernieiniiii e e, 40
re@iSter INAITECE vvvvvvunrrnerieereeieiireie et eeeeeneennenes 40
TEZISTEr TClAtIVE..euuiiuirneereerieeieeieeeeereereeneennaenns 40
register num (Rn).....coovevviiiiiniriiiiiiiineiineieennne, 46
relocatable vector tableccoeeeeuiiiiiniiiiiiieiinenan. 35
(oL 257
RM[1:0] bits
(floating-point rounding-mode setting bits)............. 25
REJ09B0435-0100 Rev.1.00 RENESAS Page 267 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family REVISION HISTORY

REVISION HISTORY RX Family Software Manual

Description
Rev. Date Page Summary
0.10 Nov. 12,2007 - First edition issued
0.20 Mar. 18,2008 3to5 Notation in This Manual changed
81013 List of Instructions for RX Family changed
14 Section 1 CPU Functions changed
14 1.1 Features changed
15 1.2 Register Set of the CPU changed
15 Figure 1.1 Register Set of the CPU changed
16 1.2.2 Control Registers changed
17 1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP) changed
18 1.2.2.4 Processor Status Word (PSW): b31 to b4 changed, Notes 1 and 2 changed
19 IPL[2:0] bits (Processor interrupt priority level) changed
20 1.2.2.6 Backup PSW Register (BPSW) added
20 1.2.2.7 Vector Register (VCT) — 1.2.2.7 Fast Interrupt Vector Register (FINTV)
changed
21 1.2.2.8 Floating-Point Status Word (FPSW): b25 to b15, b9, b7 to b0 changed
22 1.2.2.9 Coprocessor Enable Register (CPEN) added
24 Table 1.5 Conditions Leading to an Invalid Exception and the Operation Results
changed
25 1.4.1 Supervisor Mode changed
25 1.4.2 User Mode added
25 1.4.3 Privileged Instruction changed
25 1.4.4 Switching Between Processor Modes changed
29 1.7 Vector Table changed
29 1.7.1 Fixed Vector Table changed
29 Figure 1.8 Fixed Vector Table changed
30 1.7.2 Relocatable Vector Table changed
31 2.1 Types of Addressing Mode, (3) Special Instruction Addressing Modes added
32 2.2 Guide to This Section, (2) Symbolic notation changed
33 Immediate: #IMM:S8, #MMEX:U8 added
33 Register Indirect: Operation diagram added
33 Register Relative: Description, Operation diagram changed
34 Short Immediate: #IMM:2 added, Description for #IMM:3 changed
34 Short Register Relative: Description changed, Operation diagram added
35 Post-increment Register Indirect: Operation diagram added
35 Pre-decrement Register Indirect: Description changed, Operation diagram added
35 Indexed Register Indirect: Operation diagram added
36 Control Register Direct: VCT — FINTV changed, CPEN added, Description
changed, Operation diagram changed
36 Program Counter Relative: Rn added
36 Program Counter Relative: label (dsp:3) — pcdsp:3 changed, Description changed,
Operation diagram changed
37 Program Counter Relative: label (dsp:8) (dsp:16) (dsp:24) — pcdsp:8 pcdsp:16
pcdsp:24 changed, Description changed, Operation diagram changed
37 Register Direct: added
38 Section 3 Instruction Descriptions added
159 Section 5 Exceptions added
REJ09B0435-0100 Rev.1.00 RENESAS Page 268 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Famin REVISION HISTORY
Description
Rev. Date Page Summary
0.30 Jul. 31,2008 3to5 Notation in This Manual

Symbols: IMM, IMMEX — IMM, SIMM, UIMM changed
Bit length specifiers: :1 added

Bit length extension specifier: :S8, :U8 deleted
Operations: tmp2, tmp3 added

81013 List of Instructions for RX Family
FREIT instruction — RTFI instruction, REIT instruction — RTE instruction changed
EDIV instruction, EDIVU instruction, MULU instruction, PUSHA instruction, and
STOP instruction deleted

For floating-point operation instructions and coprocessor instructions, the
description as an optional function added

DSP instructions added

14 Section 1 CPU Functions changed

14 1.1 Features changed

15 1.2 Register Set of the CPU changed

15 Figure 1.1 Register Set of the CPU changed

17 1.2.2.2 Interrupt Table Register (INTB)
Interrupt vector table — Relocatable vector table changed

18 1.2.2.4 Processor Status Word (PSW), Note 3 changed

19 U bit (Stack pointer select bit) changed

22 1.2.2.8 Floating-Point Status Word (FPSW), Note 3 added

23 1.2.3 Accumulator (ACC) added

24 1.3.2 Underflow added

24 Table 1.3 Conditions Leading to an Inexact Exception and the Operation Results,
Notes added

25 1.3.4 Division-by-Zero, Note for denormalized number, QNaN, and SNaN added

25 Table 1.5 Conditions Leading to an Invalid Exception and the Operation Results
changed

26 Table 1.6 Rules for Generating QNaNs added

26 1.3.6 Unimplemented Processing changed, Note deleted

27 1.4.3 Privileged Instruction changed

27 1.4.4 Switching Between Processor Modes, (2) Switching from supervisor mode to

user mode changed
33t0 39 Section 2 Addressing Modes changed

42 (5) Operation, (c) Special notation added

43 (8) Instruction Format, (d) Immediate value changed
47 t0 171 Code Size in Instruction Format added

48 ADC instruction: Instruction Format changed

50 ADD instruction: Instruction Format changed

51 AND instruction: Instruction Format changed

54 BCnd instruction: Instruction Format changed

58 BRA instruction: Instruction Format changed

64 CMP instruction: Instruction Format, Description Example changed
65 DIV instruction: Instruction Format changed

67 DIVU instruction: Instruction Format changed

69 to 70 EMUL instruction: Note in Function added, Instruction Format changed
71t0 72 EMULU instruction: Note in Function added, Instruction Format changed

73 FADD instruction: Flag Change, Note in Instruction Format changed
REJ09B0435-0100 Rev.1.00 RENESAS Page 269 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family REVISION HISTORY

Description
Rev. Date Page Summary

0.30 Jul. 31,2008 75to 77 FCMP instruction: Syntax, Operation, Function, Flag Change, Instruction Format,
Supplementary Description changed

78 FDIV instruction: Flag Change, Note in Instruction Format changed

80 to 82 FMUL instruction: Note in Function added, Flag Change, Note in Instruction Format,
Supplementary Description changed

83 to 84 FSUB instruction: Flag Change, Note in Instruction Format changed

86 to 88 FTOIl instruction: Function, Flag Change, Instruction Format, Supplementary
Description changed

89 INT instruction: Instruction Format, Syntax: INT — INT src changed
90 to 91 ITOF instruction: Function, Flag Change, Instruction Format changed
94 MACHI instruction added

95 MACLO instruction added

96 MAX instruction: Instruction Format changed

97 MIN instruction: Instruction Format changed

98to 100 MOV instruction: Function, Instruction Format, Description Example changed
101 MOVU instruction: Note in Instruction Format changed

103 to 104 MUL instruction: Syntax, Operation, Function, Flag Change, Instruction Format,
Description Example changed

105 MULHI instruction added

106 MULLO instruction added

107 MVFACHI instruction added

108 MVFACMI instruction added

111 MVTACHI instruction added

112 MVTACLO instruction added

113 MVTC instruction: Instruction Format changed
114 MVTCP instruction: Instruction Format changed
117 NOP instruction: Operation, Function changed
120 OR instruction: Instruction Format changed

125 PUSH instruction: Function added, Note in Instruction Format changed
128 to 129 RACW instruction added

132 RMPA instruction: Function added, Note added

138 to 140 ROUND instruction: Function, Flag Change, Instruction Format changed,
Supplementary Description added

141 RTE instruction: REIT instruction — RTE instruction changed
142 RTFI instruction: FREIT instruction — RTFI instruction changed
144 to 145 RTSD instruction: Operation, Function, Instruction Format changed
148 SBB instruction: Note in Instruction Format changed

149 SCCnd instruction: Note in Instruction Format changed

151 SCMPU instruction: Operation, Function, Flag Change changed
156 SMOVB instruction: Operation, Function changed

157 SMOVF instruction: Operation, Function changed

158 SMOVU instruction: Operation, Function changed

159 SSTR instruction: Operation, Function changed

160 STNZ instruction: Instruction Format changed

161 STZ instruction: Instruction Format changed

162 SUB instruction: Instruction Format changed

163 to 164 SUNTIL instruction: Operation, Function, Flag Change, Instruction Format changed

REJ09B0435-0100 Rev.1.00 RENESAS Page 270 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Family REVISION HISTORY

Description
Rev. Date Page Summary

0.30 Jul. 31,2008 165to 166 SWHILE instruction: Note 3 in Operation deleted, Operation, Function, Flag Change,
Instruction Format changed

167 TST instruction: Instruction Format changed

169 to 170 XCHG instruction: Syntax, Function, Instruction Format, Description Example
changed

171 XOR instruction: Instruction Format changed

172 to 260 Section 4 Instruction Code added

262 5.2.1 Undefined Instruction Exception added

262 5.2.5 Reset changed

262 5.2.6 Non-Maskable Interrupt changed

264 Figure 5.2 Outline of the Exception Handling Procedure changed

265 5.3 Exception Handling Procedure: FREIT instruction — RTFI instruction, REIT
instruction — RTE instruction changed

268 5.5 Hardware Processing for Accepting and Returning from Exceptions
(2) FREIT instruction — RTFI instruction, REIT instruction — RTE instruction
changed

(a) Changed
269 to 270 5.6 Exception Sequences: Processor mode select bit, RM — PM error amended

271 Table 5.3 Return from Exception Processing Routines: FREIT instruction — RTFI
instruction, REIT instruction — RTE instruction changed

271 Table 5.4 Order of Priority for Exceptions changed

0.50 Feb.3,2009 3 Notation in This Manual

Rx added, Fx — flag changed

9,13 List of Instructions for RX Family
Coprocessor instructions (MVFCP, MVTCP, and OPECP instructions) deleted

14 Section 1 CPU Functions, 1.1 Features, changed

15 Figure 1.1 Register Set of the CPU, CPEN register deleted

16 1.2.2 Control Registers, CPEN register deleted

17 1.2.2.2 Interrupt Table Register (INTB) changed

18 1.2.2.4 Processor Status Word (PSW): | bit changed, PM bit added

20 1.2.2.7 Fast Interrupt Vector Register (FINTV) changed

22 1.2.2.8 Floating-Point Status Word (FPSW): Notes changed and added

22 [Explanation of Floating-Point Rounding Modes] added

26 1.4.4 Switching Between Processor Modes, (2) Switching from supervisor mode to
user mode, changed

30 Figure 1.8 Fixed Vector Table changed

31 1.7.2 Relocatable Vector Table, Description changed

32 1.8 Address Space added

Section 2 Addressing Modes
35 to 36 Immediate: #IMM:2 deleted, Operation diagram for #UIMM:8 added

37 Control Register Direct: PC added, CPEN deleted
39 2.2.1 Ranges for Immediate Values added
Section 3 Instruction Descriptions, 3.1 Guide to This Section:
41 (4) Syntax, (c) Operand, changed
42 (5) Operation, (b) Pseudo-functions, changed
43 (8) Instruction Format, (b) Control registers, changed, (c) Flag and bit, changed

- Coprocessor instructions (MVFCP, MVTCP, and OPECP instructions) deleted
Bit pattern of the instruction — Instruction code changed

53 BCLR instruction: Function added
REJ09B0435-0100 Rev.1.00 RENESAS Page 271 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Famin REVISION HISTORY
Description
Rev. Date Page Summary
0.50 Feb.3,2009 54 BCnd instruction, Description Example: Note added
55 BMCnd instruction: Function added
57 BNOT instruction: Function added
58 BRA instruction, Description Example: Note added
59 BRK instruction: Function changed
60 BSET instruction: Function added
61 BSR instruction: Note in Operation added
61 BSR instruction, Description Example: Note added
62 BTST instruction: Function added
70 EMUL instruction: Instruction Format added
72 EMULU instruction: Instruction Format added
73 FADD instruction: Note in Flag Change changed
75 FCMP instruction: Function changed, Note in Flag Change changed
78 FDIV instruction: Note in Flag Change changed
80 FMUL instruction: Note in Flag Change changed
83 FSUB instruction: Note in Flag Change changed
86 FTOI instruction: Note in Flag Change changed
89 INT instruction: Function changed
90 ITOF instruction: Note in Flag Change changed
9910 100 MOV instruction: Instruction Format changed, Note 1 changed
101 MOVU instruction: Note 1 in Instruction Format changed
109 MVFC instruction: Function added, Note in Instruction Format changed
112 MVTC instruction: Note in Instruction Format changed
113 MVTIPL instruction: Function added
120 POPC instruction: Instruction Format changed
123 PUSHC instruction: Function added, Instruction Format changed
129 RMPA instruction: Note in Operation changed
135 ROUND instruction: Note in Flag Change changed
142 RTSD instruction, Instruction Format: Description added, Note changed
148 SCMPU instruction: Note in Operation changed
153 SMOVB instruction: Note in Operation changed
154 SMOVF instruction: Note in Operation changed
155 SMOVU instruction: Note in Operation changed
156 SSTR instruction: Note in Operation changed
160 SUNTIL instruction: Note in Operation changed
162 SWHILE instruction: Note in Operation changed
165 WAIT instruction, Function: Description added, Note added
Section 4 Instruction Code
170 4.1 Guide to This Section, (2) List of Code Size: Description added

- Coprocessor instructions (MVFCP, MVTCP, and OPECP instructions) deleted
180 to 181 BCnd: Instruction codes (1) and (3) changed
213 to 214 MOV: Code Size (list) changed

217 MOV: Instruction code (14) changed, Instruction code (15) added
222 MVFACMI: Instruction code (1) changed
223 MVFC: Instruction code (1) changed
22510226 MVTC: Instruction codes (1) and (2) changed
231 POPC: Instruction code (1) changed
REJ09B0435-0100 Rev.1.00 RENESAS Page 272 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Famin REVISION HISTORY
Description
Rev. Date Page Summary
0.50 Feb.3,2009 233 PUSHC: Instruction code (1) changed
Section 5 Exceptions
257 5.1 Types of Exception: Section title changed
257 Figure 5.1 Types of Exception changed
258 5.1.4 Floating-Point Exceptions changed
258 5.1.7 Interrupts changed
258 5.1.8 Unconditional Trap added (5.2.8 INT Instruction Exceptions and 5.2.9 BRK
Instruction Exception deleted)
259 Figure 5.2 Outline of the Exception Handling Procedure changed
260 5.2 Exception Handling Procedure changed
261 Table 5.1 Timing of Acceptance and Saved PC Value changed
262 Table 5.2 Vector Table and Site for Preserving the PC and PSW Registers changed
263 5.4 Hardware Processing for Accepting and Returning from Exceptions,

(1) Hardware pre-processing for accepting an exception, (a) Preserving the PSW
register: Note added

265 5.5.8 Unconditional Trap added (5.6.8 INT Instruction Exceptions and 5.6.9 BRK
Instruction Exception deleted)

266 Table 5.3 Return from Exception Processing Routines changed

266 Table 5.4 Order of Priority for Exceptions changed

267 Index added

0.51 Mar. 24, 2009 DSP instructions, floating-point operation instructions, floating-point operation unit

are described without the phase "(as an optional function)".

30 1.7.1 Fixed Vector Table, Figure 1.8 Fixed Vector Table

Reserved area is added to addresses in the range from FFFFFF80h to FFFFFFCCh.
0.60 May. 26,2009 9 List of Instructions Classified in Alphabetical Order

MVTIPL (privileged instruction) deleted

13 List of Instructions Classified by Type
MVTIPL (privileged instruction) deleted

18 1.2.2.4 Processor Status Word (PSW)
Description on the MVTIPL deleted from Note 1

26 1.4.3 Privileged Instruction
Description on the MVTIPL deleted

35 2.2 Addressing Modes

Immediate, #IMM:3: Description on the MVTIPL deleted
- 3.2 Instructions in Detail
Description on the MVTIPL deleted
- 4.2 Instruction Code Described in Detail
Description on the MVTIPL including the code size deleted
1.00 June 11,2010 5 Notation in This Manual, Operations: << and >> added, tmp32 and tmp64 deleted
810 16 List of Instructions for RX Family
BCnd, BMCnd, and SCCnd instructions: Cnd described as mnemonic
MVTIPL instruction (privileged instruction) added, table note added

All Exception sequence — Hardware pre-processing, Exception handler — Exception
handling routine, changed

REJ09B0435-0100 Rev.1.00 RENESAS Page 273 of 278
June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Famin REVISION HISTORY
Description
Rev. Date Page Summary
1.00 June 11, 2010 Section 1 CPU Functions

1.1 Features

17 Register set of the CPU, and the accumulator, changed
1.2 Register Set of the CPU

18 Figure 1.1 Register Set of the CPU, changed
1.2.2.3 Program Counter (PC)

20 Bit arrangement diagram, Value after reset, changed
1.2.2.4 Processor Status Word (PSW)

21 Bit arrangement diagram: Note for b27, added

21 Bits IPL[2:0] — Bits IPL[3:0] changed

22 Note 1 changed, Note 4 added

22 Description on bits IPL[3:0] changed
1.2.2.8 Floating-Point Status Word (FPSW)

25 FS: Floating-point flag summary bit — Floating-point error summary flag,

changed

25 to 26 Description on bits added

26 1.2.3 Accumulator (ACC), changed

29 1.3.6 Unimplemented Processing, changed
1.4.2 User Mode

30 Bits IPL[2:0] — Bits IPL[3:0] changed
1.4.3 Privileged Instruction

30 MVTIPL instruction added

Section 2 Addressing Modes
2.2 Addressing Modes

39 Immediate, #IMM:3: changed, Immediate, #IMM:4: added
41 PSW Direct, Operation diagram: Bits IPL[2:0] — Bits IPL[3:0] changed
43 Table 2.1 Ranges for Immediate Values: IMM:4 added
Section 3 Instruction Descriptions
46 3.1 Guide to This Section, (a) Data type: signed long long, unsigned long long, and
float, added
57 BCLR instruction: Operation (1) and (2), changed
58 BCnd instruction, Function: The column for Cnd described as mnemonic
59 BMCnd instruction: Operation (1) and (2), changed
Function: The column for Cnd described as mnemonic
61 BNOT instruction: Operation (1) and (2), changed
80 FCMP instruction:
Supplementary Description, =: src2 = src — src2 == src changed
98 MACHI instruction: Operation and Function, changed
99 MACLO instruction: Operation and Function, changed
109 MULHI instruction: Operation changed
110 MULLO instruction: Operation changed
114 MVTACHI instruction: Operation changed
115 MVTACLO instruction: Operation changed
116 MVTC instruction: Function changed
117 MVTIPL instruction, added
124 POPC instruction: Function changed
129 RACW instruction: Operation changed
135 ROLC instruction: Operation added, Function changed
136 RORC instruction: Operation added, Function changed
137 ROTL instruction: Operation added, Function changed
138 ROTR instruction: Operation added, Function changed
REJ09B0435-0100 Rev.1.00 RENESAS Page 274 of 278

June 11, 2010

Under development Preliminary document
Specifications in this document are tentative and subject to change.

RX Famin REVISION HISTORY

Description

Rev. Date Page Summary

1.00 June 11,2010 145 RTSD instruction: Operation (2), changed
147 SAT instruction: Operation changed
148 SATR instruction: Operation changed
150 SCCnd instruction, Function: The column for Cnd described as mnemonic
154 SHAR instruction: Operation added, Function changed
155 SHLL instruction: Operation added, Function changed
156 SHLR instruction: Operation added, Function changed
164 SUNTIL instruction: Operation changed
166 SWHILE instruction: Operation changed

Section 4 Instruction Code
4.1 Guide to This Section

174 (4) Instruction Code: Instruction code for memex (when memex == UB or src == Rs,
when memex != UB) and src/dest description changed

4.2 Instruction Code Described in Detail
177 to 255 Description of memex specifier: SB — B, SW — W, changed
185 to 186 BCnd instruction: The column for Cnd described as mnemonic

187 BMCnd instruction: The column for Cnd described as mnemonic
227 MVTIPL instruction, added
243 SCCnd instruction: The column for Cnd described as mnemonic
Section 5 Exceptions
257 5.1.3 Access Exception, changed
257 5.1.7 Interrupts, changed
258 5.2 Exception Handling Procedure, changed
261 5.3.2 Vector and Site for Preserving the PC and PSW, changed
261 Table 5.2 Vector and Site for Preserving the PC and PSW, changed
5.4 Hardware Processing for Accepting and Returning from Exceptions: Description
added
262 (b) Updating of the PM, U, and | bits in the PSW, changed
264 5.5.6 Non-Maskable Interrupt, (4) changed
264 5.5.7 Interrupts, (4) changed
REJ09B0435-0100 Rev.1.00 RENESAS Page 275 of 278

June 11, 2010

RX Family User’s Manual: Software

Publication Date: Rev.0.10 Nov. 12, 2007
Rev.1.00 June 11, 2010

Published by: Renesas Electronics Corporation

LENESANS

SALES OFFICES Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan

Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632

Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia

Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2010 Renesas Electronics Corporation. All rights reserved.
Colophon 1.0

RX Family

RENESAS

Renesas Electronics Corporation
REJ09B0435-0100

	Cover
	Notes regarding these materials
	Notation in This Manual
	Contents
	List of Instructions for RX Family
	List of Instructions Classified in Alphabetical Order
	List of Instructions Classified by Type

	Section 1 CPU Functions
	1.1 Features
	1.2 Register Set of the CPU
	1.2.1 General-Purpose Registers (R0 to R15)
	1.2.2 Control Registers
	1.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)
	1.2.2.2 Interrupt Table Register (INTB)
	1.2.2.3 Program Counter (PC)
	1.2.2.4 Processor Status Word (PSW)
	1.2.2.5 Backup PC (BPC)
	1.2.2.6 Backup PSW (BPSW)
	1.2.2.7 Fast Interrupt Vector Register (FINTV)
	1.2.2.8 Floating-Point Status Word (FPSW)

	1.2.3 Accumulator (ACC)

	1.3 Floating-Point Exceptions
	1.3.1 Overflow
	1.3.2 Underflow
	1.3.3 Inexact
	1.3.4 Division-by-Zero
	1.3.5 Invalid Operation
	1.3.6 Unimplemented Processing

	1.4 Processor Mode
	1.4.1 Supervisor Mode
	1.4.2 User Mode
	1.4.3 Privileged Instruction
	1.4.4 Switching Between Processor Modes

	1.5 Data Types
	1.5.1 Integer
	1.5.2 Floating-Point
	1.5.3 Bitwise Operations
	1.5.4 Strings

	1.6 Data Arrangement
	1.6.1 Data Arrangement in Registers
	1.6.2 Data Arrangement in Memory

	1.7 Vector Table
	1.7.1 Fixed Vector Table
	1.7.2 Relocatable Vector Table

	1.8 Address Space

	Section 2 Addressing Modes
	2.1 Guide to This Section
	(1) Name
	(2) Symbolic notation
	(3) Description
	(4) Operation diagram

	2.2 Addressing Modes
	2.2.1 Ranges for Immediate Values

	Section 3 Instruction Descriptions
	3.1 Guide to This Section
	(1) Mnemonic
	(2) Instruction Type
	(3) Instruction Code
	(4) Syntax
	(a) Mnemonic
	(b) Size specifier .size
	(c) Operand src, dest

	(5) Operation
	(a) Data type
	(b) Pseudo-functions
	(c) Special notation

	(6) Function
	(7) Flag Change
	(8) Instruction Format
	(a) Registers
	(b) Control registers
	(c) Flag and bit
	(d) Immediate value
	(e) Size extension specifier (.memex) appended to a memory operand
	(f) Processing size

	(9) Description Example
	(4) Syntax
	(a) Mnemonic
	(b) Branch distance specifier .length

	3.2 Instructions in Detail
	ABS
	ADC
	ADD
	AND
	BCLR
	BCnd
	BMCnd
	BNOT
	BRA
	BRK
	BSET
	BSR
	BTST
	CLRPSW
	CMP
	DIV
	DIVU
	EMUL
	EMULU
	FADD
	FCMP
	FDIV
	FMUL
	FSUB
	FTOI
	INT
	ITOF
	JMP
	JSR
	MACHI
	MACLO
	MAX
	MIN
	MOV
	MOVU
	MUL
	MULHI
	MULLO
	MVFACHI
	MVFACMI
	MVFC
	MVTACHI
	MVTACLO
	MVTC
	MVTIPL
	NEG
	NOP
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHC
	PUSHM
	RACW
	REVL
	REVW
	RMPA
	ROLC
	RORC
	ROTL
	ROTR
	ROUND
	RTE
	RTFI
	RTS
	RTSD
	SAT
	SATR
	SBB
	SCCnd
	SCMPU
	SETPSW
	SHAR
	SHLL
	SHLR
	SMOVB
	SMOVF
	SMOVU
	SSTR
	STNZ
	STZ
	SUB
	SUNTIL
	SWHILE
	TST
	WAIT
	XCHG
	XOR

	Section 4 Instruction Code
	4.1 Guide to This Section
	(1) Mnemonic
	(2) List of Code Size
	(3) Syntax
	(4) Instruction Code

	4.2 Instruction Code Described in Detail
	ABS
	ADC
	ADD
	AND
	BCLR
	BCnd
	BMCnd
	BNOT
	BRA
	BRK
	BSET
	BSR
	BTST
	CLRPSW
	CMP
	DIV
	DIVU
	EMUL
	EMULU
	FADD
	FCMP
	FDIV
	FMUL
	FSUB
	FTOI
	INT
	ITOF
	JMP
	JSR
	MACHI
	MACLO
	MAX
	MIN
	MOV
	MOVU
	MUL
	MULHI
	MULLO
	MVFACHI
	MVFACMI
	MVFC
	MVTACHI
	MVTACLO
	MVTC
	MVTIPL
	NEG
	NOP
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHC
	PUSHM
	RACW
	REVL
	REVW
	RMPA
	ROLC
	RORC
	ROTL
	ROTR
	ROUND
	RTE
	RTFI
	RTS
	RTSD
	SAT
	SATR
	SBB
	SCCnd
	SCMPU
	SETPSW
	SHAR
	SHLL
	SHLR
	SMOVB
	SMOVF
	SMOVU
	SSTR
	STNZ
	STZ
	SUB
	SUNTIL
	SWHILE
	TST
	WAIT
	XCHG
	XOR

	Section 5 Exceptions
	5.1 Types of Exception
	5.1.1 Undefined Instruction Exception
	5.1.2 Privileged Instruction Exception
	5.1.3 Access Exception
	5.1.4 Floating-Point Exceptions
	5.1.5 Reset
	5.1.6 Non-Maskable Interrupt
	5.1.7 Interrupts
	5.1.8 Unconditional Trap

	5.2 Exception Handling Procedure
	5.3 Acceptance of Exceptions
	5.3.1 Timing of Acceptance and Saved PC Value
	5.3.2 Vector and Site for Preserving the PC and PSW

	5.4 Hardware Processing for Accepting and Returning from Exceptions
	(1) Hardware pre-processing for accepting an exception
	(a) Preserving the PSW
	(b) Updating of the PM, U, and I bits in the PSW
	(c) Preserving the PC
	(d) Set the branch-destination address of the exception handling routine in the PC

	(2) Hardware post-processing for executing RTE and RTFI instructions
	(a) Restoring the PSW
	(b) Restoring the PC

	5.5 Hardware Pre-processing
	5.5.1 Undefined Instruction Exception
	5.5.2 Privileged Instruction Exception
	5.5.3 Access Exception
	5.5.4 Floating-Point Exceptions
	5.5.5 Reset
	5.5.6 Non-Maskable Interrupt
	5.5.7 Interrupts
	5.5.8 Unconditional Trap

	5.6 Return from Exception Handling Routines
	5.7 Order of Priority for Exceptions

	Index
	REVISION HISTORY
	Colophon

	Address List

	Back cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

