
 APPLICATION NOTE

M16C/62
Writing M16C/62 Interrupt Handlers in C

1.0 Abstract
Because interrupt mechanisms are processor (hardware) specific, the ANSI C specification for writing interrupt

functions is at best vague. The following article describes how to write hardware and software interrupt handlers

in C using Renesas’ NC30 C compiler (version 4.XX and earlier) for the M16C series 16-bit microcontrollers.

2.0 Introduction
This application note describes how to write interrupt handlers using Renesas’ NC30 C compiler for M16C

microcontrollers.

In order to process interrupts, your program must do two things:

1. Properly declare the function handling the interrupt.

2. Set the appropriate interrupt vector to point to the function.

3.0 Hardware Interrupts
By declaring the function as an interrupt handler, the compiled output ends in an “reit” (return from interrupt)

instruction rather than the standard “rts” (return from subroutine). For hardware interrupts, use the declaration

#pragma INTERRUPT function name

Note: “INTERRUPT” must be uppercase.

and the prototype

void function name (void);

Obviously, a hardware interrupt can neither be passed a value nor return a value.

The following is an example hardware interrupt processing program. Note the /B (capital ”B”) in the pragma

statement. This option speeds up interrupt response by switching to CPU register Bank 1. Without this switch,

the compiler generates code to stack all registers used by the interrupt functions. Take care in using this option if

using an RTOS or nested interrupts (note that this option is compatible with the M30624 starter kit as the ROM

Monitor saves both banks of registers as required).

REU05B0027-0100Z June 2003 Page 1 of 4

M16C/62
Writing M16C/62 Interrupt Handlers in C

/* Prototype declarations ***********************************/
 void countplse(void);
#pragma INTERRUPT /B countplse
//note: no leading spaces before #pragma
 void main(void);
/**/

int count = 0;

void main(void)
{
 int0ic = 1; // set interrupt level = 1
 ta0 = 10000; // 16meg xtal, divide by 8, times 10,000 counts-> 5msec interrrupts.
 ta0mr = 0x40;
 ta0s = 1; //start counting
 _asm(“fset i “); // enable interrupts
 while(1); // wait for interrupt loop
}

void countplse(void)
{
 _asm(“fset i “); // enable interrupts for the ROM Monitor
/* To avoid nesting user interrupts, set all interrupt priority levels to the same
value */

 count++; // count pulses on INT0 pin
}

Now the second part of the process is to set up the interrupt vector. Included with the compiler is the startup file

‘sect30.inc’. Open this file and near the end, the interrupt vectors are declared. The assembler function label is

the C function name preceded by an underscore (_). First define the label as global using the ‘.glb’

pseudo-instruction; then replace the ‘dummy’ label at the appropriate table entry (see sample code below).

;---
; variable vector section
;---
 .section vector ;variable vector table
 .org VECTOR_ADR

REU05B0027-0100Z June 2003 Page 2 of 4

M16C/62
Writing M16C/62 Interrupt Handlers in C

.lword dummy_int ;BRK (vector 0)
.org (VECTOR_ADR+16)
 .
 .
 .
 .lword dummy_int ;timer A3 (vector 24)
 .lword dummy_int ;timer A4 (vector 25)
 .lword dummy_int ;timer B0 (vector 26)
 .lword dummy_int ;timer B1 (vector 27)
 .lword dummy_int ;timer B2 (vector 28)
 .glb _countplse ;countplse address inserted into table
 .lword _countplse ;int0
.lword dummy_int ;int1 (vector 30)
 .lword dummy_int ;int2 (vector 31)
 .
 .
 .
 .lword dummy_int ;vector 46 (software interrupt vector)
 .lword dummy_int ;vector 47 (software interrupt vector)
;===

4.0 Reference

Renesas Technology Corporation Semiconductor Home Page

http://www.renesas.com

E-mail Support

support_apl@renesas.com

Data Sheets

• M16C/62 datasheets, 62aeds.pdf

User’s Manual

• NC30 Ver. 4.0 User’s Manual NC30UE.pdf

• M16C/60 and M16C/20 C Language Programming Manual 6020EC.pdf

REU05B0027-0100Z June 2003 Page 3 of 4

M16C/62
Writing M16C/62 Interrupt Handlers in C

5.0 Software Code
Following is a simple program written for the NC30 compiler to illustrate how to set up Pulse Output Mode on

timer A0. This program runs on the MSV1632/62 Starter Kit Board and generates a 200Hz square wave on P7.0.

A scope can be connected to pin 4 of JP3 to view the waveform. Be sure to remove IC4 (if installed) or the jumper

across pins 3 and 4 at JP3 before running the program.

Note that when you stop the program (under KD30), the square wave output does not stop until the system is

reset.

To become familiar with the timer, try changing the output frequency, the clock source, or even switch to a

different timer (e.g. TA1, etc.).

/***
*
* File Name: pulsout.c
*
* Content: Example program for the "TIMER PULSE OUTPUT MODE ON THE
* M16C/62" application note. Generates a 200 Hz square wave
* on the P7.0 pin. For the MSV1632/62 starter kit board.
*
* Compiled with NC30 ver. 3.20.00.
*
* All timing based on 16 Mhz Xtal
*
* Copyright, 2003 Renesas Technology Corporation, Inc.
*===
* $Log:$
===/
#include "sfr62.h"

REU05B0027-0100Z June 2003 Page 4 of 4

Keep safety first in your circuit designs!

• Renesas Technology Corporation puts the maximum effort into making semiconductor products

better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

• These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

• Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms,
or circuit application examples contained in these materials.

• All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

• When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

• Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake. Please
contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product
distributor when considering the use of a product contained herein for any specific purposes, such as
apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

• The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in
whole or in part these materials.

• If these products or technologies are subject to the Japanese export control restrictions, they must be
exported under a license from the Japanese government and cannot be imported into a country other
than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

• Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

	Abstract
	Introduction
	Hardware Interrupts
	Reference
	Software Code

