
Virtually every embedded sys-
tem uses interrupts; many support mul-
titasking or multithreaded operations.
These sorts of applications can expect
the program’s control flow to change
contexts at just about any time. When
that interrupt comes, the current oper-
ation gets put on hold and another
function or task starts running. What
happens if functions and tasks share
variables? Disaster surely looms if one
routine corrupts another’s data.

By carefully controlling how data
is shared, we create reentrant func-
tions, those that allow multiple con-
current invocations that do not inter-
fere with each other. The word pure is
sometimes used interchangeably with
reentrant.

Like so many embedded concepts,
reentrancy came from the mainframe
era, in the days when memory was a
valuable commodity. In those days
compilers and other programs were
often written to be reentrant, so a sin-
gle copy of the tool lived in memory,
yet was shared by perhaps a hundred
users. Each person had his or her own
data area, yet everyone running the
compiler quite literally executed the
identical code. As the operating sys-
tem changed contexts from user to
user it swapped data areas so one per-
son’s work didn’t effect any other.
Share the code, but not the data.

In the embedded world a routine
must satisfy the following conditions
to be reentrant:

1. It uses all shared variables in an
atomic way, unless each is allocated
to a specific instance of the function.

2. It does not call non-reentrant
functions.

3. It does not use the hardware in a
non-atomic way.

Quite a mouthful! Let’s look at each of
these in more detail.

Atomic variables

Both the first and last rules use the
word atomic, which comes from the
Greek word meaning indivisible. In
the computer world, atomic means an
operation that cannot be interrupted.
Consider the assembly language
instruction:

mov ax,bx

Since nothing short of a reset can
stop or interrupt this instruction, it’s
atomic. It will start and complete with-
out any interference from other tasks
or interrupts

The first part of Rule 1 requires the
atomic use of shared variables.
Suppose two functions each share the
global variable foobar. Function A
contains:

temp = foobar;

temp += 1;

foobar = temp;

This code is not reentrant, because
foobar is used non-atomically. That is,
it takes three statements to change its
value, not one. The foobarhandling is
not indivisible; an interrupt can come
between these statements and switch
context to the other function, which

then may also try and change foobar.
Clearly there’s a conflict; foobar will
wind up with an incorrect value, the
autopilot will crash, and hundreds of
screaming people will wonder “why
didn’t they teach those developers
about reentrancy?”

Suppose, instead, Function A looks
like:

foobar += 1;

Now the operation is atomic, right?
An interrupt cannot suspend process-
ing with foobar in a partially changed
state, so the routine is reentrant.

Except… do you really know what
your C compiler generates? On an x86
processor that statement might com-
pile to:

mov ax,[foobar]

inc ax

mov [foobar],ax

which is clearly not atomic, and so not
reentrant. The atomic version is:

inc [foobar]

The moral is to be wary of the com-
piler. Assume it generates atomic code
and you may find “60 Minutes” knock-
ing at your door.

The second part of the first reen-
trancy rule reads “…unless each is
allocated to a specific instance of the
function.” This is an exception to the
atomic rule that skirts the issue of
shared variables.

An “instance” is a path through the
code. There’s no reason a single func-

Reentrancy

Embedded Systems Programming APRIL 2001 183

B E G I N N E R ’ S C O R N E R
✁

C
U

T
H

E
R

E
 ✁

by Jack G. Ganssle

tion can’t be called from many other
places. In a multitasking environment,
it’s quite possible that several copies of
the function may indeed be executing
concurrently. (Suppose the routine is
a driver that retrieves data from a
queue; many different parts of the
code may want queued data more or
less simultaneously). Each execution
path is an “instance” of the code.
Consider:

int foo;

void some_function(void) {

foo++;

}

foo is a global variable whose scope
exists outside that of the function.
Even if no other routine uses foo,
some_functioncan trash the variable if
more than one instance of it runs at
any time.

C and C++ can save us from this
peril. Use automatic variables. That is,
declare foo inside of the function.
Then, each instance of the routine will
use a new version of foo created from
the stack, as follows:

void some_function(void) {

int foo;

foo++;

}

Another option is to dynamically
assign memory (using malloc), again
so each incarnation uses a unique data
area. The fundamental reentrancy
problem is thus avoided, as it’s impos-
sible for multiple instances to modify a
common version of the variable.

Two more rules

The other rules are very simple. Rule 2
tells us a calling function inherits the
reentrancy problems of the callee.
That makes sense. If other code inside
the function trashes shared variables,
the system is going to crash. Using a
compiled language, though, there’s an
insidious problem. Are you sure—real-
ly sure—that all of the runtime library

functions are reentrant? Obviously,
string operations and a lot of other
complicated things make library calls
to do the real work. An awful lot of
compilers also generate runtime calls
to do, for instance, long math, or even
integer multiplications and divisions.

If a function must be reentrant,
talk to the compiler vendor to ensure
that the entire runtime package is
pure. If you buy software packages
(like a protocol stack) that may be
called from several places, take similar
precautions to ensure the purchased
routines are also reentrant.

Rule 3 is a uniquely embedded
caveat. Hardware looks a lot like a vari-
able; if it takes more than a single I/O
operation to handle a device, reen-
trancy problems can develop.

Consider Zilog’s SCC serial con-
troller. Accessing any of the device’s
internal registers requires two steps:
first write the register’s address to a
port, then read or write the register
from the same port, the same I/O
address. If an interrupt fires between
setting the port and accessing the reg-
ister, another function might take over
and access the device. When control
returns to the first function, the regis-
ter address you set will be incorrect.

Keeping code reentrant

What are our best options for elimi-
nating non-reentrant code? The first
rule of thumb is to avoid shared vari-
ables. Globals are the source of end-
less debugging woes and failed code.
Use automatic variables or dynamical-
ly allocated memory.

Yet globals are also the fastest way
to pass data around. It’s not always
possible to entirely eliminate them
from real time systems. So, when using
a shared resource (variable or hard-
ware) we must take a different sort of
action.

The most common approach is to
disable interrupts during non-reen-
trant code. With interrupts off, the sys-
tem suddenly becomes a single-
process environment. There will be no

context switches. Disable interrupts,
do the non-reentrant work, and then
turn interrupts back on.

Shutting interrupts down does
increase system latency, reducing its
ability to respond to external events in
a timely manner. A kinder, gentler
approach is to use a mutex (also
known as binary semaphore) to indi-
cate when a resource is busy. Mutexes
are simple on-off state indicators
whose processing is inherently atomic.
These are often used as “in-use” flags
to have tasks idle when a shared
resource is not available.

Nearly every commercial real-time
operating system includes mutexes. If
this is your way of achieving reentrant
code, by all means use an RTOS.

Recursion

No discussion of reentrancy is com-
plete without mentioning recursion, if
only because there’s so much confu-
sion between the two.

A function is recursive if it calls
itself. That’s a classic way to remove
iteration from many sorts of algo-
rithms. Given enough stack space, this
is a perfectly valid—though tough to
debug—way to write code. Since a
recursive function calls itself, clearly it
must be reentrant to avoid trashing its
variables. So all recursive functions
must be reentrant, but not all reen-
trant functions are recursive. esp

Jack G. Ganssle is a lecturer and consul-
tant on embedded development issues, and
a regular contributor to Embedded
Systems Programming. Contact him at
jack@ganssle.com.

Resources
Greenberg, Kenneth F. “Sharing Your

Code,” Embedded Systems

Programming, August 1990, p 40.

Barr, Michael. “Choosing a Compiler: The

Little Things,” Embedded Systems

Programming, May 1999, p. 71.

Simon, David. An Embedded Software

Primer. Reading, MA: Addison-Wesley,

1999.

B E G I N N E R ’ S C O R N E R

184 APRIL 2001 Embedded Systems Programming

✁
C

U
T

H
E
R

E
 ✁

	return:

