
C Programming
Language Review

1Embedded Systems

Language Review

C: A High-Level Language

Gives symbolic names to values
– don’t need to know which register or memory location

Provides abstraction of underlying hardware
– operations do not depend on instruction set
– example: can write “a = b * c”, even if

CPU doesn’t have a multiply instruction

Provides expressiveness

Embedded Systems 2

Provides expressiveness
– use meaningful symbols that convey meaning
– simple expressions for common control patterns (if-then-else)

Enhances code readability
Safeguards against bugs

– can enforce rules or conditions at compile-time or run-time

A C Code “Project”

• You will use an “Integrated Development Environment”
(IDE) to develop, compile, load, and debug your code.

• Your entire code package is called a project. Often you
create several files to spilt the functionality:
– Several C files
– Several include (.h) files
– Maybe some assembly language (.src) files

Embedded Systems 3

– Maybe some assembly language (.src) files
– Maybe some assembly language include (.inc) files

• A lab, like “Lab7”, will be your project. You may have
three .c, three .h, one .src, and one .inc files.

• More will be discussed in a later set of notes.

Compiling a C Program
Entire mechanism is usually called

the “compiler”
Preprocessor

– macro substitution
– conditional compilation
– “source-level” transformations

• output is still C

Compiler

C
Source and
Header Files

C Preprocessor

Compiler

Source Code
Analysis

Embedded Systems 4

Compiler
– generates object file

• machine instructions

Linker
– combine object files

(including libraries)
into executable image

Analysis

Target Code
Synthesis

Symbol Table

Linker

Executable
Image

Library
Object Files

Compiler

Source Code Analysis
– “front end”
– parses programs to identify its pieces

• variables, expressions, statements, functions, etc.
– depends on language (not on target machine)

Code Generation
– “back end”

Embedded Systems 5

– “back end”
– generates machine code from analyzed source
– may optimize machine code to make it run more efficiently
– very dependent on target machine

Symbol Table
– map between symbolic names and items
– like assembler, but more kinds of information

Memory Map for Our MCU

Embedded Systems 6

Classifying Data

Variables
– Automatic – declared within a function

• Only exist while the function executes
• Are re-initialized (re-created, in fact) each time the function is called

– Static – declared outside of all functions, always exist
• Can make an automatic variable retain its value between invocations

by using the “static” keyword

Embedded Systems 7

Storage of Local and Global Variables
int inGlobal;

void chapter12() {

int inLocal;

int outLocalA;

int outLocalB;

/* initialize */

Embedded Systems 8

inLocal = 5;

inGlobal = 3;

/* perform calculations */

outLocalA = inLocal++ & ~inGlobal;

outLocalB = (inLocal + inGlobal) - (inLocal -
inGlobal);

}

Another Example Program with Function Calls

const int globalD=6;
int compute(int x, int y);
int squared(int r);

void main() {
// These are main’s automatic variables, and will b e
int a, b, c; a = 10; // stored in main’s frame
b = 16;
c = compute(a,b);

}

Embedded Systems 9

int compute(int x, int y) {
int z;
z = squared(x);
z = z + squared(y) + globalD;
return(z);

}

int squared(int r) {
return (r*r);

}

Control Structures

• if – else
• switch
• while loop
• for loop

Embedded Systems 10

If-else

if (condition)
action_if;

else
action_else;

condition

action_if action_else

T F

Embedded Systems 11

Else allows choice between
two mutually exclusive actions without re-testing condition.

Switch

switch (expression) {
case const1:

action1; break;
case const2:

action2; break;
default:

action3;

evaluate
expression

= const1? action1
T

F

Embedded Systems 12

}
= const2? action2

action3

T

F

Alternative to long if-else chain.
If break is not used, then
case "falls through" to the next.

While

while (test)
loop_body;

test

loop_body

T

F

Embedded Systems 13

Executes loop body as long as
test evaluates to TRUE (non-zero).

Note: Test is evaluated before executing loop body.

For
for (init; end-test; re-init)

statement
init

test
F

T

Embedded Systems 14

loop_body

re-init

T

Executes loop body as long as
test evaluates to TRUE (non-zero).
Initialization and re-initialization
code included in loop statement.

Note: Test is evaluated before executing loop body.

ASCII Table

00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 ` 70 p

01 soh 11 dc1 21 ! 31 1 41 A 51 Q 61 a 71 q

02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r

03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s

04 eot 14 dc4 24 $ 34 4 44 D 54 T 64 d 74 t

05 enq 15 nak 25 % 35 5 45 E 55 U 65 e 75 u

06 ack 16 syn 26 & 36 6 46 F 56 V 66 f 76 v

07 17 27 ' 37 7 47 G 57 W 67 g 77 w

Embedded Systems 15

07 bel 17 etb 27 ' 37 7 47 G 57 W 67 g 77 w

08 bs 18 can 28 (38 8 48 H 58 X 68 h 78 x

09 ht 19 em 29) 39 9 49 I 59 Y 69 i 79 y

0a nl 1a sub 2a * 3a : 4a J 5a Z 6a j 7a z

0b vt 1b esc 2b + 3b ; 4b K 5b [6b k 7b {

0c np 1c fs 2c , 3c < 4c L 5c \ 6c l 7c |

0d cr 1d gs 2d - 3d = 4d M 5d] 6d m 7d }

0e so 1e rs 2e . 3e > 4e N 5e ^ 6e n 7e ~

0f si 1f us 2f / 3f ? 4f O 5f _ 6f o 7f del

Masking

One of the most common uses of logical operations is “masking.”
Masking is where you want to examine only a few bits at a time, or

modify certain bits.
For example, if I want to know if a certain number is odd or even, I can

use an “and” operator.
0101 0101 0101 0101

AND 0000 0000 0000 0001
0000 0000 0000 0001

Embedded Systems

Or, lets say you want to look at bits 7 to 2:
0101 0101 0101 0101

AND 0000 0000 1111 1100
0000 0000 0101 0100

Code? Bitwise and is &, bitwise or is |

16

Code Example

Let’s assume three switches
connected to port 1 like the
following:

How do you read the three switches?
After you set the direction: S

W
3 S
W

2 S
W

1

int data;

data = (int)PORT1.PIDR.BIT.B0;

All at the same time?
data = 7 &(int) PORT1.PIDR.BYTE;

Embedded Systems 17

C examples

Now, write the C code to interrogate
the switches and print

“Switch n pressed”

if it is being pressed. Print
“No switches pressed”

If none are being pressed. S
W

3 S
W

2 S
W

1

//perform bitwise AND for bit0, then 1, then 2

if (!(data & 1)) printf(“Switch 1 pressed/n”);

if

if

// if no switches pressed, say so

if

Embedded Systems 18

Example - upper/lower case ASCII

Masking also lets you convert between ASCII upper and
lower case letters:

– “A” = 0x41 (0100 0001)
– “a” = 0x61 (0110 0001)

To convert from capitals to lower case:
– Add 32 (0x20)
– OR with 0x20

To convert from lower case to capitals

Embedded Systems

To convert from lower case to capitals
– Subtract 32 (0x20)
– AND 0xDF

The logical operations are the only way to ensure the
conversion will always work

19

1D Arrays

Embedded Systems 20

2D Arrays

[0][0]

[1][0]

[0][1]

[1][1]

[0][2]

[1][2]

Columns
R

ow
s

ColumnRowC arrays are stored in a row-major form
(a row at a time)

Embedded Systems 21

Pointers

A pointer variable holds the address of the data, rather
than the data itself

To make a pointer point to variable a, we can specify
the address of a

– address operator &

The data is accessed by dereferencing (following) the
pointer

– indirection operator * works for reads and writes

Assigning a new value to a pointer variable changes

void main () {

int i, j;

int *p1, *p2;

i = 4;

j = 3;

p1 = &i;

p2 = &j;

*p1 = *p1+*p2;

p2 = p1;

1

2

3

4

5

6

Embedded Systems 22

Assigning a new value to a pointer variable changes
where the variable points, not the data

p2 = p1;

}

6

i

j

p1

p2

1&2

4

3

Adx
600
602
604
608

i

j

p1

p2

3

4

3

600

i

j

p1

p2

4

4

3

600

602

i

j

p1

p2

5

7

3

600

602

i

j

p1

p2

6

7

3

600

600

More about Pointers
Incrementing and decrementing pointers to array elements

– Increment operator ++ makes pointer advance
to next element (next larger address)

– Decrement operator -- makes pointer move to
previous element (next smaller address)

– These use the size of the variable’s base type
(e.g. int, char, float) to determine what to add

• p1++ corresponds to p1 = p1 + sizeof(int);
• sizeof is C macro which returns size of type

in bytes

int a[18];

int * p;

p = &a[5];

p = 5; / a[5]=5 */

p++;

p = 7; / a[6]=7 */

p--;

p = 3; / a[5]=3 */

Embedded Systems 23

in bytes

Pre and post
– Putting the ++/-- before the pointer causes inc/dec before pointer is used

• int *p=100, *p2;
– p2 = ++p; assigns 102 to integer pointer p2, and p is 102

afterwards
– Putting the ++/-- after the pointer causes inc/dec after pointer is used

• char *q=200, *q2;
– q2 = q--; assigns 200 to character pointer q2, and q is 199

afterwards

What else are pointers used for?

Data structures which reference each other
– lists
– trees
– etc.

Exchanging information between procedures
– Passing arguments (e.g. a structure) quickly – just pass a pointer
– Returning a structure

Embedded Systems 24

– Returning a structure

Accessing elements within arrays (e.g. string)

Strings

See Section 16.3.4 of Patt & Patel.
There is no “string” type in C.
Instead an array of characters is used - char a[44]
The string is terminated by a NULL character (value of 0,

represented in C by \0).
– Need an extra array element to store this null

Example

Embedded Systems 25

Example
– char str[10] = “testing”;

t e s t i n g \0

str[0]

str[1]

str

str[2]

Formatted String Creation

Common family of functions defined in stdio.h
– printf: print to standard output
– sprintf: print to a string
– fprintf: print to a file

Syntax: sprintf(char *str, char * frmt, arg1, arg2, arg3 ..);
– str: destination
– fmt: format specifying what to print and how to interpret arguments

Embedded Systems 26

– fmt: format specifying what to print and how to interpret arguments
• %d: signed decimal integer
• %f: floating point
• %x: unsigned hexadecimal integer
• %c: one character
• %s: null-terminated string

– arg1, etc: arguments to be converted according to format string

sprintf Examples – strings and integers
char s1[30], s2[30];

int a=5, b=10, c=-30;

char ch=‘$’;

sprintf(s1, “Testing”);

sprintf(s2, “a=%d, b=%d”, a, b);

Testing

s1

a=5, b=10

s2

b=a, c=-30

s1

Embedded Systems 27

sprintf(s1, “b=%x, c=%d”, b, c);

sprintf(s1, “b=0x%x”, b);

sprintf(s2, “s1=%s”, s1);

sprintf(s1, “%c %c”, ch, s2);

b=a, c=-30

b=0xa

s1

s1=b=0xa

s2

$ s

s1

sprintf Examples – floating-point

Variation on %f format specifier
– %-w.pf

• - = left-justify. Optional
• w = minimum field width (# of symbols)
• p = precision (digits after decimal point)

Examples

Embedded Systems 28

3.140000

s1
float f1=3.14, f2=9.991, f3=-19110.331;

char s1[30], s2[30];

sprintf(s1, “%f”, f1);

sprintf(s1, “%f”, f3);

sprintf(s1, “%4.1f”, f2);

-19110.3

s1

10.0

s1

sprintf Examples – More Integers

Variation on %d format specifier for integers (d/i/o/x/u)
– %-w.pd

• - = left justify. Optional
• w = minimum field width (# of symbols)
• p = precision (digits). Zero pad as needed

Examples

s1int a=442, b=1, c=-11;

Embedded Systems 29

442

s1int a=442, b=1, c=-11;

char s1[30], s2[30];

sprintf(s1, “%5d”, a);

sprintf(s1, “%-4d”, b);

sprintf(s1, “%4d”, b);

sprintf(s1, “%-5.4d”, c);

1

s1

1

s1

-011

s1

String Operations in string.h

Copy ct to s including terminating null character. Returns a pointer to s.
– char* strcpy(char* s, const char* ct);

s1 = “cheese”;

s2 = “limburger”;

strcpy(s1, s2); /* s1 = limburger */

Concatenate the characters of ct to s. Terminate s with the null character and
return a pointer to it.

Embedded Systems 30

return a pointer to it.
– char* strcat(char* s, const char* ct);

s1 = “cheesy”;

s2 = “ poofs”;

strcat(s1, s2); /* s1 = cheesy poofs */

More String Operations
Concatenate at most n characters of ct to s. Terminate s with the null

character and return a pointer to it.
– char* strncat(char* s, const char* ct, int n);

s1 = “cheese”;

s2 = “ puffs”;

strncat(s1, s2, 4); /* cheese puf */

Compares two strings. The comparison stops on reaching a null

Embedded Systems 31

terminator. Returns a 0 if the two strings are identical, less than zero if
s2 is greater than s1, and greater than zero if s1 is greater than s2.
(Alphabetical sorting by ASCII codes)
– int strcmp(const char* s1, const char* s2);

s1 = “cheese”;

s2 = “chases”;

strcmp(s1,s2); /* returns non-zero number */

strcmp(s1, “cheese”); /* returns zero */

More String Operations
Return pointer to first occurrence of c in s1, or NULL if not found.

– char* strchr(const char* s1, int c);
s1 = “Smeagol and Deagol”;

char a *;

a = strchr(s1, “g”); /* returns pointer to s1[4] */

Return pointer to last occurrence of c in s1, or NULL if not found.
– char* strrchr(const char* s1, int c);

Embedded Systems 32

– char* strrchr(const char* s1, int c);
s1 = “Smeagol and Deagol”;

char a *;

a = strrchr(s1, “a”); /* returns pointer to s1[14] */

Can use the returned pointer for other purposes
a = ‘\0’; / s1 = “Smeagol and De” */

strcat(s1, “spair”); /* s1 = “Smeagol and Despair” */

Dynamic Memory Allocation in C

Why?
– Some systems have changing memory requirements, and stack

variables (automatic) aren’t adequate
– Example: Voice recorder needs to store recordings of different lengths.

Allocating the same size buffer for each is inefficient

How?
– Allocate nbytes of memory and return a start pointer

• void * malloc (size_t void * malloc (size_t void * malloc (size_t void * malloc (size_t nbytesnbytesnbytesnbytes););););

Embedded Systems 33

• void * malloc (size_t void * malloc (size_t void * malloc (size_t void * malloc (size_t nbytesnbytesnbytesnbytes););););

– Allocate nelements*size bytes of memory and return a start pointer
• void * calloc (size_t nelements, size_t size); void * calloc (size_t nelements, size_t size); void * calloc (size_t nelements, size_t size); void * calloc (size_t nelements, size_t size);

– Change the size of a block of already-allocated memory
• void * realloc (void * pointer, size_t size); void * realloc (void * pointer, size_t size); void * realloc (void * pointer, size_t size); void * realloc (void * pointer, size_t size);

– Free a block of allocated memory
• void free (void * pointer); void free (void * pointer); void free (void * pointer); void free (void * pointer);

Using Dynamic Memory Management
Request space for one or more new variables

– Request pointer to space for one element
int * j, *k;

j = (int *) malloc (sizeof(int));

*j = 37;

– Request pointer to space for array of elements and initialize to zero
k = (int *) calloc(num_elements, sizeof(int));

k[0] = 55;

Embedded Systems 34

k[0] = 55;

k[1] = 31;

– These return NULL if there isn’t enough space
• Program has to deal with failure -- embedded program probably

shouldn’t just quit or reset….

Free up space when done using variables
free(k);

Example Application: Voice Recorder

Recording
– While record switch is pressed

• sample microphone
• store in temporary RAM buffer

– When record switch is released
• copy audio to a permanent buffer
• add to end of list of recordings

Playback and skipping

buffer record
record
record
delete

A

Embedded Systems 35

Playback and skipping
– forward switch: skip forward over one

recording, wrap around at end
– play switch: play the current recording
– delete switch: delete the current

recording

Data Structure: linked list of recordings

recordings

Data Structure Detail: Linked List
Each list element is defined as a

structure with fields
– AudioSize: Number of bytes
– AudioData: …
– Next: Pointer to next list element

typedef struct {

unsigned AudioSize;

char * AudioData;

struct List_T * Next;

} List_T;

Embedded Systems 36

Code for Voice Recorder main
unsigned char buffer[MAX_BUFFER_SIZE];

struct List_T * recordings = NULL, * cur_recording = NULL;

void main(void) {

while (1) {

while (NO_SWITCHES_PRESSED)

;

if (RECORD)

handle_record();

Embedded Systems 37

else if (PLAY)

handle_play();

else if (FORWARD)

handle_forward();

else if (DELETE)

handle_delete();

}

}

Code for handle_forward
void handle_forward(void) {

if (cur_recording)

cur_recording = cur_recording->Next;

if (!cur_recording)

cur_recording = recordings;

}

Embedded Systems 38

Code for handle_record

void handle_record(void) {

unsigned i, size;

unsigned char * new_recording;

struct List_T * new_list_entry;

i = 0;

while (RECORD)

buffer[i++] = sample_audio();

size = i;

new_recording = (unsigned char *) malloc (size);

Embedded Systems 39

new_recording = (unsigned char *) malloc (size);

for (i=0; i<size; i++) /* could also use memcpy() */

new_recording[i] = buffer[i];

new_list_entry = (List_T *) malloc (sizeof(List_T));
new_list_entry->AudioData = new_recording;

new_list_entry->AudioSize = size;

new_list_entry->Next = NULL;

recordings = Append(recordings, new_list_entry);

}

Code for handle_delete
void handle_delete(void) {

List_T * cur = recordings;

if (cur == cur_recording)

recordings = recordings->Next;

else {

while (cur->Next != cur_recording)

cur = cur->Next;

/* cur now points to previous list entry */

cur->Next = cur_recording->Next;

Embedded Systems 40

}

free(cur_recording->AudioData);

free(cur_recording);

} // end handle_delete

Allocation Data Structures

Keep free memory in
sorted list of free blocks
typedef struct hdr {

struct hdr * next;
unsigned int size;
};

hdr * FreeList;

Used

Size = 412

Next

Size = 508

Next

FreeList

Embedded Systems 41

Assume hdr takes no
space for examples

More details in “Memory
Allocation in C,” Leslie
Alridge, Embedded
Systems Programming,
August 1989

Used

Used

Size = 38

Next

Size = 88

Next

Allocation Operations

To allocate memory
– find first block of size >= requested_size
– modify list to indicate space isn’t free

• if sizes match exactly, remove free block from list
• else split memory

– reduce size field by requested_size, keeping first part of block in free
space

– allocate memory in second part of block

Embedded Systems 42

– allocate memory in second part of block

• return pointer to newly allocated block

To free memory depends on block’s memory location
– If before first free block, prepend it at head of free list
– If between free list entries, insert in list
– If after last free block, append it at tail of free list

Freed memory block may be adjacent to other free blocks. If so,
merge contiguous blocks

Dangers of Dynamic Memory Allocation

Memory leaks waste memory
– Never freeing blocks which are no longer needed. User’s

responsibility.

May accidentally use freed memory
– User’s responsibility.

Allocation speed varies
– Linked list must be searched for a block which is large enough

Embedded Systems 43

– Linked list must be searched for a block which is large enough
– Bad for a real-time system, as worst case may be large.

Fragmentation
– Over time free memory is likely to be broken into smaller and

smaller fragments.
– Eventually there won’t be a block large enough for an allocation

request, even though there is enough total memory free

Heap and Fragmentation

Problem:
– malloc/calloc/free use a heap of memory; essentially a list of blocks

of empty and used memory
– Repeated allocation/free cycles with differently sized allocation

units leads to fragmentation
• Although there may be enough memory free, it may be

fragmented into pieces too small to meet request

Solutions (none optimal):

Embedded Systems 44

Solutions (none optimal):
– Always allocate a fixed size memory element
– Use multiple heaps, each with a fixed element size

What is an Algorithm?
A formula? A solution? A sequence of steps? A recipe?
A former Vice-President? (Al-Gore-ithm?)

An algorithm is created in the design phase

How is an algorithm represented?
Typically represented as pseudo code
Historically represented as flowcharts

Embedded Systems 45

Historically represented as flowcharts

Do yourself a favor – write
algorithms before code –
always!

Pseudo Code

Pseudo code is written in English to describe the functionality
of a particular software module (subroutine)

Include name of module/subroutine, author, date, description
of functionality of module, and actual steps

Often you can take the pseudo code and use them lines in
your program as comments!

Avoid a very fine level of detail (although this may sometimes

Embedded Systems 46

Avoid a very fine level of detail (although this may sometimes
be difficult to do)

Avoid writing code – use English, not assembly language (or
higher-level language) instructions

An Example

Problem: Compare two numbers in x and y, put the larger
number in z. If Equal, put 0 in z.

Sample input/output:

x y z

5 4

Embedded Systems 47

5 4

5 -4

-5 4

-5 -4

5 5

Algorithm - Larger
Algorithm:

; Larger: Jim Conrad, 2011-09-13

; Purpose: Compare two numbers in x and

; y, put the larger number in z. If

; equal, put 0 in z.

Perform x-y

If result is positive ; x is bigger

Embedded Systems 48

If result is positive ; x is bigger

Put x in z, exit

If result is negative ; y is bigger

Put y in z, exit

If zero,

Put 0 in z, exit

An example

What do you think this does?

; ____________: Jim Conrad, 2011-09-13
; Purpose:
;
;

Set total to zero

Embedded Systems 49

Set total to zero
Set grade counter to one
While grade counter is less than or equal to ten

Input the next grade
Add the grade into the total

Set the class average to the total divided by ten
Print the class average.

Borrowed from http://www.unf.edu/~broggio/cop2221/2 221pseu.htm

