

Converting between Analog and Digital Domains

Chapter 6

Renesas Electronics America Inc. Embedded Systems using the RX63N

Rev. 1.0

© 2014 Renesas Electronics America Inc. All rights reserved.

Topics

Need

- Reference voltage
- Resolution
- Sample and Hold circuit
- Successive approximation
- Transfer function
- Conversion speed
- 12-bit ADC registers
- Operating modes
- 10-bit ADC registers
- D/A converter
- D/A converter registers

Need

- The microcontroller can process only digital data.
- Are the following commonly measured quantities analog or digital?
 - 1. Distance
 - 2. Weight
 - 3. Acceleration
 - 4. Temperature

Need

- All physical quantities are analog. The world is analog!
- We need to convert these analog values to digital for the microcontroller to comprehend the value of the real analog physical quantity.

Reference voltage

- The analog value is compared with a known reference voltage to obtain its digital form.
- The measurement process is called *quantization*.

Resolution

- The number of bits in the digital output is called the resolution of the ADC.
- A 10-bit A/D convertor can produce 2^10 = 1024 distinct digital outputs.
- RX63N microcontroller has an 8 channel 10-bit and a 21 channel 12-bit A/D converter units.

Sample and Hold circuit

- This circuit catches hold of the voltage to be converted to digital form.
- It is helpful, particularly when the input analog voltage varies quickly.
- When the switch is closed, the capacitor charges to the value of analog voltage and that value is fed to the A/D converter.

Successive Approximation

- RX63N microcontroller employs this method of conversion.
- In this method, initially the microcontroller compares the analog voltage with half the reference voltage.
- In each approximation step, the microcontroller halves the possible range between which the digital value lies.
- In this way the microcontroller closes in on the analog value, setting 1 or 0 to the bit position starting from msb.
- Set 1 if the analog value is greater than the reference value of that step, else set to 0.

Successive Approximation

- Consider 2.5 V to be measured with V_{ref} = 3.3 V using a 10-bit A/D converter.
- First 2.5 is compared with 1.65 (mean of 0 & 3.3). Since 2.5>1.65, our digital value is 1xxxxxxxx.
- Next compare 2.5 with 2.47 (mean of 1.65 & 3.3). Since 2.5>2.47, our digital value is 11xxxxxxx.
- We proceed in a similar way until we get the lsb of the digital form.
- We compare 'n' times, where 'n' is the resolution of the A/D converter.

Transfer function

- n= digital output
- $V_{\rm in}$ = input analog voltage
- V_{+ref} = upper reference voltage
- \lor V_{-ref} = lower reference voltage, generally zero
- N = resolution of A/D converter

$$n = \left[\frac{(V_{\rm in} - V_{-\rm ref})(2^N - 1)}{V_{+\rm ref} - V_{-\rm ref}} + \frac{1}{2}\right] \text{ int}$$

Conversion speed

Conversion speed = Start delay(tD) + input sampling

time(tSPL) + conversion time (tSAM)

tD: A/D conversion start delay time

- tSPL: Input sampling time
- tSAM: Successive conversion time
- tCONV: A/D conversion time

Some of the important registers are:

A/D Data Registers (ADDRn) (n = 0 to 20)

- 16-bit register
- Holds the digital value

To use a particular channel, the respective port has to be set up as input. For example, to use ANO, port 4 pin 0 use: PORT4.PDR.BIT.B0 = 0;

For inputs, the Port Mode Register (PMR) also has to set up. This can be done using: PORT4.PMR.BIT.B0 = 1;

A/D Control Register (ADCSR)

- Start conversion control
- Mode select
- Interrupt enable
- A/D clock speed

Address: 0008 9000h

	b7	b6	b5	b4	b3	b3 b2	b1	b0
	ADST	ADCS		ADIE	CKS[1:0]		TRGE	EXTRG
Value after reset:	0	0	0	0	0	0	0	0

RENESAS

A/D Channel Select Register (ADANSx (x=0 or 1))

•2 registers to select 20 channels

Operating modes

Single cycle scan
Performs conversion on single or multiple channels once

Continuous scan mode Performs continuous conversion on single or multiple channels

ADC Initialization

- 1. void ADC_Init(){
- 2. SYSTEM.MSTPCRA.BIT.MSTPA17 = 0;
- 3. S12AD.ADCSR.BYTE = 0x0C;
- 4. $S12AD.ADANS0.WORD = 0 \times 01;$
- 5. S12AD.ADCER.BIT.ACE = 1;
- 6. S12AD.ADCER.BIT.ADRFMT = 0;

7. }

Line 2: 12-bit ADC has been selected using the Module Stop Control Register A.

Line 3: the Control Register is set: software trigger has been enabled (b1=0, b0=0), the PCLK (b3=1, b2=1) has been selected, A/D Interrupt Enable has not been enabled (b4=0), and Single-Cycle Scan mode has been selected (b6=0).

- Line 4: Channel 0 (AN000) has been selected.
- Line 5: automatic clearing of ADDRn
- Line 6: right alignment of ADDRn is done.

Example of a ADC Initialization

- 1. void ADC_Init() {
- 2. PORT4.PDR.BIT.B0 = 0;
- 3. PORT4.PMR.BIT.B0 = 1;
- 4. SYSTEM.MSTPCRA.BIT.MSTPA17 = 0;
- 5. S12AD.ADCSR.BYTE = 0x0C;
- 6. S12AD.ADANS0.WORD = 0x01;
- 7. S12AD.ADCER.BIT.ACE = 1;
- 8. S12AD.ADCER.BIT.ADRFMT = 0;
- 9. S12AD.ADSTRGR.BIT.ADSTRS = 0×0 ;
- 10. S12AD.ADCSR.BIT.ADST = 1;
- 11. }

What does each line do?

Using ADC data

```
12. while(1){
13. if(S12AD.ADCSR.BIT.ADST == 0 && i == 0){
14. ADC_out = S12AD.ADDR0 & 0X0FFF;
15. sprintf(ADC_OUT,"%d",ADC_out);
16. lcd_display(LCD_LINE2,ADC_OUT );
17. i++;
18. }
19. }
```

What will this code do?

In Class Exercise

How would you initialize the ADC and read the internal temperature sensor?

```
1. void ADC_Init() {
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
10.
```

11. }

Some of the important registers are:

- A/D Data Register (ADDRn) (n = A to H)
- 16-bit register
- Holds the digital data

A/D Control/Status Register (ADCSR)

- Select the input channels
- Start or stop A/D conversion
- Enable or disable ADI interrupt

A/D Control Register (ADCR)

- Type of A/D conversion mode
- Clock select
- Trigger select

D/A converter

- It converts a digital value stated by programmer to corresponding analog voltage on a microcontroller pin.
- It may be needed for controlling other devices like motor.
- RX63N has a 10-bit D/A converter which has 2 channels.
- Analog value = (D/A data register value / 1024) * V_{ref}

D/A converter registers

Some of the important registers are:

- D/A Data Register (DADRm) (m = 0, 1)
- 16-bit registers
- Holds the digital value to be converted to analog voltage

D/A converter registers

D/A Control Register (DACR)

- Channel select
- Enable or disable D/A converter unit

Example of using the DAC

- 1. #include "iodefine.h"
- 2. void DAC_Init();
- 3. void main(void){
- 4. PORT0.PDR.BIT.B5 = 1;
- 5. PORTO.PMR.BIT.B5 = 0;

```
6. DAC_Init();
```

```
7. while(1){}
```

```
8. }
```

```
9.
```

- 10. void DAC_Init(){
- 11. SYSTEM.MSTPCRA.BIT.MSTPA19 = 0;
- 12. DA.DADR1 = 102;
- 13. DA.DACR.BYTE = $0 \times 9F$;

14. }

Conclusion

- We covered the A/D conversion concepts like transfer function, resolution, and successive approximation technique.
- The important control registers were also discussed.
- You can now set A/D converter and D/A converter of RX63N to be used in your program.

References

All images taken from:

[1] Renesas Electronics, Inc. (February, 2013). RX63N Group, RX631 Group User's Manual: Hardware, Rev 1.60.

Renesas Electronics America Inc.

© 2014 Renesas Electronics America Inc. All rights reserved.