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Chapter

1
Embedded Computing 1

• Fundamental problems in embedded computing.

• Design methodologies for embedded systems.

• Models of computation.

• Reliability and security.

• Applications that make use of embedded computing.

The Landscape of High-Performance Embedded Computing
The overarching theme of this book is that high-end embedded computing systems

are measurably hard to design. Not only do they require lots of computation, but they
must meet quantifiable goals: real-time performance, not just average performance;
power/energy consumption; and cost. The fact that we have quantifiable goals makes the
design of embedded computing systems a very different experience than the design of
general-purpose computing systems, in which we cannot predict the uses to which the
computer will be put.

When we try to design computer systems to meet these sorts of quantifiable goals,
we quickly come to the conclusion that no one system is best for all applications. Differ-
ent requirements lead us to different trade-offs between performance and power, hard-
ware and software, etc. We must create different implementations to meet the needs of a
family of applications. That solutions should be programmable enough to make the
design flexible and long-lived, but not provide unnecessary flexibility that would detract
from meeting the system requirements.

General-purpose computing systems separate the design of hardware and software,
but in embedded computing systems we can simultaneously design the hardware and
software. We often find that we can solve a problem by hardware means, software
means, or a combination of the two. These solutions may have different trade-offs; the

1.1
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2 Chapter 1 Embedded Computing

larger design space afforded by joint hardware/software design allows us to find better
solutions to design problems.

architectures, 
algorithms, 
applications

As illustrated in Figure 1-1, the study of embedded system design properly takes into
account three aspects of the field: architectures, algorithms, and applications. Let’s con-
sider these aspects one at a time.

architectures Because embedded system designers work with both hardware and software, they
must study architectures broadly, including hardware, software, and the relationships
between the two. Hardware architecture problems may range from special-purpose hard-
ware units as created by hardware/software co-design, microarchitectures for processors,
multiprocessors, or networks of distributed processors. Software architectures determine
how we can take advantage of parallelism and non-determinism to improve performance
and lower cost.

algorithms The algorithmic component of embedded system design includes a wide range of
tools that help us build systems. Analysis and simulation tools are widely used to evalu-
ate cost, performance, and power consumption. Synthesis tools create optimized imple-
mentations based on specifications.

Methodologies play an especially important role in embedded computing. Not only
must we design many different types of embedded systems, but we want to be able to do
so reliably and predictably. The cost of the design process itself is often a significant
component of the total system cost. Methodologies, which may combine tools and man-
ual steps, codify our knowledge on how to design systems. Methodologies help us make
large and small design decisions.

applications Understanding your application is key to getting the most out of an embedded com-
puting system. We can use the characteristics of the application to optimize our design.
This can be an advantage that lets us perform many powerful optimizations that would
not be possible in a general-purpose system. But it also means that we must understand
the application enough to be able to take advantage of its characteristics and avoid creat-
ing problems for system implementers.

Figure 1-1
Aspects of embedded system design.
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1.1 3

embedded 
computing is 
multidisciplinary

Embedded computing makes use of several related disciplines. Two core disciplines
are real-time computing and hardware/software co-design. The study of real-time sys-
tems predates the emergence of embedded computing as a discipline. Real-time systems
takes a software-oriented view of how to design computers that complete computations
in a timely fashion. The scheduling techniques developed by the real-time systems com-
munity stand at the core of the body of techniques used to design embedded systems.
Hardware/software co-design emerged as a field at the dawn of the modern era of
embedded computing. Co-design takes a holistic view of the hardware and software used
to perform deadline-oriented computations.

Embedded computing also takes advantage of many basic disciplines in computer
engineering and computer science:

• Low power design started off as primarily hardware-oriented but now encompasses
both software and hardware techniques.

• Programming languages and compilers have brought embedded system designers
tools such as Java and highly-optimized code generators.

• Operating systems provide not only schedulers but also file systems and other facili-
ties that are now commonplace in high-performance embedded systems.

• Networks are used to create distributed real-time control systems for vehicles and
many other applications, as well as to create Internet-enabled appliances.

• Security and reliability are an increasingly important aspect of embedded system
design. VLSI components are becoming less reliable at extremely fine geometries
while reliability requirements become more stringent. Security threats once
restricted to general-purpose systems now loom over embedded systems as well.

this chapter In the remainder of this chapter, we will cover several topics that will serve as recur-
ring themes throughout the book. First, we will look at design methodologies. We will
see how traditional hardware or software methodologies have merged and evolved to
serve the needs of embedded system designers. Next, we will consider models of compu-
tation, which serve as guides for programming and design analysis. We will then look at
two closely related topics—reliability and security—as they apply to embedded systems.
We will then review the basics of some important applications of embedded computing
so that we can refer to those algorithms and processes in design examples.

remainder of this 
book

The rest of this book will proceed roughly bottom-up from simpler components to
complex systems. Chapters 2 through 4 concentrate on single processor systems:

• Chapter 2 will cover CPUs, including the range of microarchitectures available to
embedded system designers, processor performance, and power consumption. 

• Chapter 3 will look at programs, including languages and design and how to com-
pile efficient executable versions of programs. 

• Chapter 4 will study real-time scheduling and operating systems. 
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4 Chapter 1 Embedded Computing

Chapters 5 through 8 concentrate on problems specific to multiprocessors:
• Chapter 5 describes methods for hardware/software co-design, which designs

accelerators to complement CPUs. 
• In Chapter 6 we will introduce a taxonomy of multiprocessor hardware architec-

tures and what sorts of multiprocessor structures are useful in optimizing embed-
ded system designs. 

• In Chapter 7 we will look at software for multiprocessors. 
• Chapter 8 moves from closely-coupled multiprocessors to networks; we will

study both hardware and software aspects of networked embedded systems.

Design Methodologies

A design methodology is not simply an abstraction—it must be defined in terms of
available tools and resources. The designers of high-performance embedded systems
face many challenges. Some of those challenges include:

• The design space is large and irregular. We do not have adequate synthesis tools for
many important steps in the design process. As a result, designers must rely on anal-
ysis and simulation for many design phases.

• We can’t afford to simulate everything in extreme detail. Not only do simulations
take time, but the cost of the server farm required to run large simulations is a signif-
icant element of overall design cost. In particular, we can’t perform a cycle-accurate
simulation of the entire design for the large data sets that are required to validate
large applications.

• We need to be able to develop simulators quickly. Simulators must reflect the struc-
ture of application-specific designs. System architects need tools to help them con-
struct application-specific simulators.

• Software developers for systems-on-chips need to be able to write and evaluate soft-
ware before the hardware is done. They need to be able to evaluate not just function-
ary but performance and power as well.

System designers need tools to help them quickly and reliably build heterogeneous
architectures. They need tools to help them integrate several different types of proces-
sors. They also need tools to help them build multiprocessors from networks, memories,
and processing elements.

1.2
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1.2 Design Methodologies 5

1.2.1 Basic Design Methodologies

Much of the early writings on design methodologies for computer systems cover soft-
ware, but the methodologies for hardware tend to be more concrete since hardware
design makes more use of synthesis and simulation tools. An ideal embedded systems
methodology makes use of the best of both hardware and software traditions.

waterfall and 
spiral

One of the earliest models for software development was the waterfall model illus-
trated in Figure 1-2. The waterfall model is divided into five major stages: requirements,
specification, architecture, coding, and maintenance. The software is successively
refined through these stages, with maintenance including software delivery and follow-
on updates and fixes. Most of the information in this methodology flows from the top
down—that is, from more abstract stages to more concrete stages—although some infor-
mation could flow back from one stage to the preceding stage to improve the design. The
general flow of design information down the levels of abstraction gives the waterfall
model its name. The waterfall model was important for codifying the basic steps of soft-
ware development, but researchers soon realized that the limited flow of information
from detailed design back to improve the more abstract phases was both an unrealistic
picture of software design practices and an undesirable feature of an ideal methodology.
In practice, designers can and should use experience from design steps to go back,
rethink earlier decisions, and redo some work.

requirements

specification

architecture

coding

maintenance

requirements

architecture
coding prototype

requirements

architecturecoding initial
design

requirements

architecturecoding refined
design

waterfall spiral

Figure 1-2
Two early models of software development.
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6 Chapter 1 Embedded Computing

The spiral model, also shown in Figure 1-2, was a reaction to and a refinement of
the waterfall model. This model envisions software design as an iterative process in
which several versions of the system, each better than the last, is created. At each phase,
designers go through a requirements/architecture/coding cycle. The results of one cycle
are used to guide the decisions in the next round of development. Experience from one
stage should both help give a better design at the next stage and allow the design team to
create that improved design more quickly.

hardware design 
methodologies

Figure 1-3 shows a simplified version of the hardware design flows used in many
VLSI designs. Modern hardware design makes extensive use of several techniques not as
frequently seen in software design: search-based synthesis algorithms; and models and
estimation algorithms. Hardware designs also have more quantifiable design metrics
than traditional software designs. Hardware designs must meet strict cycle time require-
ments, power budgets, and area budgets. Although we have not shown backward design

register-transfer
specification

state assignment,
minimization, etc.

technology-independentcell library

technology
database

place and
route

layout

logic synthesis

technology-dependent
logic synthesis

Figure 1-3
A digital synthesis design flow.

routability model

wiring model

timing analysis

timing analysis

timing analysis

 
 

First Draft: June 2005                                                                                              Wayne Wolf 
 

Copyright © Elsevier. Permission to copy must be obtained in writing from the publisher 



1.2 Design Methodologies 7

flow from lower to higher levels of abstraction, most design flows allow such iterative
design.

Modern hardware synthesis uses many types of models. In Figure 1-3, the cell
library describes the cells used for logic gates and registers, both concretely in terms of
layout primitives and more abstractly in terms of delay, area, etc. The technology data-
base captures data not directly associated with cells, such as wire characteristics. These
databases generally carry static data in the form of tables. Algorithms are also used to
evaluate models. For example, several types of wirability models are used to estimate the
properties of the wiring in the layout before that wiring is complete. Timing and power
models evaluate the performance and power consumption of designs before all the
details of the design are known; for example, although both timing and power depend on
the exact wiring, wire length estimates can be used to help estimate timing and power
before the delay is complete. Good estimators help keep design iterations local. The
tools may search the design space to find a good design, but within a given level of
abstraction and based up on models at that level. Good models combined with effective
heuristic search can minimize the need for backtracking and throwing out design results.

1.2.2 Embedded Systems Design Flows

Embedded computing systems combine hardware and software components that must
work closely together. Embedded system designers have evolved design methodologies
that play into our ability to embody part of the functionality of the system in software.

co-design flows Early researchers in hardware/software co-design emphasized the importance of
concurrent design. Once the system architecture has been defined, the hardware and soft-
ware components can be designed relatively separately. The goal of co-design is to make
appropriate architectural decisions that allow later implementation phases to be carried
out separately. Good architectural decisions, because they must satisfy hard metrics like
real-time performance and power consumption, require appropriate analysis methods.

Figure 1-4 shows a generic co-design methodology. Given an executable specifica-
tion, most methodologies perform some initial analysis to determine parallelism oppor-
tunities and perhaps break the specification into processes. Hardware/software
partitioning chooses an architecture in which some operations are performed directly by
hardware and others are performed by software running on programmable platforms.
Hardware/software partitioning produces module designs that can be implemented sepa-
rately. Those modules are then combined, tested for performance or power consumption,
and debugged to create the final system.

platform-based 
design

Platform-based design is a common approach to using systems-on-chips. Platforms
allow several customers to customize the same basic platform into different products.
Platforms are particularly useful in standards-based markets, where some basic features
must be supported but other features must be customized to differentiate products.

two-stage process As shown in Figure 1-5, platform-based design is a two-stage process. First, the platform
must be designed, based upon the overall system requirements (the standard, for exam-
ple) and how the platform should be customizable. Once the platform has been designed,
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8 Chapter 1 Embedded Computing

it can be used to design a product. The product makes use of the platform features and
adds its own features.

platform design 
phases

Platform design requires several design phases:

• Profiling and analysis turn system requirements and software models into more spe-
cific requirements on the platform hardware architecture.

• Design space exploration evaluates hardware alternatives.

• Architectural simulation helps evaluate and optimize the details of the architecture.

Figure 1-4
A design flow for hardware/software co-design.
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1.2 Design Methodologies 9

• Base software—hardware abstraction layers, operating system ports, communica-
tion, application libraries, debugging—must be developed for the platform.

programming 
platforms

Platform use is challenging in part because the platform requires a custom program-
ming environment. Programmers are used to rich development environments for stan-
dard platforms. Those environments provide a number of tools—compilers, editors,
debuggers, simulators—in a single graphical user interface. However, rich programming
environments are typically available for uniprocessors. Multiprocessors are harder to
program and heterogeneous multiprocessors are harder than homogeneous multiproces-
sors. The platform developers must provide tools that allow software developers to use
the platform. Some of these tools come from the component CPUs but other tools must
be developed from scratch. Debugging is particularly important and difficult, since
debugging access is hardware-dependent. Interprocess communication is also challeng-
ing but is a critical tool for application developers.

1.2.3 Standards-Based Design Methodologies

Many high-performance embedded computing systems implement standards. Multi-
media, communications, and networking all provide standards for various capabilities.
One product may even implement several different standards. In this section we will
consider the effects that the standards have on embedded system design methodologies
[Wol04].

Figure 1-5
Platform-based design.

system
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platform
design

platform
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10 Chapter 1 Embedded Computing

pros and cons of 
standards

On the one hand, standards enable products and in particular systems-on-chips. Stan-
dards create large markets for particular types of functions: they allow devices to inter-
operate and they reassure customers that the device provides the required functions.
Large markets help justify any system design project, but they are particularly important
in system-on-chip design. In order to cover the costs of SoC design and manufacturing,
several million of the chips must be sold in many cases. Such large markets are generally
created by standards.

On the other hand, the fact that the standard exists means that the chip designers
have much less control over the specification of what they need to design. Standards
define complex behavior that must be adhered to. As a result, some features of the archi-
tecture will be dictated by the standard.

Most standards do provide for improvements. Many standards define that certain
operations must be performed, but they do not specify how they may be performed. The
implementer can choose a method based upon performance, power, cost, quality, or ease
of implementation. For example, video compression standards define basic parameters
of motion estimation but not what motion estimation algorithm should be performed.

The intellectual property and effort required to implement a standard goes into dif-
ferent parts of the system than would be the case for a blank-sheet design. Algorithm
design effort goes into unspecified parts of the standard and parts of the system that lie
beyond the standard. For example, cell phones must adhere to communication standards
but are free to design many aspects of their user interfaces.

Standards are often complex, and standards in a given field often become more com-
plex over time. As a field evolves, practitioners learn more about how to do a better job
and tend to build that knowledge into the standard. While these improvements may lead
to higher quality systems, they also make the system implementation larger.

reference 
implementations

Standards bodies typically provide a reference implementation. This is an execut-
able program that conforms to the standard. It is often written in C, but may be written in
Java or some other language. The reference implementation is first used to aid the stan-
dard developers. It is then distributed to implementers of the specification. (The refer-
ence implementation may be available free of charge, but in many cases an implementer
must pay a license fee to the standards body to build a system that conforms to the spec-
ification. The license fee goes primarily to patent holders whose inventions are used
within the standard.) There may be several reference implementations if multiple groups
experiment with the standard and release their results.

The reference implementation is something of a mixed blessing for system design-
ers. On the one hand, the reference implementation saves the system designers a great
deal of time. On the other hand, it comes with some liabilities. Of course, learning some-
one else’s code is always time-consuming. Furthermore, the code generally cannot be
used as-is. Reference implementations are typically written to run on a large workstation
with infinite memory; it is generally not designed to operate in real time. The code must
often be restructured in many ways: eliminating features that will not be implemented;
replacing heap allocation with custom memory management; improving cache utiliza-
tion; function inlining; and many other tasks.

design tasks The implementer of a standard must perform several design tasks:
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1.2 Design Methodologies 11

• The unspecified parts of the implementation must be designed.

• Parts of the system that are not specified by the standard (user interface, for exam-
ple), must be designed.

• An initial round of platform-independent optimization must be used to improve the
chosen reference implementation.

• The reference implementation and other code must be profiled and analyzed.

• The hardware platform must be designed based upon initial characterization.

• The system software must be further optimized to better match the platform.

• The platform itself must be further optimized based upon additional profiling.

• The platform and software must be verified for conformance to the standard as well
as non-functional parameters such as performance and energy consumption.

The next example introduces the Advanced Video Coding standard.

Application Example 1-1

AVC/H.264

The latest generation of video compression standards is known by several names. It is
officially part 10 of the MPEG-4 standard, known as Advanced Video Coding (AVC).
However, the MPEG group joined forces with the H.26x group, so it is also known as
H.264.

The MPEG family of standards is primarily oriented toward broadcast, in which the
transmitter is more complex in favor of cheaper receivers. The H.26x family of stan-
dards, in contrast, has traditionally targeted videoconferencing, in which systems must
both transmit and receive, giving little incentive to trade transmitter complexity for
receiver complexity.

The H.264 standard provides many features that give improved picture quality and
compression ratio. H.264 codecs typically generate encoded streams that are half the size
of MPEG-2 encodings. For example, the H.264 standard allows multiple reference
frames, so that motion estimation can use pixels from several frames to handle occlu-
sion. This is an example of a feature that improves quality at the cost of increased
receiver complexity.

The reference implementation for H.264 is over 700,000 lines of C code. This refer-
ence implementation uses only fairly simple algorithm for some unspecified parts of the
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12 Chapter 1 Embedded Computing

standard, such as motion estimation. However, it implements both video coding and
decoding and it does so for the full range of display sizes supported by the standard,
ranging from QCIF to HDTV.

1.2.4 A Methodology of Methodologies

The design of high-performance embedded systems is not described well by simple
methodologies. Given that these systems implement specifications that are millions of
lines long, it should not be surprising that we have to use many different types of design
processes to build complex embedded systems.

Methodologies that we use in embedded system design include:

• software performance analysis Executable specifications must be analyzed to
determine how much computing horsepower is needed and what types of operations
need to be performed. 

• architectural optimization Cycle-accurate simulation and other architectural meth-
ods can be used to optimize systems.

• hardware/software co-design Co-design helps us create efficient heterogeneous
architectures.

• network design Whether in distributed embedded systems or systems-on-chips, net-
works must provide the necessary bandwidth at reasonable energy levels.

• software testing Software must be evaluated for functional correctness and perfor-
mance on the target platform.

• software tool generation Tools to program the system must be generated from the
hardware and software architectures.

1.2.5 Joint Algorithm and Architecture Development

Embedded systems architectures may be designed along with the algorithms they will
execute. This is true even in standards-based systems, since standards generally allow
for algorithmic enhancements. Joint algorithm/architecture development creates some
special challenges for system designers.

Algorithm designers need estimates and models to help them tailor the algorithm to
the architecture. Even though the architecture is not complete, the hardware architects
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1.3 Models of Computation 13

should be able to supply estimates of performance and power consumption. These
should be useful for simulators that take models of the underlying architecture.

Algorithm designers also need to be able to develop software. This requires func-
tional simulators that run as fast as possible. If hardware were available, algorithm
designers could run code at native speeds. Functional simulators can provide adequate
levels of performance for many applications even if they don’t run at hardware speeds.
Fast turnaround of compilation and simulation is very important to successful software
development.

Models of Computation

A model of computation defines the basic capabilities of an abstract computer. In the
early days of computer science, models of computation helped researchers understand
the basic capabilities of computers. In embedded computing, models of computation
help us understand how to correctly and easily program complex systems. In this section
we will consider several models of computation and the relationships between them. The
study of models of computation have influenced the way real embedded systems are
designed; we will balance the theory in this section with mentions of how some of these
theoretical techniques have influenced embedded software design.

1.3.1 Why Study Models of Computation?

expressiveness Models of computation help us understand the expressiveness of various program-
ming languages. Expressiveness has several different aspects. On the one hand, we can
prove that some models are more expressive than others---that some styles of computing
can do some things that other styles can’t. But expressiveness also has implications for
programming style that are at least as important for embedded system designers. Two
languages that rae both formally equally expressive may be good at very different types
of applications. For example, control and data are often programmed in very different
ways; a language may express one only with difficulty but the other easily.

language styles Experienced programmers can think of several types of expressiveness that can be
useful when writing programs:

• control vs. data This is one of the most basic dichotomies in programming.
Although control and data are formally equivalent. we tend to think about them very
differently. Many programming languages have been developed for control-intensive
applications like protocol design. Similarly, many other programming languages
have been designed for data-intensive applications like signal processing.

1.3

 
 

First Draft: June 2005                                                                                              Wayne Wolf 
 

Copyright © Elsevier. Permission to copy must be obtained in writing from the publisher 



14 Chapter 1 Embedded Computing

• sequential vs. parallel This is another basic theme in computer programming. Many
languages have been developed to make it easy to describe parallel programs in a
way that is both intuitive and formally verifiable. However, programmers still feel
comfortable with sequential programming when they can get away with it.

• communication The nature of communication between units in a program is related
to the way that parallelism is described. Sequential languages communicate by pass-
ing control. Various communication mechanisms have been developed for different
applications. These may describe control-oriented vs. data-oriented communication.
They may also embody different methods of buffering communicated data.

The astute reader will note that we aren’t concerned here about some traditional pro-
gramming language issues such as modularity. While modularity and maintainability are
important, they are not unique to embedded computing. Some of the other aspects of lan-
guages that we mention are more central to embedded systems that must implement sev-
eral different styles of computation so that they work together smoothly.

interoperability Expressiveness may lead us to use more than one programming language to build a
system.—we call these systems heterogeneously programmed. When we mix pro-
gramming languages, we must satisfy the extra burden of correctly designing the com-
munication between modules of different programming languages. Within a given
language, the language system often helps us verify certain basic operations and it is
much easier to think about how the program works. When we mix and match multiple
languages, it is much more difficult for us to convince ourselves that the programs will
work together properly. Understanding the model under which each programming lan-
guage works and the conditions under which they can reliably communicate is a critical
step in the design of heterogeneously programmed systems.

1.3.2 Finite vs. Infinite State

finite vs. infinite 
state

The amount of state that can be described by a model is one of the most fundamental
aspects of any model of computation. Early work on computability emphasized the capa-
bilities of finite-state vs. infinite-state machines; infinite state was generally considered
to be good because it showed that the machine was more capable. However, finite-state
models are much easier to verify in both theory and practice. As a result, finite-state pro-
gramming models have an important place in embedded computing.

finite-state 
machine

Finite-state machines (FSMs) are well understood to both software and hardware
designers. An example is shown in Figure 1-6. An FSM is typically defined as 

(EQ 1-1)

where I and O are the inputs and outputs of the machine, S is its current state, and ∆
and Τ are the states and transitions respectively of the state transition graph. In a Moore

M I O S ∆ T, , , ,{ }=
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1.3 Models of Computation 15

machine, the output is a function only of S, while in a Mealy machine the output is a
function of both the present state and the current input.

Although there are models for asynchronous FSMs, a key feature in the development
of the finite-state machine model is the notion of synchronous operation: inputs are
accepted only at certain moments. Finite-state machines view time as integer-valued, not
real-valued. At each input, the FSM evaluates its state and determines its next state based
upon the input received as well as the present state.

streams In addition to the machine itself, we need to model its inputs and outputs. A stream
is widely used as a model of terminal behavior because it describes sequential behav-
ior—time as ordinals, not in real values. The elements of a stream are symbols in an
alphabet. The alphabet may be binary, in some other base, or other types of values, but
the stream itself does not impose any semantics on the alphabet. A stream is a totally
ordered set of symbols . A stream may be finite or infinite. Informally, the
time at which a symbol appears in a stream is given by its ordinality in the stream. In this
equation:

(EQ 1-2)

the symbol st is the tth element of the stream S.
We can use streams to describe the input/output or terminal behavior of a finite-state

machine. If we view the FSM as having several binary-valued inputs, the alphabet for

Figure 1-6
A state transition graph and table for a finite-state machine.
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16 Chapter 1 Embedded Computing

the input stream will be binary numbers; in some cases it is useful to think of the inputs
as forming a group whose values are determined by a single symbol that defines the
states of all the inputs. Similar thinking can be applied to the outputs. The behavior of
the inputs is then described as one or more streams, depending on the alphabet used.
Similarly, the output behavior is described as one or more streams. At time i, the FSM
consumes a symbol on each of its input streams and produces a symbol on each of its
output streams. The mapping from inputs to outputs is determined by the state transition
graph and the machine’s internal state. From the terminal view, the FSM is synchronous
because the consumption of inputs and generation of outputs is coordinated.

verification and 
finite state

Although synchronous finite-state machines may be most familiar to hardware
designers, synchronous behavior is a growing trend in the design of languages for
embedded computing. Finite-state machines make interesting models for software
because they can be more easily verified than infinite-state machines. Because an FSM
has a finite number of states, we can visit all the states and exercise all the transitions in
a finite amount of time. If a system has infinite state, we cannot visit all its states in finite
time. Although it may seem impractical to walk through all the states of an FSM in prac-
tice, research over the past 20 years has led us to very efficient algorithms for exploring
large state spaces. The ordered Boolean decision diagram (OBDD) [cite Randy Bryant
here] can be used to describe combinational Boolean functions. Techniques have been
developed to describe state spaces in terms of OBDDs such that properties of those state
spaces can be efficiently checked in many cases. OBDDs do not take away the basic NP-
completeness of combinational and state space search problems; in some cases the
OBDDs can become very large and slow to evaluate. But in many cases they run very
fast and even in pathological cases can be faster than competing methods.

OBDDs allow us to perform many checks that are useful tests of the correctness of
practical systems:

• product machines It is often easier to express complex functions as systems of com-
municating machines. However, hidden bugs may lurk in the communication
between those components. Building the product of the communicating machines is
the first step in many correctness checks.

• reachability Many bugs manifest themselves as inabilities to reach certain states in
the machine. In some cases, unreachable states may simply describe useless but
unimportant behavior. In other cases, unreachable states may signal a missing feature
in the system.

Non-deterministic FSMs, also known as non-deterministic finite automata
(NFAs), are used to describe some types of systems.An example is shown in Figure 1-7:
two transitions out of state s1 have the same input label. One way to think about this
model is that the machine non-deterministically chooses a transition such that future
inputs will cause the machine to be in the proper state; another way to think about execu-
tion is that the machine follows all possible transitions simultaneously until future inputs
cause it to prune some paths. It is important to remember that non-deterministic autom-
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1.3 Models of Computation 17

ata are not formally more expressive than deterministic FSMs. An algorithm can trans-
form any NFA into an equivalent deterministic machine. But NFAs can be exponentially
smaller than its equivalent deterministic machine. This is a simple but clear example of
the stylistic aspect of expressiveness.

Statecharts Another well-known, more stylistically expressive version of FSMs is the Statechart
[CITE]. The Statechart formalism provides a hierarchy of states using two basic con-
structs: the AND state and the OR state. Statecharts are not formally more expressive

Figure 1-7
A non-deterministic FSM.

s1 s2
a

a

 
 

First Draft: June 2005                                                                                              Wayne Wolf 
 

Copyright © Elsevier. Permission to copy must be obtained in writing from the publisher 



18 Chapter 1 Embedded Computing

than standard FSMs—we can convert any Statechart to an FSM—but a Statechart may
be exponentially smaller than its FSM equivalent.

Figure 1-8 illustrates the Statechart OR state. The left-hand side of the figure shows
a fragment of a standard FSM. All four states have transitions to state S4 when input i2
appears. The OR state groups states S1, S2, and S3 together and uses a single transition to

Figure 1-8
A Statechart OR state.
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1.3 Models of Computation 19

specify that input i2 causes a transition from any state in the OR state (named s123) to
state S4.

Figure 1-9 illustrates the Statechart AND state. In the standard FSM fragment, the
states S1-2, S1-4, S2-3, and S2-4 have a complex set of transitions between them. The
AND state helps illustrate the structure in these transitions. AND state sab has two parti-
tions: one containing S1 and S2, the other containing S3 and S4. In the first partition,
inputs a and b cause transitions between S1 and S2. Similarly, inputs c and d cause tran-
sitions between S3 and S4 in the other partition. When the machine enters state sab, it
simultaneously executes both partitions. The machine can therefore be in any combina-
tion of .

Statecharts are an important variation in finite-state machines because they make
specifications smaller and easier to understand. Statecharts and their variations have
been used in many software projects. For example, the TCAS-II aviation collision avoid-
ance system was designed using a language created by Leveson [Lev94] that included
Statechart-style hierarchical states. 

Turing machines The Turing machine is the most well-known infinite-state model for computation.
(Church developed his lambda calculus first, but the Turing machine more closely mod-
els the operation of practical computing machines.) The Turing machine itself consists of
a program, a read head, and a state. The machine reads and writes a tape that has been
divided into cells, each of which contains a symbol. The tape can move back and forth

Figure 1-9
A Statechart AND state.
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20 Chapter 1 Embedded Computing

underneath the head; the head can both read and write symbols on the tape. Because the
tape may be of infinite length, the Turing machine can describe infinite-state computa-
tions.

An operating cycle of a Turing machine consists of several steps:

• The machine uses the head to read the symbol in the tape cell underneath the head.

• It erases the symbol on the cell underneath the head.

• The machine consults its program to determine what to do next. Based upon the cur-
rent state and the symbol that was read, the machine may write a new symbol and/or
move the tape.

• The machine changes its state as described by the program.

The Turing machine is a powerful model that allows us to demonstrates the capabili-
ties and limits of computability. However, as we noted above, finite state allows us to
verify many important aspects of real programs even though the basic programming
model is more limited. For example, one of the key results of theoretical computer sci-
ence is the halting problem—the Turing model allows us to show that we cannot, in
general, show that an arbitrary program will halt in a finite amount of time. The failure to
ensure that programs will halt makes it impossible to verify many important problems of
programs on infinite-state systems. In contrast, because we can visit all the states of a
finite-state system in finite time, important properties become more tractable.

Figure 1-10
A Turing machine.
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1.3 Models of Computation 21

1.3.3 Parallelism and Communication

Parallelism is a fundamental concept in computer science and of great practical impor-
tance in embedded systems. Many embedded systems perform many tasks simulta-
neously. The real parallelism embodied in the hardware must be matched by apparent
parallelism in the programs.

parallelism and 
architecture

We need to capture parallelism during the early stages of design so that we can use it
to optimize our design. Parallel algorithms describe time as partially ordered—the exact
sequence of operations is not determined up front. As we bind operations to the architec-
ture, we move the description toward a totally ordered description (although some oper-
ations may be left partially ordered to be managed by the operating system). Different
choices for ordering require different amounts of hardware resources, affecting cost and
power consumption.

task graphs A simple model of parallelism is the task graph as shown in Figure 1-11. The nodes
in the task graph represent processes or tasks while the directed edges represent data
dependencies. In the example, process P4 must complete before P5 can start. Task
graphs model concurrency because sets of tasks that are not connected by data depen-
dencies may operate in parallel. In the example, τ1 and τ2 are separate components of the
graph that can run independently. Task graphs are often used to represent multi-rate sys-
tems. Unless we expose the computation within the processes, a task graph is less power-
ful than a Turing machine. The basic task graph cannot even describe conditional
behavior. Several extended task graphs have been developed that describe conditions but
even these are finite-state machines 

Figure 1-11
A task graph.
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22 Chapter 1 Embedded Computing

Petri nets The Petri net is one well-known parallel model of computation. Petri nets were orig-
inally considered to be more powerful than Turing machines, but later work showed that
the two are in fact equivalent. However, Petri nets explicitly describe parallelism in a
way that makes some types of programs easier to write. An example Petri net is shown in
Figure 1-12. A net, which is a form of program, consists of three types of objects. places
that hold state; arcs that define how state can move from place to place; and transitions
that guard the arcs. The state of the executing system is defined by tokens. The tokens
move around the net in accordance with firing rules. Parallelism is easy to express in a
Petri net because the net can have several tokens flowing through it at once.
communication in FSMs

Petri nets have been used to study many problems in parallel programming. They are
sometimes used to write parallel programs, but are not often used directly as programs.
However, the notion of multiple tokens is a powerful one that serves us well in many
types of programs.

Useful parallelism necessarily involves communication between the parallel compo-
nents of the system. Different types of parallel models use different styles of communi-
cation. These styles can have profound implications on the efficiency of the
implementation of communication. We can distinguish two basic styles of communica-
tion: buffered and unbuffered. A buffered communication assumes that memory is
available to store a value if the receiving process is temporarily not ready to receive it.
An unbuffered model assumes no memory in between the sender and receiver.

communication in 
FSMs

Even a simple model like the FSM can exhibit parallelism and communication.
Figure 1-13 shows two communicating FSMs. Each machine, M1 and M2, has an input

Figure 1-12
A Petri net.
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1.3 Models of Computation 23

from the outside world and an output to the outside world. But each has one output con-
nected to the input of the other machine. The behavior of each machine therefore
depends on the behavior of the other machine. As we noted before, the first step in ana-
lyzing the behavior of such networks of FSMs is often to form the equivalent product
machine.

synchronous 
languages

Communicating FSM languages have been used for software as well as hardware.
Figure 1-14 shows an example of Esterel code [cite]. As we will see in Chapter 3, each
process in an Esterel program is considered as finite state machine and the behavior of
the system of process is determined by building the product of the component machines.
Esterel has been widely used to program avionics and other critical applications.

The communicating FSMs of Figure 1-13 communicate without buffers. A buffer
would correspond to a register (in hardware) or variable (in software) in between and
output on one machine and the corresponding input on the other machine. However, we
can implement both synchronous and asynchronous behavior using this simple unbuf-
fered mechanism as shown in Figure 1-15. Synchronous communication simply has one
machine throw a value to the other machine. In the figure, the synchronously communi-
cating M1 sends val to M2 without checking whether M2 is ready. If the machines are
designed properly, this is very efficient, but if M1 and M2 fall out of step then M2 will

Figure 1-13
Two communicating FSMs.

M1 M2

insert Esterel code here

Figure 1-14
An example Esterel program.
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24 Chapter 1 Embedded Computing

misbehave because val is either early or late. Asynchronous communication uses a hand-
shake. On the right-hand side of the figure, the asynchronous M1 first sends a ready sig-
nal, then a value. M2 waits for the ready signal before looking for val. This requires extra
states but also does not require that the machines move in lockstep.

blocking vs. 
unblocking

Another fundamental distinction between communication methods, blocking vs.
unblocking behavior. In blocking communication, the sending process blocks, or waits
until the receiving process has the data. Unblocking communication does not require the
sender to wait for the receiver to receive the data. If there are no buffers between the
sender and receiver, unblocking communication will drop data if the receiver is not
ready. Adding a buffer allows the sender to move on even if the receiver is not ready,
assuming that the buffer is not already full. An infinite-size buffer allows unlimited
unblocking communication.

buffering and 
communication

A natural question in the case of buffered communication is the size of the buffer
required. In some systems, there may be cases in which an infinite-size buffer is required
to avoid losing data. In a multi-rate system in which the sender may always produce data
faster than the consumer, the buffer size may grow indefinitely. However, it may be pos-
sible to show that the producer cannot keep more than some finite number of elements in
the buffer even in the worst case. If we can prove the size of the buffer required, we can
create a cheaper implementation. Proving that the buffer is finite also tells us that it is
possible to build a system in which the buffer never overflows. As with other problems,
proving buffer sizes is easier in finite-state systems.

Figure 1-15
Synchronous and asynchronous communication in FSMs.
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1.3 Models of Computation 25

1.3.4 Control Flow and Data Flow Models

Control and data are fundamental units of programming. Although control and data are
fundamentally equivalent, we tend to think of data operations as more regular, such as
arithmetic, and control as less regular and more likely to involve state.

control flow graph A basic model of control is the control flow graph (CFG) as shown in Figure 1-16.
The nodes in the graph are either unconditionally executed operations (the rectangles) or
conditions (the diamonds). In this case we have decorated the rectangles with operations
performed at those states, but those operations are not strictly part of the control flow
graph model. The control flow graph has a single thread of control, which can be thought
of as a program counter moving through the program. This is a finite-state model of
computation. Many compilers model a program using a control data flow graph
(CDFG), which adds data flow models that we will describe in a moment to describe the
operations of the unconditional nodes and the decisions in the conditional nodes.

basic data flow 
graphs

 A basic model of data is the data flow graph (DFG), an example of which is shown
in Figure 1-17. Like the task graph, the data flow graph consists of nodes and directed
edges, where the directed edges represent data dependencies. The nodes in the DFG rep-
resent the data operations, such as arithmetic operations. Some edges in the DFG termi-
nate at a node but do not start at a node; these sources provide inputs. Similarly, sinks
start at a node but do not terminate at a node. (An alternative formulation is to provide
three types of nodes: operator, input, and output.)

Figure 1-16
A control flow graph.
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26 Chapter 1 Embedded Computing

We require that DFGs be trees—they cannot have cycles. This makes the graphs eas-
ier to analyze but does limit their uses. Basic data flow graphs are commonly used in
compilers.

The data flow graph is finite-state. It describes parallelism in that it defines only a
partial order on the operations in the graph. Whether we execute those operations one at
a time or several at once, any order of operations that satisfies the data dependencies is
acceptable.

streams and firing 
rules

We can use streams to model the behavior of the data flow graph. Each source in the
data flow graph has its own stream and each sink of the data flow graph is a stream as
well. The nodes in the DFG use firing rules to determine their behavior. The simplest
firing rule is similar to the operation of finite-state machines: firing consumes a token on
each of the node’s input streams and generates one token on its output; we will call this
the standard data flow firing rule. One way to introduce conditions into the DFG is
with a conditional node with n+1 terminals: data inputs d0,d1,... and control input k.
When k=0, data input d0 is consumed and sent to the output; when k=1, d1 is consumed
and transferred to the output, etc. In this firing rule, not all of the inputs to the node con-
sume a token at once.

signal flow graphs A slightly more sophisticated version of data flow is the signal flow graph (SFG)
commonly used in signal processing. As shown in Figure 1-18, the signal flow graph
adds a new type of node generally called a delay node. As signified by the ∆ symbol, the
delay node delays a stream by n (by default, one) time steps. Given a stream S, the result
of a delay operator is . Edges in the SFG may be given weights that

Figure 1-17
A data flow graph.
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indicate that the value given to a node is to be multiplied by the weight. We also allow
signal flow graphs to have cycles. SFGs are commonly used to describe digital filters.

 

synchronous data 
flow

A more sophisticated data flow model is the synchronous data flow (SDF) model
introduced by Lee and Messerschmitt. Synchronous data flow graphs allow feedback
and provide methods for us to determine when a system with feedback is, in fact, legal.
A simple SDF graph is shown in Figure 1-19. As with basic data flow graphs, nodes
define operations and directed edges define the flow of data. The data flowing along the
edges can be modeled as streams. Each edge has two labels: ro describes the rate at
which the node at the source of this edge produces tokens while ri describes the rate at
which the sink node of the edge consumes tokens. Each edge may also be labeled with a
delay δ that describes the amount of time between when a token is produced at the
source and when it is consumed at the edge; by convention the default delay is 0.

We can form these graphs into graphs that describe the flow of streams through sys-
tems. These graphs may have cycles. We will defer a detailed discussion of the analysis
of SDF graphs to Chapter 3, but we can analyze these graphs to determine whether the
systems they describe are feasible. For example, consider the SDF graph of Figure 1-20,
which was originally described by Lee and Messerschmitt [CITE]. There are two paths

Figure 1-18
A signal flow graph.
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Figure 1-19
A simple synchronous data flow graph.
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28 Chapter 1 Embedded Computing

to node c: a -> c and a -> b -> c. Node a emits tokens at twice the rate at which c emits
them. This is not inherently bad, but the path provides tokens from a to c at half that rate.
As a result, the flow from a to be is imbalanced and the system is infeasible.

Kahn process 
networks

Lee and Sangiovanni-Vincentelli [CITE] identified the networks of Kahn processes
as important models for systems of communicating processes. A Kahn process is illus-
trated in Figure 1-21. The process proper is connected to its inputs by infinite-size buff-
ers. Streams model the inputs and outputs of the Kahn process during execution; the
process maps its input streams to output streams. A process may have one or more inputs
and one or more outputs. If X is a stream, then F(X) is the output of a Kahn process when
given that stream. One important property of a Kahn process is monotonicity:

. (EQ 1-3)

A monotonic process’s behavior is physical in that adding more inputs will not cause
it to mysteriously generate fewer outputs.

Figure 1-20
An infeasible synchronous data flow graph.
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Figure 1-21
A Kahn process.
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A network of Kahn processes equates the input and output streams of processes in
the network. If I is the input stream to a network and X is the set of internal streams and
outputs, then the fixed point behavior of the network is

. (EQ 1-4)

Kahn showed that a network of monotonic processes is itself monotonic.

1.3.5 Reliability, Safety, and Security
In this section we will look at aspects reliable system design that are particularly impor-
tant to embedded system design. The three areas in the title of this section are closely
related:

• Reliable (or dependable) system design is concerned with making systems work
even in the face of internal or external problems. Reliable system design most often
assumes that problems are not caused maliciously.

• Safety-critical system design studies methods to make sure systems operate safely,
independent of what causes the problem.

• Security is concerned largely with malicious attacks.

Avizienis et al [Avi04] describe the relationship between dependability and security
as shown in Figure 1-22. Dependability and security are composed of several attributes:

• availability for correct service

• continuity of correct service

• safety from catastrophic consequences on users and their environment

X F X I,( )=

1.4

availability
reliability
safety
confidentiality
integrity
maintainability

dependability security

Figure 1-22
Dependability and security [Avi04].
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• integrity from improper system alterations

• maintainability through modifications and repairs;

• confidentiality of information.

Embedded systems are increasingly subject to malicious attack. But whatever the
source of the problem, many embedded systems must operate properly in the presence of
faults.

1.4.1 Why Reliable Embedded Systems?

applications 
demand reliability

Certainly many embedded systems do not need to be highly reliable. Some consumer
electronics devices are so inexpensive as to be nearly disposable. Many markets do not
require highly reliable embedded computers. But many embedded computers must be
built to be highly reliable:

• automotive electronics;

• avionics;

• medical equipment;

• critical communications systems.

Embedded computers may also handle critical data, such as purchasing data or medical
information.

The definition of reliability can vary widely with context. Certainly, computer sys-
tems that run for weeks at a time without failing are not unknown. Telephone switching
systems have been designed to be down for less than 30 seconds per year.

new problems The study of reliable digital system design goes back several decades. A variety of
architectures and methodologies have been developed to allow digital systems to operate
for long periods with very low failure rates. What is different between the design of these
traditional reliable computers and reliable embedded systems?

First, reliable embedded computers are often distributed systems. Automotive elec-
tronics, avionics, and medical equipment are all examples of distributed embedded sys-
tems that must be highly reliable. Distributed computing can work to our advantage
when designing reliable systems but distributed computers are can also be very unreli-
able if improperly designed.

Second, embedded computers are vulnerable to many new types of attacks. Reliable
computers were traditionally servers or machines that were physically inaccessible—
physical security has long been a key strategy for computer security. However, embed-
ded computers generally operate in unprotected environments. This allows for new types
of faults and attacks that require new methods of protection.
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1.4 Models of Computation 31

1.4.2 Fundamentals of Reliable System Design

sources of faults Reliable systems are designed to recover from faults. A fault may be permanent or
transient. A fault may have many sources:

• Physical faults come from manufacturing defects, radiation hazards, etc.

• Design faults are the result of improperly designed systems.

• Operational faults come from human error, security breaches, poorly designed
human-computer interfaces, etc.

While the details of how these faults happen and how they affect the system may vary,
the system’s users do not really care what caused a problem, only that the system reacted
properly to the problem. Whether a fault comes from a manufacturing defect or a secu-
rity problem, the system must react in such a way to minimize the fault’s effect on the
user.

system reliability 
metrics

Users judge systems by how reliable they are, not by the problems that cause them to
fail. Several metrics are used to quantify system reliability {Sie98].

Mean time to failure (MTTF) is one well-known metric. Given a set of perfectly
functioning systems at time 0, MTTF is the expected time for the first system in that set
to fail. Although it is defined for a large set of systems, it is also often used to character-
ize the reliability of a single system. The mean time to failure can be calculated by

(EQ 1-5)

where R(t) is the reliability function of the system.
The reliability function of a system describes the probability that the system will

operate correctly in the time period . R(0) = 1 and R(t) monotonically decreases with
time. 

The hazard function z(t) is the failure rate of components. For a given probability
function, the hazard function is defined as

. (EQ 1-6)

characterizing 
faults

Faults may be measured empirically or modeled by a probability distribution. Empir-
ical studies are usually the basis for choosing an appropriate probability distribution.
One common model for failures is the exponential distribution. In this case, the hazard
function is

MTTF R t( )d
0

∞

∫=

0 t,[ ]

t( ) pdf
1 CDF–-------------------=
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. (EQ 1-7)

Another function used to model failures is the Weibull distribution:

. (EQ 1-8)

In this formula, α is known as the shape parameter and λ is known as the scale
parameter. The Weibull distribution must normally be solved numerically.

A distribution that is observed empirically for many hardware components is the
bathtub distribution shown in Figure 1-23. The bathtub curve gets its name from its
similarity to the cross section of a bathtub. Hardware components generally show infant
mortality in which marginal components fail quickly, then a long period with few fail-
ures, followed by a period of increased failures due to long-term wear mechanisms.

actions after faults The system can do many things after a fault. Generally several of these actions are
taken in order until an action gets the system back into running condition. Actions from
least to most severe include:

n fail All too many systems fail without trying to even detect an error.

• detect An error may be detected. Even if the system stops at this point, the diagnos-
tic information provided by the detector can be useful.

• correct An error may be corrected. Memory errors are routinely corrected. A simple
correction causes no long-term disturbance to the system.

• recover A recovery may take more time than a simple correction. For example, a
correction may cause a noticeable pause in system operation.

z t( ) λ=

t( ) αλ λt( )α –=

Figure 1-23
A bathtub distribution.

time

z(t)

this should look more like a bathtub
with a flat bottom
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• contain The system may take steps to ensure that a failure does not corrupt a large
part of the system. This is particularly true of software or hardware failures that can,
for example, cause large parts of memory to change.

• reconfigure One way to contain a fault is to reconfigure the system so that different
parts of the system perform some operations. For example, a faulty unit may be dis-
abled and another unit enabled to perform its work.

• restart Restarting the system may be the best way to wipe out the effects of an error.
This is particularly true of transient errors and software errors.

• repair Either hardware or software components may be modified or replaced to
repair the system.

reliability methods Many techniques have been developed to make digital systems more reliable. Some
are more applicable to hardware, others to software, and some may be used in both hard-
ware and software.

error correction 
codes

Error correction codes were developed in the 1950’s, starting with Hamming, to
both detect and correct errors. These codes introduce redundant information in a way
such that certain types of errors can be guaranteed to be detected or corrected. For exam-
ple, a code that is single error correcting/double error detecting can both detect and cor-
rect an error in a single bit and detect, but not correct, two bit errors.

voting systems Voting schemes are often used to check at higher levels of abstraction. One well-
known voting method is triple modular redundancy, illustrated in Figure 1-24. The
computation unit C has three copies, C1, C2, and C3. All three units receive the same
input. A separate unit compares the results generated by each input. If at least two results

Figure 1-24
Triple modular redundancy.

C1

C2

C3

resultvoteinput
error

 
 

First Draft: June 2005                                                                                              Wayne Wolf 
 

Copyright © Elsevier. Permission to copy must be obtained in writing from the publisher 
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agree, then that value is chosen as correct by the voter. If all three results differ, then no
correct result can be given.

watchdog timers The watchdog timer is widely used to detect system problems. As shown in
Figure 1-25, the watchdog timer is connected to a system that it watches. If the watchdog
timer rolls over, it generates a done signal that should be attached to an error interrupt in
the system. The system should be designed so that, when running properly, it always
resets the timer before it has a chance to roll over. Thus, a done signal from the watch-
dog timer indicates that the system is somehow operating improperly. The watchdog
timer can be used to guard against a wide variety of faults.

design diversity Design diversity is a design methodology intended to reduce the chance that certain
systematic errors creep into the design. When a design calls for several instances of a
given type of module, different implementations of that module are used rather than
using the same type of module everywhere. For example, a system with several CPUs
may use several different types of CPUs rather than use the same type of CPU every-
where. In a triple modular redundant system, the components that produce results for
voting may be of different implementations to decrease the chance that all embody the
same design error.

1.4.3 Novel Attacks and Countermeasures

physical access A key reason that embedded computers are more vulnerable than general-purpose com-
puters is that many embedded computers are physically accessible to attackers. Physical
security is an important technique used to secure the information in general-purpose sys-

Figure 1-25
Watchdog timer.

watchdog
timer

system
reset

done
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tems—servers are physically isolated from potential attackers. When embedded comput-
ers with secure data are physically available, the attacker can gain a great deal more
information about the hardware and software. This information can be used not only to
attack that particular node but also helps the attacker develop ways to interfere with
other nodes of that model.

Internet attacks Some attacks on embedded systems are made much easier by Internet access. Many
embedded systems today are connected to the Internet. Viruses can be downloaded or
other sorts of attacks can be perpetrated over the Internet. Siewiorek et al [Sie04] argue
that global volume is a key trend in reliable computing systems. They point out that hun-
dreds of millions of networked devices are sold each year, primarily to users with little or
no formal training. The combination of large numbers of devices and untrained users
means that many tasks formerly performed in the privacy of a machine room must now
be automated and reliably delivered to the masses and that these systems must be
designed to shield against both faults and malicious attacks.

attacks on 
automobiles

But many devastating problems can be caused without Internet access Consider, for
example, attacks on automobiles. Most modern cars uses microprocessors to control
their engines and many other microprocessors are used throughout the car. The software
in the engine controller could, for example, be changed to cause the car to stall under
certain circumstances. This would be annoying or occasionally dangerous when per-
formed on a single car. If a large number of cars were programmed to all stall at the same
time, the resulting traffic accidents could cause significant harm. This sort of pro-
grammed accident is arguably worse if only some of the cars on the road have been pro-
grammed to stall. 

Clearly, this stalling accident could be perpetrated if automobiles provided Internet
access to the engine controller software. Prototype cars have demonstrated Internet
access to at least part of the car’s internal network. However, Internet-enabled cars are
not strictly necessary. Auto enthusiasts have reprogrammed engine controllers for over
20 years to change the characteristics of their engine. A determined attacker could spread
viruses through auto repair shops.

battery attack One novel category of attack is the battery attack. This attack tries to disable the
node by draining its battery. If a node is operated by a battery, the node’s power manage-
ment system can be subverted by network operations. For example, pinging a node over
the Internet may be enough to cause it to operate more often than intended and drain its
battery prematurely.

Battery attacks are clearly threats to battery-operated devices like cell phones and
PDAs. Consider, for example, a cell phone virus that causes the phone to repeatedly
make calls. Cell phone viruses have already been reported [Jap05]. But many other
devices use batteries even though they also receive energy from the power grid. The bat-
tery may be used to run a real-time clock (as is done in many PCs) or to maintain other
system state. A battery attack on this sort of device could cause problems that would not
be noticed for quite some time.

QoS attacks Denial-of-service attacks are well-known in general-purpose systems, but real-time
embedded systems may be vulnerable to quality-of-service (QoS) attacks. If the net-
work delivers real-time data, then small delays in delivery can cause the data to be use-
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less. If that data is used for real-time control, then those small delays can cause the
system to fail. We also refer to this as a timing attack because it changes the real-time
characteristics of the system. A QoS or timing attack is powerful because its effects are
not just limited to information. The dynamics of the system being controlled help to
determine the response of the system. A relatively small change in timing can cause a
great deal of damage if a large, heavy, fast-moving object is being controlled.

attacks on sensor 
networks

Wood and Stankovic [Woo02] identified a number of ways to perform denial-of-ser-
vice attacks on sensor networks at different levels of the network hierarchy:

• physical layer jamming, tampering

• link layer collision, exhaustion, unfairness

• network and routing layer neglect and greed, horning, misdirection, black holes,
authorization, probing, redundancy

• transport layer flooding, desynchronization

power attack An example of an attack that is much more easily used against embedded computers
than general-purpose computers is the power attack. Karcher showed that measure-
ments of the power supply current of a CPU can be used to determine a great deal about
the processor’s internal activity. Karcher used differential power analysis to determine
the bits in cryptokeys—the processor performed different operations for the 1 and 0 case,
which consumed different amounts of power. This attack was originally aimed at smart
cards, which draw their power from the external card reader, but it can be applied to
many embedded systems.

Figure 1-26 illustrates two methods of power attacks developed by Karcher. Simple
power analysis inspects a trace manually and tries to determine the location of program
actions such as branches, based upon knowledge of the power consumption of various
CPU operations. Based upon program actions, the attacker then deduces bits of the key.
Differential power analysis uses correlation to identify actions and key bits.

physical security In some cases it may be possible to build tamper-resistant embedded systems. Mak-
ing the electronic devices hard to reveal and analyze will slow down attackers. Limiting
information within a chip also helps make data harder for attackers to reveal.

Kahn networks Example Applications

Some knowledge of the applications that will run on an embedded system will run is of
great help to system designers. In this section we will look at some basic concepts in two
common applications, communications/networking and multimedia.

1.5
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Figure 1-26
Power attacks.
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1.5.1 Radio and Networking

combined 
wireless/network 
communications

Modern communications systems combine wireless and networking. As illustrated in
Figure 1-27, radios carry digital information and are used to connect to networks. Those
networks may be specialized, as in traditional cell phones, but increasingly radios are
used as the physical layer in Internet protocol systems. 

wireless We will concentrate on receivers because they have the somewhat harder job of
detecting data in the presence of noise. Radios for digital communication must perform
several tasks:

• They must demodulate the signal down to the baseband.

• They must detect the baseband signal to identify bits.

• They must correct errors in the raw bit stream.

Demodulation requires multiplying the received signal by a signal from an oscillator
and filtering the result to select the lower-frequency version of the signal. There are two
alternative approaches to demodulation. Superheterodyne receivers take the signal
through an intermediate frequency (IF) before demodulating again to the baseband.
Direct conversion receivers do not use an intermediate frequency.

digital 
demodulation

Today, CPUs are used primarily for baseband operations because radio-frequency or
intermediate-frequency rates are too high. The bit detection process depends somewhat
on the modulation scheme, but digital communication mechanisms often rely on phase.
High-data-rate systems often use multiple frequencies arranged in a constellation, as
shown in Figure 1-28. The phases of the component frequencies of the signal can be

demodulation
error
correction

link

transport

...

network
Figure 1-27

A radio and network connection.
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modulated to create different symbols. The set of frequencies and phases used is known
as a constellation.

error correction Traditional error correction codes can be checked using combinational logic. Several
more powerful codes that require iterative decoding have recently become popular.
Turbo codes and low-density parity check (LDPC) codes both require multiple itera-
tions to determine errors and corrections. 

networking A radio may simply act as the physical layer of a standard network stack, but many
new networks are being designed that take advantage of the inherent characteristics of
wireless networks. For example, traditional wired networks have only a limited number
of nodes connected to a link but radios inherently broadcast; broadcast can be used to
improve network control, error correction, and security. Wireless networks are generally
ad-hoc in that the members of the network are not pre-determined and nodes may enter
or leave during network operation. Ad-hoc networks require somewhat different network
control than is used in fixed, wired networks.

The next example describes a major effort to develop software radios for data com-
munication.

Application Example 1-2

Joint Tactical Radio System

X

XX

X

Figure 1-28
A constellation in a digital communications system.
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The Joint Tactical Radio System (JTRS) [Joi05,Ree02] is an initiative of the U. S.
Department of Defense to develop next-generation communication systems based on
radios that perform many functions in software. JTRS radios are designed to provide
secure communication. They are also designed to be compatible with a wide range of
existing radios as well as upgradeable through software.

The reference model for the hardware architecture has two major components:

The black subsystem performs low-level radio operations while the red subsystem per-
forms higher-level network functions. The information security enforcement module that
connects them helps protect the radio and the network from each other.

1.5.2 Multimedia

Today’s dominant multimedia applications are based on compression: Digital televi-
sion and radio broadcast, portable music, and digital cameras all rely on compression
algorithms. In this section we will review some of the algorithms developed for multime-
dia compression.

lossy compression 
and perceptual 
coding

It is important to remember that multimedia compression methods are lossy—the
decompressed signal is different from the original signal before compression. Compres-
sion algorithms make use of perceptual coding techniques that try to throw away data
that is less perceptible to the human eye and ear. These algorithms also combine lossless
compression with perceptual coding to efficiently code the signal.

JPEG-style image 
compression

The JPEG standard is widely used for image compression. The two major tech-
niques used by JPEG are the discrete cosine transform (DCT) plus quantization, which
performs perceptual coding, plus Huffman coding for lossless encoding. 
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The discrete cosine transform is a frequency transform whose coefficients describe
the spatial frequency content of an image. Because it is designed to transform images,
the DCT operates on a two-dimensional set of pixels, in contrast to the Fourier trans-
form, which operates on a one-dimensional signal. However, the advantage of the DCT
over other 2-D transforms is that it can be decomposed into two 1-D transforms, making
it much easier to compute. The form of the DCT (CHECK THIS) is

. (EQ 1-9)

Many efficient algorithms have been developed to compute the DCT.

JPEG performs the DCT on 8 x 8 blocks of pixels. The discrete cosine transform
itself does not compress the image. The DCT coefficients are quantized to add loss and
change the signal in such a way that lossless compression can more efficiently compress
them. Low-order coefficients of the DCT correspond to large features in the 8 x 8 block
and high-order coefficients correspond to fine features. Quantization concentrates on
changing the higher-order coefficients to zero. This removes some fine features but pro-
vides long strings of zeroes that can be efficiently encoded to lossless compression.

Huffman coding, which is sometimes called variable length coding, forms the basis
for the lossless compression stage. As shown in Figure 1-29, a specialized technique is
used to order the quantized DCT coefficients in a way that can be easily Huffman
encoded. The DCT coefficients can be arranged in an 8 x 8 matrix. The 0,0 entry at the

v k( ) α k( ) u t( ) π 2t 1+( ) k
2N-------cos

1 t N≤ ≤
∑=

33 5 3 1 0 0 0 0
8 6 4 2 0 0 0 0
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4
2
0
1
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2 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Figure 1-29
The zig-zag pattern used to transmit DCT coefficients.
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top left is known as the DC coefficient since it describes the lowest-resolution or DC
component of the image. The 8,8 entry is the highest-order AC coefficient. Quantization
has changed the higher-order AC coefficients to 0. If we were to traverse the matrix in
row or column order, we would intersperse non-zero lower-order coefficients with
higher-order coefficients that have been zeroed. By traversing the matrix in a zig-zag
pattern, we move from low-order to high-order coefficients more uniformly. This creates
longer strings of zeroes that can be efficiently encoded.

JPEG 2000 The JPEG 2000 standard is compatible with JPEG but adds wavelet compression.
Wavelets are a hierarchical waveform representation of the image that do not rely on
blocks. Wavelets can be more computationally expensive but provide higher-quality
compressed images.

video compression 
standards

There are two major families of video compression standards. The MPEG series of
standards was developed primarily for broadcast applications. Broadcast system are
asymmetric—putting more powerful and more expensive transmitters allows the receiv-
ers to be simpler and cheaper. The H.26x series is designed for symmetric applications
like videoconferencing, in which both sides must encode and decode. The two groups
have recently completed a joint standard, known as Advanced Video Codec (AVC) or
H.264, that is designed to cover both types of applications.

Figure 1-30 shows the block diagram of an MPEG-1 or MPEG-2 style encoder. (The
MPEG-2 standard is the basis for digital television broadcast in the U. S.) The encoder
makes use of the DCT and variable length coding. It adds motion estimation and
motion compensation to encode the relationships between frames.

Figure 1-30
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motion estimation Motion estimation allows one frame to be encoded as translational motion from
another frame. Motion estimation is performed on 16 x 16 macroblocks. A macroblock
from one frame is selected and a search area in the reference frame is searched to find
an identical or closely matching macroblock. Search reports an offset for the macroblock
in the search area that provides the best match. That position describes a motion vector
for the macroblock. During decompression, motion compensation copies the block to the
position specified by the motion vector, thus saving the system from transmitting the
entire image.

error signal Motion estimation does not perfectly predict a frame because elements of the block
may move, the search may not provide the exact match, etc. An error signal is also trans-
mitted to correct for small imperfections in the signal. The inverse DCT and picture/store
predictor in the feedback are used to generate the uncompressed version of the lossily
compressed signal that would be seen by the receiver; that reconstruction is used to gen-
erate the error signal.

Summary
The designers of high-performance embedded computing systems are required to master
several skill. They must be expert at system specification, not only in the informal sense
but also in creating executable models. They must understand the basic architectural
techniques for both hardware and software. They must be able to analyze performance
and energy consumption for both hardware and software. And they must be able to make
trade-offs between hardware and software at all stages in the design process.

Figure 1-31
Motion estimation.
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During the remainder of this book, we will see many important design techniques
that can be used in embedded system design methodologies. We will proceed largely
bottom-up. We will first study hardware and software for uniprocessor systems. We will
then consider hardware/software co-design. We will then move on to the multiprocessor
techniques that underlie modern high-performance embedded systems.

What We Learned

• Many embedded computing systems are based upon standards. The form in which
the standard is expressed affects the methodology we use to design the embedded
system.

• Embedded systems are open to new types of security and reliability threats. Embed-
ded computers that perform real-time control pose particular concerns.

• Many embedded computing systems are based upon standards. The form in which
the standard is expressed affects the methodology we use to design the embedded
system.

• Embedded systems are open to new types of security and reliability threats. Embed-
ded computers that perform real-time control pose particular concerns.

Further Reading

The team of Lee and Sangiovanni-Vincentelli created the study of models of computa-
tion for embedded computing. Siewiorek and Swarz [Sie96] is the classical text on reli-
able computer system design. Storey [Sto96] provides a detailed description of safety-
critical computers. Lee’s book describes digital communication.

Questions

Q1-1 What are the essential characteristics of embedded computing systems?

Q1-2 What are the important characteristics of a software design methodology for embedded
computing systems? A hardware design methodology? A complete hardware/software
methodology?

Q1-3 What are the essential properties of a data flow graph?

Q1-4 What are the essential properties of a Petri net?
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Lab Exercises

L1-1 Select a device of your choice and determine whether it uses embedded computers.
Determine, to the extent possible, the internal hardware architecture of the device.

L1-2 How can you make an FSM and a data flow graph communicate in a reliable fashion?

L1-3 How much computation must be done to demodulate a CMDA2000 signal?
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Chapter

2
CPUs 1

• Architectural mechanisms for embedded processors.

• Parallelism in embedded CPUs.

• Code compression and bus encoding.

• Security mechanisms.

• CPU simulation.

Introduction

CPUs are at the heart of embedded systems. Whether we use one CPU or combine sev-
eral CPUs to build a multiprocessor, instruction set execution provides the combination
of efficiency and generality that make embedded computing powerful.

A number of CPUs have been designed especially for embedded applications or
adapted from other uses. We can also use design tools to create CPUs to match the char-
acteristics of our application. In either case, a variety of mechanisms can be used to
match the CPU characteristics to the job at hand. Some of these mechanisms are bor-
rowed from general-purpose computing; others have been developed especially for
embedded systems.

We will start with a brief introduction to the CPU design space. We will then look at
the major categories of processors: RISC and DSP in Section 2.3; VLIW, superscalar,
and related methods in Section 2.4. Section 2.5 considers novel variable-performance
techniques such as better-than-worst-case design. In Section 2.6 we will study the design
of memory hierarchies. Section 2.7 looks at additional CPU mechanisms like code com-
pression and bus encoding. Section 2.8 surveys techniques for CPU simulation.
Section 2.9 introduces some methodologies and techniques for the design of custom pro-
cessors.

2.1
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3 Chapter 1 CPUs

Comparing Processors

Choosing an CPU is one of the most important tasks faced by an embedded system
designer. Fortunately, designers have a wide range of processors to choose from, allow-
ing them to closely match the CPU to the problem requirements. They can even design
their own CPU. In this section we will survey the range of processors and their evalua-
tion before looking at CPUs in more detail.

2.2.1 Evaluating Processors

We can judge processors in several ways. Many of these are metrics. Some evaluation
characteristics are harder to quantify.

performance Performance is a key characteristic of processors. Different fields tend to use per-
formance in different ways—for example, image processing tends to use performance to
mean image quality. Computer system designers use performance to mean the rate at
which programs execute.

We may look at computer performance more microscopically, in terms of a window
of a few instructions, or macroscopically over large programs. In the microscopic view,
we may consider either latency or throughput. Figure 2-1 is a simple pipeline diagram
that shows the execution of several instructions. In the figure, latency refers to the time
required to execute an instruction from start to finish, while throughput refers to the rate
at which instructions are finished. Even if it takes several clock cycles to execute an
instruction, the processor may still be able to finish one instruction per cycle.

2.2

add r1, r2, r3

sub r4, r5, r6

add r2, r5, r8

add r3, r4, r8

Figure 2-1
Latency and throughput in instruction execution.

latency

throughput
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At the program level, computer architects also speak of average performance or
peak performance. Peak performance is often calculated assuming that instruction
throughput proceeds at its maximum rate and all processor resources are fully utilized.
There is no easy way to calculate average performance for most processors; it is gener-
ally measured by executing a set of benchmarks on sample data.

However, embedded system designers often talk of program performance in terms of
worst-case (or occasionally best-case) performance. This is not simply a characteristic
of the processor; it is determined for a particular program running on a given processor.
As we will see in later chapters, it is generally determined by analysis because of the dif-
ficulty of determining an input set that should be used to cause the worst-case execution.

cost Cost is another important measure of processors. In this case, we mean the purchase
price of the processor. In VLSI design, cost is often measured in terms of the chip are
required to implement a processor, which is closely related to chip cost.

energy/power Energy and power are key characteristics of CPUs. In modern processors, energy
and power consumption must be measured for a particular program and data for accurate
results. Modern processors use a variety of techniques to manage energy consumption
on-the-fly, meaning that simple models of energy consumption do not provide accurate
results.

non-metric 
characteristics

There are other ways to evaluate processors that are harder to measure. Predictabil-
ity is an important characteristic for embedded systems—when designing real-time sys-
tems we want to be able to predict execution time. Because predictability is affected by
so many characteristics, ranging from the pipeline to the memory system, it is difficult to
come up with a simple model for predictability.

Security is also an important characteristic of all processors, including embedded
processors. Security is inherently unmeasurable since the fact that we do not know of a
successful attack on a system does not mean that such an attack cannot exist.

2.2.2 A Taxonomy of Processors

We can classify processors in several dimensions. These dimensions interact somewhat
but they help us to choose a processor type based upon our problem characteristics.

Flynn’s categories Flynn [Fly72] created a well-known taxonomy of processors. He classifies proces-
sors along two axes: the amount of data being processed and the number of instructions
being executed. This gives several categories:

• Single-instruction, single-data (SISD). This is more commonly known today as a
RISC processor. A single stream of instructions operates on a single set of data.

• Single-instruction, multiple-data (SIMD). Several processing elements each have
their own data, such as registers. However, they all perform the same operations on
their data in lockstep. A single program counter can be used to describe execution of
all the processing elements.
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5 Chapter 1 CPUs

• Multiple-instruction, multiple-data (MIMD). Several processing elements have
their own data and their own program counters. The programs do not have to run in
lockstep.

• Multiple-instruction, single-data (MISD). Few, if any commercial computers fit
this category.

RISC vs. CISC Instruction set style is one basic characteristic. The RISC/CISC divide is well-
known. The origins of this dichotomy were related to performance—RISC processors
were devised to make processors more easily pipelineable, increasing their throughput.
However, instruction set style also has implications for code size, which can be impor-
tant for cost and sometimes performance and power consumption as well (through cache
utilization). CISC instruction sets tend to give smaller programs that RISC and tightly
encoded instruction sets still exist on some processors that are destined for applications
that need small object code.

single issue vs. 
multiple issue

Instruction issue width is an important aspect of processor performance. Processors
that can issue more than one instruction per cycle generally execute programs faster.
They do so at the cost of increased power consumption and higher cost.

static vs. dynamic 
scheduling

A closely related characteristic is how instructions are issued. Static scheduling of
instructions is determined when the program is written. In contrast, dynamic scheduling
determines what instructions are issued at run time. Dynamically scheduled instruction
issue allows the processor to take data-dependent behavior into account when choosing
how to issue instructions. Superscalar is a common technique for dynamic instruction
issue. Dynamic scheduling generally requires a much more complex and costly proces-
sor than static scheduling.

vectors,. threads Instruction issue width and scheduling mechanisms are only one way to provide par-
allelism. Many other mechanisms have been developed to provide new types of parallel-
ism and concurrency. Vector processing uses instructions that perform on one- or two-
dimensional arrays, generally performing operations common in linear algebra. Multi-
threading is a fine-grained concurrency mechanism that allows the processor to quickly
switch between several threads of execution.

2.2.3 Embedded vs. General-Purpose Processors

General-purpose processors are just that—they are designed to work well in a variety of
contexts. Embedded processors must be flexible, but they can often be tuned to a partic-
ular application. As a result, some of the design precepts that are commonly followed in
the design of general-purpose CPUs do not hold for embedded computers. And given the
large number of embedded computers sold each year, many application areas make it
worthwhile to spend the time to create a customized architecture. Not only are billions of
8-bit processors sold each year, but hundreds of millions of 32-bit processors are sold for
embedded applications. Cell phones alone make the largest single application of 32-bit
CPUs.
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2.3 RISC Processors and Digital Signal Processors 6

multicycle 
instructions

One tenet of RISC design is single-cycle instructions—an instruction spends one
clock cycle in each pipeline stage. This ensures that other stages do not stall while wait-
ing for an instruction to finish in one stage. However, the most fundamental goal of pro-
cessor design is application performance. An increasing amount of evidence suggests
that multicycle instructions can result in significantly higher program performance. Mul-
ticycle instructions are more useful in embedded processors than in general-purpose
machines because embedded processors run a narrower mix of code, including computa-
tionally-intensive kernels. A specialized instruction can take fewer cycles than a
sequence of general-purpose instructions because intermediate values do not need to be
stored and function units can be tailored to the operations required. If the instruction is
used frequently enough, it is worth the area and power consumption cost to add it to the
instruction set.

instruction 
encoding

One of the consequences of the emphasis on pipelining in RISC is simplified instruction
formats that are easy to decode in a single cycle. However, simple instruction formats
result in increased code size. The Intel Architecture has a large number of CISC-style
instructions with reduced numbers of operands and tight operation coding. Intel Archi-
tecture code is among the smallest code available when generated by a good compiler.
Code size can affect performance—larger programs make less efficient use of the cache.
We will discuss code compression in Section 2.7.1, which automatically generates
tightly-coded instructions; several techniques have been developed to reduce the perfor-
mance penalty associated with complex instruction decoding steps.

RISC Processors and Digital Signal Processors

In this section we will look at the workhorses of embedded computing, RISC and DSP.
Our goal is not to exhaustively describe any particular embedded processor; that task is
best left to data sheets and manuals. Instead, we will try to describe some important
aspects of these processors, compare and contrast RISC and DSP approaches to CPU
architecture, and consider the different emphases of general-purpose and embedded pro-
cessors.

2.3.1 RISC Processors

Today, the term RISC is often used to mean single-issue processor. Term originally came
from the comparison to complex instruction set (CISC) architectures. We will consider
both aspects of the term.

pipeline design A hallmark of RISC architecture is pipelining. General-purpose processors have
evolved longer pipelines as clock speeds have increased. As the pipelines grow longer,
the control required for their proper operation becomes ore complex. The pipelines of

2.3
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7 Chapter 1 CPUs

embedded processors have also grown considerably longer with more sophisticated con-
trol, as illustrated by the ARM family:

• The ARM7 uses a three-stage pipeline with fetch, decode, and execute stages. This
pipeline requires only very simple control.

• The ARM9 uses a five-stage pipeline with fetch, decode, ALU, memory access, and
register write stages. It does not perform branch prediction.

• The ARM11 has an eight-stage pipeline. It structure is shown in Figure 2-2. It per-
forms dynamic branch prediction to make up for the six cycle penalty for a mispre-
dicted branch. The pipeline has several independent completion stages; the pipeline
control allows instructions to complete out-of-order.

2.3.2 Digital Signal Processors

Today, the term digital signal processor (DSP1) is often used as a marketing term. How-
ever, its original technical meaning still has some utility today. The AT&T DSP-16 was
the first DSP. As illustrated in Figure 2-3, it introduced two features that define digital
signal processors. First, it had an on-board multiplier and provided a multiply-accumu-
late instruction. At the time the DSP-16 was designed, silicon was still very expensive
and the inclusion of a multiplier was a major architectural decision. The multiply-accu-

instruction fetch
branch prediction

decode issue ALU pipe (3 stages)

MAC pipe (3 stages)

execution
writeback

load/store
writeback

load/store
add

load/store
pipe
(2 stages)

Figure 2-2
The ARM11 pipeline.

1.Unfortunately, the literature use DSP to mean both digital signal processor (a machine) and digital
signal processing (a branch of mathematics).
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2.3 RISC Processors and Digital Signal Processors 8

mulate instruction computes dest = src1*src2 + src3, a common operation in digital sig-
nal processing. Defining the multiply-accumulate instruction made the hardware
somewhat more efficient because it eliminated a register, improved code density by com-
bining two operations into a single instruction, and improves performance. The DSP-16
also used a Harvard architecture with separate data and instruction memories. The Har-
vard structure meant that data accesses could rely on consistent bandwidth from the
memory, which is particularly important for sampled-data systems.

Some of the trends evident in RISC architectures also make their way into digital
signal processors. For example, high-performance DSPs have very deep pipelines to
support high clock rates. A major difference between modern processors used in digital
signal processing vs. other applications is in the form of instructions. RISC processors
generally have large, regular register files, which help simplify pipeline design as well as
programming. Many DSPs, in contrast, have smaller general-purpose register files and
many instructions that must use only one or a few selected registers. The accumulator is
still a common feature of DSP architectures and other types of instructions may require
the use of certain registers as sources or destinations for data.

The next example studies a family of high-performance DSPs.

* +

registersdata 
memory

controlinstruction
memory

PC
IR

Figure 2-3
A digital signal processor with multiply-accumulate unit and Harvard architecture.
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Application Example 2-1

The Texas Instruments C5x DSP family
The C5x family [Tex01,Tex01B] is an architecture for high-performance signal pro-

cessing. The C5x supports several features: 

• A 40-bit arithmetic unit, which may be interpreted as 32-bit values plus 8 guard bits
for improved rounding control. The ALU can also be split to perform two 16-bit
operands. 

• A barrel shifter performs arbitrary shifts for the ALU. 

• A 17x17 multiplier and adder can perform multiply-accumulate operations. 

• A comparison unit compares the high and low accumulator words to help accelerate
Viterbi encoding/decoding.

• A single-cycle exponent encoder can be used for wide-dynamic-range arithmetic.

• Two dedicated address generators.

The C5x includes a variety of registers:

• Status registers include flags for arithmetic results, processor status, etc.

• Auxiliary registers are used to generate 16-bit addresses.

• A temporary register can hold a multiplicand or a shift count.

• A transition register is used for Viterbi operations.

• The stack pointer holds the top of the system stack.

• A circular buffer size register is used for circular buffers common in signal process-
ing.

• Block-repeat registers help implement block-repeat instructions.

• Interrupt registers provide the interface to the interrupt system.

The C5x family defines a variety of addressing modes. Some of them include:

• ARn mode performs indirect addressing through the auxiliary registers.

• DP mode performs direct addressing from the DP register.

• K23 mode uses an absolute address.
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2.3 RISC Processors and Digital Signal Processors 10

• Bit instructions provide bit-mode addressing.

The RPT instruction provides single-instruction loops. The instruction provides a
repeat count that determines the number of times the following instruction is executed.
Special registers control the execution of the loop.

The C5x family includes several implementations. The C54x is a lower-performance
implementation while the C55x is a higher-performance implementation.

The C54x pipeline has six stages: 

• Program prefetch sends the PC value on the program bus.

• Fetch loads the instruction.

• The decode stage decodes the instruction.

• The access step puts operand addresses on the busses.

• The read step gets the operand values from the bus.

• The execute step performs the operations.

The C55x microarchitecture includes three data read and two data write busses in
addition to the program read bus:

Instruction
unit

Program
flow
unit

Address
unit

Data
unit

3 data read busses
3 data read address busses
program address bus

program
read bus

2 data write busses
2 data write address busses

16

24

24

16

24

32
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The C55x pipeline is longer than that of the C54x and it has a more complex struc-
ture. It is divided into two stages:

The fetch stage takes four clock cycles; the execute stage takes seven or eight cycles.
During fetch, the prefetch 1 stage sends an address to memory, while prefetch 2

waits for the response. The fetch stage gets the instruction. Finally, the predecode stage
sets up decoding.

During execution, the decode stage decodes a single instruction or instruction pair.
The address stage performs address calculations. Data access stages sends data addresses
to memory. The read cycle gets the data values from the bus. The execute stage performs
operations and writes registers. Finally, the W and W+ stages write values to memory.

The C55x includes three computation units and fourteen operators. In general, the
machine can execute two instructions per cycle. However, some combinations of opera-
tions are not legal due to resource constraints.

A co-processor is an execution unit that is controlled by the processor’s execution
unit. (In contrast, an accelerator is controlled by registers and is not assigned opcodes.)
Co-processors are used in both RISC processors and DSPs, but DSPs show some partic-
ularly complex co-processors. Co-processors can be used to extend the instruction set to
implement common signal processing operations. In some cases, the instructions pro-
vided by these co-processors can be integrated easily into other code. In other cases, the
co-processor is designed to execute a particular stream of instructions and the DSP acts
as a sequencer for a complex, multi-cycle operation.

The next example looks at some co-processors for digital signal processing.

Application Example 2-2

TI C55x co-processor
The C55x provides three co-processors for use in image processing and video com-

pression: one for pixel interpolation; one for motion estimation; and one for DCT/IDCT
computation.

fetch execute

4 7-8
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2.3 RISC Processors and Digital Signal Processors 12

The pixel interpolation co-processor supports half-pixel computations that are often
used in motion estimation. Given a set of four pixels A, B, C, and D, we want to compute
the intermediate pixels U, M, and R:

Two instructions support this task. One loads pixels and computes:
ACy = copr(K8,AC,Lmem)

K8 is a set of control bits. The other loads pixels, computes, and stores:
ACy = copr(K8,ACx,Lmem) || Lmem=ACz

The motion estimation co-processor is built around a stylized usage pattern. It sup-
ports full search and three heuristic search algorithms: three-step, four-step, and four-
step with half-pixel refinement. It can produce either one motion vector for a 16x16 mac-
roblock or four motion vectors for four 8x8 blocks. The basic motion estimation instruc-
tion has the form:

[ACx,ACy] = copr(K8,ACx,ACy,Xmem,Ymem,Coeff)
where ACx and ACy are the accumulated sum-of-differences, K8 is a set of control

bits, and Xmem and Ymem point to odd and even lines of the search window.
The DCT co-processor implements functions for one-dimensional DCT and IDCT

computation. The unit is designed to support 8x8 DCT/IDCT and a particular sequence
of instructions must be used to ensure that data operands are available at the required
times. The co-processor provides three types of instructions: load, compute, and transfer
to accumulators; compute, transfer and write to memory; and special.

A B

C D

U

M R

U

M R
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Several iterations of the DCT/IDCT loop are pipelined in the co-processor when the
proper sequence of instructions is used:

Parallel Execution Mechanisms
In this section we will look at various ways that processors perform operations in

parallel. We will consider very long instruction word and superscalar processing, sub-
word parallelism, vector processing, and thread level parallelism. We will end this sec-
tion with a brief consideration of the available parallelism in some embedded
applications.
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2.4.1 Very Long Instruction Word Processors

Very long instruction word (VLIW) architectures were originally developed as general-
purpose processors but have seen widespread use in embedded systems. VLIW architec-
tures provide instruction-level parallelism with relatively low hardware overhead.

VLIW basics Figure 2-4 shows a simplified version of a VLIW processor to introduce the basic
principles of the technique. The execution unit includes a pool of function units con-
nected to a large register file. Using today’s terminology for VLIW machines, the execu-
tion unit reads a packet of instructions—each instruction in the packet can control one of
the function units in the machine. In an ideal VLIW machine, all instructions in the
packet are executed simultaneously; in modern machines, it may take several cycles to
retire all the instructions in the packet. Unlike a superscalar processor, the order of exe-
cution is determined by the structure of the code and how instructions are grouped into
packets; the next packet will not begin execution until all the instructions in the current
packet have finished.

Because the organization of instructions into packets determines the schedule of exe-
cution, VLIW machines rely on powerful compilers to identify parallelism and schedule
instructions. The compiler is responsible for enforcing resource limitations and their
associated scheduling policies. In compensation, the execution unit is simpler because it
does not have to check for many resource interdependencies.

The ideal VLIW is relatively easy to program because of its large, uniform register
file. The register file provides a communication mechanism between the function units
since each function unit can read operands from and write results to any register in the
register file.

...

register file

control

instruction 1 instruction 2 instruction n...

Figure 2-4
Structure of a generic VLIW processor.



 
 

First Draft: Aug 2005                                                                                              Wayne Wolf 
 

Copyright © Elsevier. Permission to copy must be obtained in writing from the publisher 

15 Chapter 1 CPUs

split register files Unfortunately, it is difficult to build large, fast register files with many ports. As a
result, many modern VLIW machines use partitioned register files as shown in
Figure 2-5. In the example, the registers have been split into two register files, each of
which is connected to two function units. The combination of a register file and its asso-
ciated function units is sometimes called a cluster. A cluster bus can be used to move
values between the register files. Register file-to-register file movement is performed
under program control using explicit instructions. As a result, partitioned register files
make the compiler’s job more difficult. The compiler must partition values among the
register files, determine when a value needs to be copied from one register file to
another, generate the required move instructions, and adjust the schedules of the other
operations to wait for the values to appear. However, the characteristics of VLIW circuits
often require us to design partitioned register file architectures.

uses of VLIW VLIW machines have been used in applications with a great deal of data parallelism.
The Trimedia family of processors, for example, was designed for use in video systems.
Video algorithms often perform similar operations on several pixels at time, making it
relatively easy to generate parallel code. VLIW machines have also been used for signal
processing and networking. Cell phone baseband systems, for example, must perform
the same signal processing on many channels in parallel; the same instructions can be
performed on separate data streams using VLIW architectures. Similarly, networking
systems must perform the same or similar operations on several packets at the same time.

The next example describes a VLIW digital signal processor.

Application Example 2-3

Texas Instruments C6x VLIW DSP

Figure 2-5
Split register files in a VLIW machine.

register file 1 register file 2

cluster bus
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The TI C6x is a VLIW processor designed for digital signal processing. Here is the
block diagram of the C6x chip:

The chip includes on-board program and data RAM as well as standard devices and
DMA. The processor core includes two clusters, each with the same configuration. Each
register file holds sixteen words. Each datapath has eight function units:two load units,
two store units, two data address units, and two register file cross paths.

The next example describes another VLIW machine.

Application Example 2-4

Freescale Starcore SC140 VLIW core
The Starcore architecture was jointly designed by Motorola (now Freescale Semi-

conductor) and Agere. The SC140 is an implementation of the Starcore architecture; the
SC140 is a core that can be used in chip designs.

Like the C6x, the SC140 is organized into two clusters. But unlike the C6x, the two
clusters in the SC140 perform different functions. One cluster is for data operations; it
includes four data ALUs and a register file. The other cluster is for address operations; it
includes two address operation units and its own register file.

The MC8126 is a chip that includes four SC140 cores along with shared memory. 

Data path 1/
Reg file 1

Data path 2/
Reg file 2

Execute DMA
timers

Serial

Program RAM/cache
512K bits

Data  RAM
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JTAG
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2.4.2 Superscalar Processors

Superscalar processors issue more than one instruction per clock cycle. Unlike VLIW
processors, they check for resource conflicts on-the-fly to determine what combinations
of instructions can be issued at each step. Superscalar architectures dominate desktop
and server architectures. However, relatively few embedded processors make use of
superscalar techniques. Embedded computing architectures are more likely to be judged
by metrics such as operations per watt rather than raw performance. Other techniques,
such as VLIW or parallel processing, often provide more efficient architectures for
embedded applications.

example 
superscalar 
embedded 
processors

The IBM PowerPC 440 is a two-issue, in-order superscalar processor. It has three
pipelines: one for simple integer operations, one for multiply-accumulate operations, and
one for loads and stores.

The embedded Pentium processor is a two-issue, in-order processor. It has two pipes:
one for any integer operation and another for simple integer operations.

2.4.3 SIMD and Vector Processors
Many applications present data-level parallelism that lends itself to efficient comput-

ing structures. Furthermore, much of this data is relatively small, which allows us to
build more parallel processing units to soak up more of that available parallelism.

data operand sizes A variety of studies have shown that many of the variables used in most programs
have small dynamic ranges. Figure 2-6 shows the results of one such study by Fritts
[Fri00]. He analyzed the data types of programs in the MediaBench benchmark suite.
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Operand sizes in MediaBench benchmarks [Fri00].
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2.4 RISC Processors and Digital Signal Processors 18

The results show that 8-bit (byte) and 16-bit (halfword) operands dominate this suite of
programs. If we match the function unit widths to the operand sizes, we can put more
function units in the available silicon than if we simply used wide-word function units to
perform all operations.

subword 
parallelism

One technique that exploits small operand sizes is subword parallelism [Lee94].
The processor’s ALU can either operate in normal mode or it can be split into several
smaller ALUs. An ALU can easily be split by breaking the carry chain so that bit slides
operate independently. Each subword can operate on independent data; the operations
are all controlled by the same opcode. Because the same instruction is performed on sev-
eral data values, this technique is often referred to as a form of SIMD.

vectorization Another technique for data parallelism is vector processing. Vector processors have
been used in scientific computer for decades; they use specialized instructions that are
designed to efficiently perform operations such as dot products on vectors of values.
Vector processing does not rely on small data values, but vectors of smaller data types
can perform more operations in parallel on available hardware, particularly when sub-
word parallelism methods are used to manage datapath resources.

The next example describes a widely used vector processing architecture.

Application Example 2-5

Motorola AltiVec vector architecture
The AltiVec vector architecture [Ful98] was defined by Motorola (now Freescale

Semiconductor) for the PowerPC architecture. AltiVec provides a 128-bit vector unit that
can be divided into operands of several sizes: four operands of 32 bits, eight operands of
16 bits, or 16 operands of eight bits. A register file provides 32 128-bit vectors to the
vector unit. The architecture defines a number of operations, including logical and arith-
metic operands within an element as well as inter-element operations such as permuta-
tions. 

2.4.4 Thread-Level Parallelism

Processors can also exploit thread- or task-level parallelism. It may be easier to find
thread-level parallelism, particularly in embedded applications. The behavior of threads
may be more predictable than instruction-level parallelism.

varieties of 
multithreading

Multithreading architectures must provide separate registers for each thread. But
because switching between threads is stylized, the control required for multithreading is
relatively straightforward. Hardware multithreading alternately fetches instructions
from separate threads. On one cycle, it will fetch several instructions from one thread,
fetching enough instructions to be able to keep the pipelines full in the absence of inter-
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locks. On the next cycle, it would fetch instructions from another thread. Simultaneous
multithreading (SMT) fetches instructions from several threads on each cycle rather
than alternating between threads.

The next example describes a multithreading processor designed for cell phones.

Application Example 2-6

Sandbridge Sandstorm multi threaded CPU
The Sandstorm processor [Glo03,Glo05] is designed for mobile communications. It

processes four threads:
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2.4.5 Processor Resource Utilization

The choice of processor architecture depends in part on the characteristics of the pro-
grams to be run on the processor. In many embedded applications we can leverage our
knowledge of the core algorithms to choose effective CPU architectures. However, we
must be careful to understand the characteristics of those applications. As an example,
many researchers assume that multimedia algorithms exhibit embarrassing levels of par-
allelism. Experiments show that this is not necessarily the case.

measurements on 
multimedia 
benchmarks

Tallu et al. [Tal03] evaluated the instruction-level parallelism available in multime-
dia applications. As shown in Figure 2-7, they evaluated several different processor con-
figurations using SimpleScalar. They measured nine benchmark programs on the various
architectures. The bar graphs show the instructions per cycle for each application; most
applications exhibit fewer than four instructions per cycle.
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Dynamic behavior of loops in MediaBench [Fri00].



 
 

First Draft: Aug 2005                                                                                              Wayne Wolf 
 

Copyright © Elsevier. Permission to copy must be obtained in writing from the publisher 

21 Chapter 1 CPUs

Fritts [Fri00] studied the characteristics of loops in the MediaBench suite. Figure 2-8
shows two measurements; in each case, results are shown with the benchmark programs
grouped into categories based on their primary function. The first measurement shows
the average number of iterations of a loop; fortunately, loops on average are executed
many times. The second measurement shows path ratio, which is defined as

processor configurations

results
Figure 2-7

An evaluation of the available parallelism in multimedia applications [Tal03].
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(EQ 2-1)

Path ratio measures the percentage of a loop’s instructions that are actually executed.
The average path ratio over all the MediaBench benchmarks was 78%, which means that
22% of the loop instructions were not executed.

multimedia 
algorithms

These results should not be surprising given the nature of modern embedded algo-
rithms. Modern signal processing algorithms have moved well beyond filtering. Many
algorithms use control to improve performance. The large specifications for multimedia
standards will naturally result in complex programs.

implications for 
CPUs

To take advantage of the available parallelism in multimedia and other embedded
applications, we need to match the processor architecture to the application characteris-
tics. These experiments suggest that processor architectures must exploit parallelism at
several levels of abstraction.

Variable-Performance CPU Architectures

Because so many embedded systems must meet real-time deadlines, predictable execu-
tion time is a critical feature of the components used in embedded systems. However,
traditional computer architecture designs have emphasized average performance over
worst-case performance, producing processors that are fast on average but whose worst-
case performance is hard to bound. This often leads to conservative designs of both hard-
ware (oversized caches, faster processors) and software (simplified coding and restricted
use of instructions).

As both power consumption and reliability become even more important, new tech-
niques have been developed that make processor behavior even more complex. Those
techniques are finding their way into embedded processors even though they make
designs harder to analyze. In this section we will survey two important developments,
dynamic voltage and frequency scaling and better-than-worst-case design. We will
explore the implications of these features and how to use them to our advantage in later
chapters.

2.5.1 Dynamic Voltage and Frequency Scaling

DVFS Dynamic voltage and frequency scaling (DVFS) [XXX] is a popular technique for
controlling CPU power consumption that takes advantage of the wide operating range of
CMOS digital circuits.

CMOS circuit 
characteristics

Unlike many other digital circuit families, CMOS circuits can operate at a wide
range of voltages [Wol02]. Furthermore, CMOS circuits operate more efficiently at
lower voltages. The delay of a CMOS gate is a linear function of power supply voltage:

number of loop body instructions executed
total number of instructions in loop body------------------------------------------------------------------------------------------------------ 100×

2.5
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, (EQ 2-2)

where the effective resistance of the MOS transistor is largely a linear function of
power supply voltage. The energy consumed during operation of the gate is proportional
to the square of the operating voltage:

. (EQ 2-3)

The speed-power product for CMOS (ignoring leakage) is also CV2. Therefore, by
lowering the power supply voltage, we can reduce energy consumption by V2 while
reducing performance by only V.

Because we can operate CMOS logic at many different points, a CPU can be oper-
ated across a design space. Figure 2-9 illustrates the relationship between power supply
voltage (V), operating speed (T), and power (P). 

DVFS architecture An architecture for dynamic voltage and frequency scaling operates the CPU within
this space under a control algorithm. Figure 2-10 shows the architecture of a DVFS
architecture. The clock and power supply are generated by circuits that can supply a
range of values; these circuits generally operate at discrete points rather than continu-
ously-varying values. Both the clock generator and voltage generator are operated by a
controller that determines when the clock frequency and voltage will change and by how
much.

DVFS control 
strategy

A DVFS controller must operate under constraints in order to optimize a design met-
ric. The constraints are related to clock speed and power supply voltage: not only their
minimum and maximum values, but how quickly clock speed or power supply voltage

tp 2.2RC=

E CV2=

Figure 2-9
The voltage/speed/power operating space.

V

T

P draw a better graph
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2.5 Variable-Performance CPU Architectures 24

can be changed. The design metric may be either to maximize performance given a
energy budget or to minimize energy given a performance bound.

While it is possible to encode the control algorithm in hardware, the control method
is generally set at least in part by software. Registers may set the value of certain param-
eters. More generally, the complete control algorithm may be implemented in software.

The next example describes voltage scaling features in a modern embedded proces-
sor.

Application Example 2-7

Dynamic Voltage and Frequency Scaling in the Intel XScale
The Intel XScale [Int00] is compliant with ARM version 5TE. Operating voltage

and clock frequency can be controlled by setting bits CP 14, registers 6 and 7, respec-
tively. Software can use this programming model interface to implement a selected
DVFS policy.

2.5.2 Better-Than-Worst-Case Design
Digital systems are traditionally designed as synchronous systems governed by

clocks. The clock period is determined by careful analysis so that values are stored into
registers properly, with the clock period extended to cover the worst-case delay. In fact,
the worst-case delay is relatively rare in many circuits and the logic sits idle for some
period most of the time. 

CPU

voltageclock
generator

controller

Figure 2-10
Dynamic voltage and frequency scaling (DVFS) architecture.
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Better-than-worst-case design [XXX] is an alternative design style in which logic
detects and recovers from errors, allowing the circuit to run most of the time at a higher
speed.

Razor 
microarchitecture

The Razor architecture [Ern03] is one architecture for better-than-worst-case perfor-
mance. Razor uses a specialized register, shown in Figure 2-11, measures and evaluates
errors. The system register holds the latched value and is clocked at the higher-than-
worst-case clock rate. A separate register is clocked separately and slightly behind the
system register. If the results stored in the two register are different, then an error
occurred, probably due to timing. The XOR gate measures that error and causes the later
value to replace the value in the system register.

The Razor microarchitecture does not cause an erroneous operation to be recalcu-
lated in the same stage. It rather forwards the operation to a later stage. This avoids hav-
ing a stage with a systematic problem stall the pipeline with an indefinite number of
recalculations.

Processor Memory Hierarchy

The memory hierarchy is a critical determinant of overall system performance and
power consumption. In this section we will review some basic concepts in the design of
memory hierarchies and how they can be exploited in the design of embedded proces-

Figure 2-11
A Razor latch.
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2.6 Processor Memory Hierarchy 26

sors. We will start by introducing a basic model of memory components that we can use
to evaluate various hardware and software design strategies. We will then consider the
design of register files and caches. We will end with a discussion of scratch pad memo-
ries, which have been proposed as adjuncts to caches in embedded processors.

2.6.1 Memory Component Models

In order to evaluate some memory design methods, we need models for the physical
properties of memories: area, delay, and energy consumption. Because a variety of struc-
tures at different levels of the memory hierarchy are built from the same components, we
can use a single model throughout the memory hierarchy and for different types of mem-
ory circuits.

memory block 
structure

Figure 2-12 shows a generic structural model for a two-dimensional memory block.
This model does not depend on the details of the memory circuit and so applies to vari-
ous types of dynamic RAM, static RAM, and read-only memory. The basic unit of stor-
age is the memory cell. Cells are arranged in a two-dimensional array. This memory
model describes the relationships between the cells and their associated access circuitry. 

Within the memory core, cells are connected to row and bit lines that provide a two-
dimensional addressing structure. The row line selects a one-dimensional row of cells,
which then can be accessed (read or written) via their bit lines. When a row is selected,
all the cells in that row are active. In general, there may be more than one bit line, since
many memory circuits use both the true and complement forms of the bit.

corerow
decoder

...

precharge
circuits

column
decoder

...

...

m

n cell

bit line

row
line

b

a r

c

Figure 2-12
Structural model of a memory block.
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The row decoder circuitry is a demultiplexer that drives one of the n row lines in the
core by decoding the r bits of row address. A column decoder selects a b-bit wide subset
of the bit lines based upon the c bits of column address. Some memories also require pre-
charge circuits to control the bit lines.

area model The area model of the memory block has components for the elements of the block
model:

(EQ 2-4)

 The row decoder area is

, (EQ 2-5)

where ar is the area of a one-bit slice of the row decoder.
 The core area is

, (EQ 2-6)

where ax is the area of a one-bit core cell, including its share of the row and bit lines.
 The precharge circuit area is

, (EQ 2-7)

where ap is the area of a one-bit slice of the precharge circuit.
 The column decoder area is

, (EQ 2-8)

where ac is the area of a one-bit slice of the column decoder.
delay model The delay model of the memory block follows the flow of information in a memory

access. Some of its elements are independent of m and n while others depend on the
length of the row or column lines in the cell:

. (EQ 2-9)

 is the time required for the precharge circuitry. It is generally independent of
the number of columns but may depend on the number of rows due to the time required
to precharge the bit line.  is the row decoder time, including the row line propagation
time. The delay through the decoding logic generally depends upon the value of m but
the dependence may vary due to the type of decoding circuit used.  is the reaction
time of the core cell itself.  is the time required for the values to propagate through
the bit line.  is the delay through the column decoder, which once again may depend
on the value of n. 
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energy model The energy model must include both static and dynamic components. The dynamic
component follows the structure of the block to determine the total energy consumption
for a memory access:

, (EQ 2-10)

given the energy consumptions of the row decoder, core, precharge circuits, and col-
umn decoder. The core energy depends on the values of m and n due to the row and bit
lines. The decoder circuitry energy also depends on m and n, though the details of that
relationships depend on the circuits used.

The static component models the standby energy consumption of the memory.
The details vary for different types of memories but the static component can be signifi-
cant.

The total energy consumption is 

. (EQ 2-11)

multi-ported 
memories

This model describes a single-port memory in which a single read or write can be
performed at any given time. A multi-port memory accepts multiple addresses/data for
simultaneous accesses. Some aspects of the memory block model extend easily to multi-
port memories. However, delay for a multi-port memory is a non-linear function of the
number of ports. The exact relationship depends on the detail of the core circuit design,
but the memory cell core circuits introduce non-linear delay as ports are added to the
cell.

busses We may also want to model the bus that connects the memory to the remainder of the
system. Busses present large capacitive loads that introduce significant delay and energy
penalties.

ED Er Ex Ep Ec+ + +=

ES

E ED ES+=

memory
block

memory
block

...

b b

Figure 2-13
A memory array built from memory blocks.

address
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memory arrays Larger memory structures can be built from memory blocks. Figure 2-13 shows a
simple wide memory in which several blocks are accessed in parallel from the same
address lines. A set-associative cache could be constructed from this array, for example,
by a multiplexer that selects the data from the block that corresponds to the appropriate
set. Parallel memories may be built by feeding separate addresses to different memory
blocks.

2.6.2 Register Files

The register file is the first stage of the memory hierarchy. Although the size of the regis-
ter file is fixed when the CPU is pre-designed, if we design our own CPUs then we can
select the number of registers based upon the application requirements. Register file size
is a key parameter in CPU design that affects code performance and energy consumption
as well as the area of the CPU.

sweet spot in 
register file design

Register files that are either too large or too small relative to the application’s needs
incur extra costs. If the register file is too small, the program must spill values to main
memory: the value is written to main memory and later read back from main memory.
Spills cost both time and energy because main memory accesses are slower and more
energy-intensive than register file accesses. If the register file is too large, then it con-
sumes static energy as well as taking extra chip area that could be used for other pur-
poses.

register file 
parameters

The most important parameters in register file design are number of words and num-
ber of ports. Word width affects register file area and energy consumption but is not
closely coupled to other design decisions. The number of words more directly deter-
mines area, energy, and performance. The number of ports is important because, as noted
before, delay is a non-linear function of the number of ports. This non-linear dependency
is the key reason that many VLIW machines use partitioned register files.

Wehmeyer et al. [Weh01] studied the effects of varying register file size on program
dynamic behavior. They compiled a number of benchmark programs and used profiling
tools to analyze the program’s behavior. Figure 2-14 shows performance and energy con-
sumption as a function of register file size. In both cases, overly small register files result
in non-linear penalties whereas large register files present little benefit.

2.6.3 Caches

Cache design has received a lot of attention in general-purpose computer design.
Most of those lessons apply to embedded computers as well, but because we may design
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the CPU to meet the needs of a particular set of applications, we can pay extra attention
to the relationship between the cache configuration and the programs that will use it.

sweet spot in 
cache design

As with register files, caches have a sweet spot that is neither too small nor too large.
Li and Henkel [Li98] measured the influence of caches on energy consumption in detail.
Figure 2-15 shows the energy consumption of a CPU running an MPEG encoder. Energy
consumption has a global minimum: too-small caches result in excessive main memory
accesses; too-large caches consume excess static power.

cache parameters 
and behavior

The most basic cache parameter is total cache size. Larger caches can hold more data
or instructions at the cost of increased area and static power consumption. Given a fixed
number of bits in the cache, we can vary both the set associativity and the line size. Split-
ting a cache into more sets allows us to independently reference more locations that map
onto similar cache locations at the cost of mapping more memory addresses into a given
cache line. Longer cache lines provide more prefetching bandwidth, which is useful in
some algorithms but not others.

cache parameter 
selection

effects of cache parameters: line size, associativity, etc.
Panda et al. [Pan99] developed an algorithm to explore the memory hierarchy design

space and to allocate program variables within the memory hierarchy. They allocated
frequently-used scalar variables to the register file. They used the classification of Wolfe
and Lam [Wol91] to analyze the behavior of arrays:

Figure 2-15 Energy consumption versus instruction/data cache size for a benchmark program 
[Li98].
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• self-temporal reuse means that the same array element is accessed in different loop
iterations;

• self-spatial reuse means that the same cache line is accessed in different loop itera-
tions;

• group-temporal reuse means that different parts of the program access the same
array element;

energy consumption vs. number of registers

performance vs. number of registers.

Figure 2-14
Performance and energy consumption as a function of register file size [Weh01].
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• group-spatial reuse means that different parts of the program access the same cache
line.

This classification treats temporal reuse (the same data element) as a special case of
spatial reuse (the same cache line). They divide memory references into equivalence
classes, with each class containing a set of references with self-spatial and group-spatial
reuse. The equivalence classes allow them to estimate the number of cache misses
required by those references. They assume that spatial locality can result in reuse if the
number of memory references in the loop is less than the cache size. Group-spatial local-
ity is possible when a row fits into a cache and the other data elements used in the loop
are smaller than the cache size. Two sets of accesses are compatible if their index expres-
sions differ by a constant.

Gordon-Ross et al. {Gor04] developed a method to optimize multi-level cache hier-
archies. They adjusted cache size, then line size, then associativity. They found that the
configuration of the first-level cache affects the required configuration for the second-
level cache—different first-level configurations cause different elements to miss the
first-level cache, causing different behavior in the second-level cache. To take this effect
into account, the alternately chose cache size for each level, then line size for each level,
and finally associativity for each level.

configurable 
caches

Several groups, such as Balasubramonian et al [Bal03], have proposed configurable
caches whose configuration can be changed at run time. Additional multiplexers and
other logic allow a pool of memory cells to be used in several different cache configura-
tions. Registers hold the configuration values that control the configuration logic. The
cache has a configuration mode in which the cache parameters can be set; the cache acts
normally in operation mode between configurations. The configuration logic incurs an
area penalty as well as static and dynamic power consumption penalties. The configura-
tion logic also increases the delay through the cache. However, it allows the cache con-
figuration to be adjusted for different parts of the program in fairly small increments of
time.

2.6.4 Scratch Pad Memories
A cache is designed to move a relatively small amount of memory close to the pro-

cessor. Caches use hardwired algorithms to manage the cache contents—hardware deter-
mines when values are added or removed from the cache. Software-oriented schemes are
an alternative way to manage close-in memory.

scratch pads As shown in Figure 2-16, a scratch pad memory [Pan00] is located parallel to the
cache. However, the scratch pad does not include hardware to manage its contents. The
CPU can address the scratch pad to read and write it directly. The scratch pad appears in
a fixed part of the processor’s address space, such as the lower range of addresses. The
size of the scratch pad is chosen to fit on-chip and provide a high-speed memory.
Because the scratch pad is a part of memory, its access time is predictable, unlike
accesses to a cache. Predictability is the key attribute of a scratch pad.
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Because the scratch pad is part of the main memory space, standard read and write
instructions can be used to manage the scratch pad. Management requires determining
what data is in the scratch pad and when it is removed from the cache. Software can
manage the cache using a combination of compile-time and run-time decision making.

scratch pad 
management

Panda et al. developed methods for managing scratch pad contents by allocating
variables to the scratch pad. They determined that static variables were best managed
statically, with allocation decisions made at compile time. They chose to map all scalars
to the scratch pad in order to avoid creating cache conflicts between arrays and scalars.

Arrays may be mapped either into the cache or the scratch pad. If two arrays have
non-intersecting lifetimes, then their relative allocation is unimportant. Arrays with
intersecting lifetimes may conflict; which are mapped into the cache versus the scratch
pad demands some analysis. Panda et al. define several metrics to analyze conflicts:

• VAC(u), the variable access count of variable u, counts the number of times that u is
accessed during its lifetime.

• IAC(u), the interference access count of variable u, counts the number of times
other variables ( ) are accessed during the lifetime of u.

• IF(u), the interference factor of u, is defined as

. (EQ 2-12)

Variables with a high IF value are likely to be interfered with in the cache and are
good candidates for promotion to the scratch pad.

cache scratch pad

CPU

Figure 2-16
A scratch pad memory in a system.
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They then use these metrics to define a loop-oriented conflict metric, known as the
loop conflict factor or LCF:

. (EQ 2-13)

In this formula, the outer summation is over all p loops in which u is accessed and
the inner summation is over all variables  accessed in the ith loop.

The total conflict factor TCF for an array u is

. (EQ 2-14)

• data partitioning formulation

scratch pad 
allocation 
algorithms

These metrics are used by algorithms to allocate variables between the scratch pad
and main memory/cache. We can formulate the problem as follows:

• Given a set of arrays, each with a TCF value and a size
 

• and an SRAM of size S, 

• find an optimal subset of arrays Q such that  and  is maxi-
mized. 

This problem is a generalized knapsack problem in that several arrays with non-
overlapping lifetimes can intersect in the scratch pad. Panda et al.’s algorithm starts by
clustering together arrays that could share scratch pad space. It then uses an approxima-
tion algorithm that first sorts the items by value per weight as given by access density
AD:

. (EQ 2-15)

Arrays are then greedily selected for allocation to the scratch pad, starting with the
array with the highest AD value, until the scratch pad is full.

Figure 2-17 shows the allocation algorithm of Panda et al. Scalar variables are allo-
cated to the scratch pad and arrays that are too large to fit into the scratch pad are allo-
cated to main memory. A compatibility graph is created to determine arrays with
compatible lifetimes. Cliques are then allocated, but the algorithm may allocate either a
full clique or a proper subset of the clique to the scratch pad. Clique analysis takes

LCF u( ) k u( ) k v( )
v
∑⎝ ⎠
⎜ ⎟
⎛ ⎞

+
1 i p≤ ≤
∑=

v u≠

TCF u( ) LCF u( ) IF u( )+=

A1 TCF A1( ) S1, ,{ } … An TCF An( ) Sn, ,{ }, ,

S Si
i Q∈
∑≥ TCF i( )

i Q∈
∑

AD c( )

TCF v( )
v c∈
∑

max size v( ) v c∈,{ }
---------------------------------------------------=



 
 

First Draft: Aug 2005                                                                                              Wayne Wolf 
 

Copyright © Elsevier. Permission to copy must be obtained in writing from the publisher 

35 Chapter 1 CPUs

 time and the algorithm can iterate n times, so the overall complexity of the algo-
rithm is .

multitasking and 
scratch pads

When several programs execute on the CPU, all the programs compete for the
scratch pad, much as they compete for the cache. However, because the scratch pad is
managed in software, the allocation algorithm must take multitasking into account.
Panda et al. propose dividing the scratch pad into segments and assigning each task its
own segment. This approach reduces run-time overhead for scratch pad management but

[Pan00] fig. 5

Figure 2-17
An algorithm for scratch pad allocation [Pan00].

O n3( )
O n4( )
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result in under-utilization of part of the scratch pad. When the programs are prioritized,
they weight the TCF by the task priority, with higher-priority tasks given more weight.
(Note that this is the inverse of the convention in real-time systems, in which the highest
priority task is given a priority of 1.)

scratch pad 
evaluation

Figure 2-18 shows the performance of scratch pad allocation algorithms [Pan00] on
one benchmark. The experiment compared using on-chip memory only for SRAM, only
data cache, random allocation into scratch pad that occupies half the available SRAM,
and Panda et al.’s allocation algorithm into a scratch pad that occupies half the available
SRAM.

Additional CPU Mechanisms

This section covers other topics in the design of embedded processors. We will start with
a discussion of code compression, an architectural technique that uses compression algo-
rithms to design custom instruction encodings. We will then describe methods to encode
bus traffic to reduce power consumption of address and data busses. We will end with a
survey of security-related mechanisms in processors.

2.7.1 Code Compression

Code compression is one way to reduce object code size. Compressed instruction
sets are not designed by people, but rather by algorithms. We can design an instruction
set for a particular program, or we can use algorithms to design a program based on more

[Pan00] fig. 9

Figure 2-18
Performance comparison of scratch pad allocation [Pan00].

2.7
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general program characteristics. Surprisingly, code compression can improve perfor-
mance and energy consumption as well.

executing 
compressed code

Wolfe and Chanin [Wol92] proposed code compression and developed the first
method for executing compressed code. Relatively small modifications to both the com-
pilation process and the processor allow the machine to execute code that has been com-
pressed by lossless compression algorithms. Figure 2-19 shows their compilation
processor. The compiler itself is not modified. The object code (or perhaps assembly
code in text form) is fed into a compression program that uses lossless compression to
generate a new, compressed object file that is loaded into the processor’s memory. The
compression program modifies the instruction but leaves data intact. Because the com-
piler does not need to be modified, compressed code generation is relatively easy to
implement. Wolfe and Chanin used Huffman’s algorithm [Huf52] to compress code.

microarchitecture 
with code 
decompression

Figure 2-20 shows the structure of a CPU modified to execute compressed code
using the Wolfe/Chanin architecture. A decompression unit is added between the main
memory and the cache. The decompressor intercepts instruction reads (but not data
reads) from the memory and decompresses instructions as they go into the cache. The
decompressor generates instructions in the CPU’s native instruction set. The processor
execution unit itself does not need to be modified because it does not see compressed
instructions. The relatively small changes to the hardware make this scheme easy to
implement with existing processors.

compressed code 
blocks

As illustrated in Figure 2-22, hand-designed instruction sets generally use a rela-
tively small number of distinct instruction sizes and typically divide instructions on word

Figure 2-19
How to generate a compressed program.

source
code

compiler object
code

compressor compressed
object code

Figure 2-20
The Wolfe/Chanin architecture for executing compressed code.
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or byte boundaries. Compressed instructions, in comparison, can be of arbitrary length.
Compressed instructions are generally generated in blocks. The compressed instructions
are packed bit-by-bit into blocks but the blocks start on more natural boundaries, such as
bytes or words. This leaves empty space in the compressed program that is overhead for
the compression process.

The block structure affects execution. The decompression engine decompresses code
a block at a time. This means that several instructions become available in short order,
although it generally takes several clock cycles to finish decompressing a block. Blocks
effectively lengthen prefetch time.

Block structure also affects the compression process and the choice of a compression
algorithm. Lossless compression algorithms generally work best on long blocks of data.
However, longer blocks impede efficient execution because programs are not executed
sequentially from beginning to end. If the entire program were a single block, we would
decompress the entire block before execution, which would nullify the advantages of
compression. If blocks are too short, the code will not be sufficiently compressed to be
worthwhile.

Wolfe/Chanin 
evaluation

Figure 2-24 shows Wolfe and Chanin’s comparison of several compression methods.
They compressed several benchmark programs in four different ways: using the Unix
compress utility; using standard Huffman encoding on 32-byte blocks of instructions,

Figure 2-21
Branch tables for branch target mapping.

CPU

uncompressed
location

compressed
location

... ...

add r1, r2, r3

mov r1,a

bne r1,foo

uncompressed
compressed

Figure 2-22
Compressed vs. uncompressed code.
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using a Huffman code designed specifically for that program; using a bounded Huffman
code that ensures that no byte is coded in a symbol longer than 16 bits, once again with a
separate code for each program; and with a single bounded Huffman code computed
from several test programs and used for all the benchmarks. 

Wolfe and Chanin also evaluated the performance of their architecture on the bench-
marks using three different memory models: programs stored in EPROM with 100 ns
memory access time; program stored in burst-mode EPROM with 3 cycles for the first
access and 1 cycle for subsequent sequential accesses; and static-column DRAM with 4
cycles for the first access and 1 cycle for subsequent sequential accesses, based on 70 ns
access time. They found that system performance improved when compressed code was
run from slow memories and that system performance slowed down about 10% when
executed from fast memory.

branches in 
compressed code

If a branch is taken in the middle of a large block, we may not use some of the
instructions in the block, wasting the time and energy required to decompress those
instructions. As illustrated in Figure 2-23, branches and branch targets may be at arbi-
trary points in blocks. The ideal size of a block is related to the distances between
branches and branch targets.

branch tables The locations of branch targets in the uncompressed code must be adjusted in the
compressed code because the absolute locations of all the instructions move as a result of
compression. Most instruction accesses are sequential, but branches may go to arbitrary
locations given by labels. However, the location of the branch has moved in the com-
pressed program. Wolfe and Chanin proposed that branch tables be used to map com-
pressed locations to uncompressed locations during execution. The branch table would
be generated by the compression program and included in the compressed object code. It
would be loaded into the branch table at the start of execution (or after a context switch)
and used by the CPU every time an absolute branch location needed to be translated. 

add r1,r2,r3
jne r1,foo

sub r2,r3,r4
foo ld r1,a

Figure 2-23
Branches and blocks in compressed code.
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branch patching An alternative to branch tables, proposed by Bird and Mudge [Bir96], is branch
patching. This method first compresses the code, doing so in a way that branch instruc-
tions can still be modified. After the locations of all the instructions are known, the com-
pression system modifies the compressed code. It changes all of the branch instructions
to include the address of the compressed branch target, rather than the uncompressed
location. This method uses a slightly less efficient encoding for branches because the
address must be modifiable, but it also eliminates the branch table. The branch table
introduces several types of overhead: it is large, with one entry for each branch target; it
consumes a great deal of energy; and accessing the branch table slows down execution of
branches. The branch patching scheme is generally considered to be the preferred
method.

code compression 
metrics

We can judge code compression systems by several metrics. The first is code size We
generally measure code size by compression ratio:

. (EQ 2-16)

Compression ratio is measured independent of execution; in Figure 2-19, we would
compare the size of the uncompressed object code to the size of the compressed object
code. For this result to be meaningful, we must measure the entire object code. This
includes data. It also includes artifacts in the compressed code itself, such as empty
space and branch tables.

Figure 2-24
Wolfe and Chanin’s comparison of code compression efficiency [Wol92]

[Wol92] Fig 5

K compressed code size
uncompressed code size----------------------------------------------------------=
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block size vs. 
compression ratio

The choice of block size is a major decision in the design of a code compression
algorithm. Lekatsas et al. measured compression ratio as a function of block size. These
results show that very small blocks do not compress well, but that compression ratio lev-
els off for even moderately-sized blocks.

We can also judge code compression systems by performance and power consump-
tion.

The next example describes the major implementation of code compression in a
commercial processor.

Application Example 2-8

IBM CodePack
The IBM CodePack architecture was implemented on some models of PowerPC
[Kem98]. CodePack uses Huffman compression on each 16-bit half of a 32-bit instruc-
tion; instructions are divided into blocks of 64 bytes. CodePack achieved compression
ratios of 55% to 65%. A branch table is used to translate addresses. The K bit to the TLB
indicates whether a page in memory holds compressed instructions. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

bs=4 bs=8 bs=16 bs=32 b=64

Compression Ratio

Figure 2-25
Compression ratio vs. block size (in bytes)  for one compression algorithm [Lek xx].
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The next example describes a hand-designed, compact instruction set.

Application Example 2-9

ARM Thumb Instruction Set
The ARM Thumb instruction set is an extension to the basic ARM instruction set;

any implementation that recognizes Thumb instructions must also be able to interpret
standard ARM instructions. Thumb instructions are 16 bits long.

data compression 
algorithms and 
code compression

Many data compression algorithms were originally developed to compress text.
Code decompression during execution imposes very different constraints: high perfor-
mance, small buffers, low energy consumption. Let’s look at several data compression
algorithms that have been proposed for code compression and see how they map onto the
constraints of decompression during execution.

Huffman coding Let’s first review Huffman’s algorithm, the first modern code compression algo-
rithm. Huffman’s method requires an alphabet of symbols and the probabilities of occur-
rence of those symbols. As shown in Figure 2-26, a coding tree is built based on those
probabilities. Initially, we build a set of subtrees, each having only one leaf node for a
symbol. The score of a subtree is the sum of the probabilities of all its leaf nodes. We
repeatedly choose the two lowest-score subtrees and combine them into a new subtree,
with the lower-probability subtree taking the 0 branch and the higher-probability subtree

Figure 2-26
Huffman coding.
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taking the 1 branch. We continue combining subtrees until we have formed a single large
tree. The code for a symbol can be found by following the path from the root to the
appropriate leaf node, noting the encoding bit at each decision point.

arithmetic coding Arithmetic coding was proposed by Whitten, Neal, and Cleary [Whi87] as a general-
ization of Huffman coding. Huffman coding can make only discrete divisions of the cod-
ing space. Arithmetic coding, in contrast, uses real numbers to divide codes into
arbitrarily small segments; this is particularly useful for sets of symbols with similar
probabilities. As shown in Figure 2-27, the real number line [0,1] can be divided into
segments corresponding to the probabilities of the symbols. For example, the symbol a
occupies the interval [0,0.5). Any real number in a symbol’s interval can be used to rep-
resent that symbol. Arithmetic coding selects values within those ranges so as to encode
a string of symbols with a single real number.

A string of symbols is encoded using this algorithm:
low = 0; high = 1; i=0;
while (i < strlen(string)) {

range = high - low;
high = low + range*high_range(string[i]);
low = low + range*low_range(string[i]);

}
An example is shown at the bottom of Figure 2-27. The range is repeatedly narrowed

to represent the symbols and their sequence in the string.

Figure 2-27
Arithmetic coding.
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Lempel-Ziv coding Lempel-Ziv coding [Ziv77] builds a dictionary for coding. It does so in a way that it
does not have to send the dictionary along with the compressed text. As shown in
Figure 2-28, the transmitter uses a buffer to recognize repeated strings in the input text;
the receiver keeps its own buffer to record repeated strings as they are received so that
they may be reused in later steps of the decoding process. The Lempel-Ziv coding pro-
cess is illustrated in Figure 2-29. The compressor scans the text from first to last charac-
ter. If the current string, including the current character, is in the buffer, no text is sent. If
the current string is not in the buffer, it is added to the buffer, the string is sent. 

Lempel-Ziv-Welch 
coding

The Lempel-Ziv-Welch (LZW) algorithm [Wel84] uses a fixed-size buffer for the
Lempel-Ziv algorithm. LZW coding was originally designed for disk drive compression,
in which the buffer is a small RAM; it is also used for image encoding in the GIF format.

Markov models Markov models are well-known statistical models. We use Markov models in data
compression to model the conditional probabilities of symbols—for example, the proba-
bility that z follows a, as compared to the probability of w following a. As shown in

Figure 2-28
Lempel-Ziv coding.

dictionary

source
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compressed
text

uncompressed
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coder

dictionary

decoder

Figure 2-29
An example of Lempel-Ziv coding.
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Figure 2-30, each possible state in the sequence is modeled by a state in the Markov
model. A transition shows possible moves between states, with each transition labeled
by its probability. In the example, states model the sequences az and aw. 

arithmetic coding 
and Markov 
models

Lekatsas and Wolf [Lek98,Lek99] combined arithmetic coding and Markov models.
Arithmetic coding provides more efficient codes than Huffman coding, but requires
more careful coding. Markov models allow coding to take advantage of the relationships
between strings of symbols. We will consider each of these factors.

Arithmetic coding is formulated in terms of real numbers; a straightforward imple-
mentation would require floating-point arithmetic. A floating-point arithmetic unit is too

a

az

aw

0.1

0.05

Figure 2-30
A Markov model for conditional character probabilities.

Figure 2-31
An example of table-based arithmetic decoding [Lek99].
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slow, too large, and too energy-intensive to be used in the instruction decode path.
Howard and Vitter [How92] developed a table-based algorithm for arithmetic compres-
sion that requires only fixed-point arithmetic. An example is shown in Figure 2-31. The
table encodes the segments into which the number line has been divided by the code.

The Markov model describes the relationship between the bits in an instruction. As
shown in Figure 2-32, each state has two transitions, one for a zero bit and one for a one
bit. Any particular instruction defines a trajectory through the Markov model. Each state
is marked with the probability of the most probable bit and whether that bit is 0 or 1. The
largest possible model for a block of b bits would have 2b states, which is too large. We
can limit the size of the model in two ways. We can limit the width by wrapping around
transitions so that a state may have more than one incoming transition. We can limit the
depth in a similar way by cutting off the bottom of the model and wrapping around tran-
sitions to terminate at existing states. The depth of the model should divide the instruc-
tion size evenly or be a multiple of the instruction size so that the root state always falls
on the start of an instruction.
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Lekatsas and Wolf compared SAMC to both ARM and Thumb. As shown in
Figure 2-33, SAMC created smaller programs than Thumb—compressed ARM pro-
grams were smaller than Thumb and compressed Thumb programs were also smaller.

pre-cache vs. post-
cache 
decompression

The Wolfe/Chanin architecture compresses blocks as they come into the cache. This
means that each block need be decompressed only once but it also means that the cache
is filled with uncompressed instructions. Lekatsas et al [Lek00] proposed post-cache
decompression in which instructions are decompressed between the cache and CPU, as
shown in Figure 2-34. This architecture requires instructions in a block to be decom-
pressed many times if they are repeatedly executed, such as in a loop, but it also leaves
compressed instructions in the cache. The post-cache architecture effectively makes the
cache larger because the instructions take up less room. Architects can either use a
smaller cache to achieve the same performance or achieve a higher cache hit rate for a
given cache size. This gives the architect trade-offs between area, performance, and
energy consumption (since the cache consumes a large amount of energy). Surprisingly,

Figure 2-33
SAMC vs. ARM and Thumb [Lek99].

[Lek99] Fig. 13

CPU

cache
decompression
enginememory

Figure 2-34
A post-cache decompression architecture.
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the post-cache architecture can be considerably faster and consume less energy even
when the overhead of repeated decompressions is taken into account.

2.7.2 Low-Power Bus Encoding

The busses that connect the CPU to the caches and main memory account for a signifi-
cant fraction of all the energy consumed by the CPU. These busses are both wide and
long, giving them large capacitance to switch. These busses are also frequently used,
inducing many switching events on their large capacitance.

bus encoding A number of bus encoding systems have been developed to reduce bus energy con-
sumption. As shown in Figure 2-35, information to be placed on the bus is first encoded
at the transmitting end and then decoded at the receiving end. The memory and CPU do
not know that the bus data is being encoded. Bus encoding schemes must be invertible—
we must be able to losslessly recover the data at the receiving end. Some schemes
require side information, usually a small number of bits to help decode. Other schemes
do not require side information to be transmitted alongside the bus.

metrics The most important metric for a bus encoding scheme is energy savings. Because the
energy itself depends on the physical and electrical design of the bus, we usually mea-
sure energy savings using toggle counts. Because bus energy is proportional to the num-
ber of transitions on each line in the bus, we can use toggle count as a relative energy
measure. Toggle counts measure toggles between successive bits on a given bus signal.
Because crosstalk also reduces power consumption, some schemes also look at the val-
ues of physically adjacent bus signals. We are also interested in the time, energy, and
area overhead of the encoder and decoder. All these metrics must include the toggle
counts and other costs of any side information that is used for bus encoding.

bus-invert coding Stan and Burleson proposed bus-invert coding [Sta95] to reduce the energy con-
sumption of busses. This scheme takes advantage of the correlation between successive
values on the bus. A word on the bus may be transmitted either in its original form or
inverted form to reduce the number of transitions on the bus.

CPUdecoder

cache/
memory encoder

side information

bus

Figure 2-35
Microarchitecture of an encoded bus.
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As shown in Figure 2-37, the transmitter side of the bus (for example, the CPU)
stores the previous value of the bus in a register so that it can compare the current bus
value to the previous value. It then computes the number of bit-by-bit transitions using
the function , where  is the bus value at time t. If more than
half the bits of the bus change value from time t to time t-1, then the inverted form of the
bus value is transmitted, otherwise the original form of the bus value is transmitted. One
extra line of side information is used to tell the receiver whether it needs to re-invert the
value.

Stan and Burleson also proposed breaking the bus into fields and applying bus-invert
coding to each field separately. This approach works well when data is naturally divided
into sections with correlated behavior.
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Evaluation of dictionary-based code compression [Lv03].
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working-zone 
encoding

Musoll et al. [Mus98] developed working-zone encoding for address busses. Their
method is based on the observation that a large majority of the execution time of pro-
grams is spent within small ranges of addresses, such as during the execution of loops.
They divide program addresses into sets known as working zones. When an address on
the bus falls into a working zone, the offset from the base of the working zone is sent in
a one-hot code. Addresses that do not fall into working zones are sent in their entirety. 

address bus 
encoding

Benini et al [Ben98] developed a method for address bus encoding. They cluster
address bits that are correlated, create efficient codes for those clusters, then use combi-
national logic to encode and decode those clustered signals.

They compute correlations of transition variables:

, (EQ 2-17)

where  is 1 if bit i makes a positive transition, -1 if it makes a negative transition,
and 0 if it does not change. They compute correlation coefficients of this function for the
entire address stream of the program.

In order to make sure that the encoding and decoding logic is not too large, we must
control the sizes of the clusters chosen. Benini et al. use a greedy algorithm to create

Figure 2-38
Working zone encoding and decoding algorithms [Mus98].
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clusters of signals with controlled maximum sizes. They use logic synthesis techniques
to design efficient encoders and decoders for the clusters.

Figure 2-39 shows the results of experiments by Benini et al comparing their method
to working zone encoding.

dictionary-based 
bus encoding

Lv et al. [Lv03] developed a bus encoding method that uses dictionaries similar to
those used in Lempel-Ziv encoding. This method is designed to consider both correla-
tions between successive values and correlations between adjacent bits. They use a sim-

benchmark stream length binary transitions Benini et al transi-tions Benini sav-ings working zone tran-sitions working zone sav-ings

dashboard 84918 619690 443115 28.4% 452605 26.9%

DCT 13769 48917 31472 35.6% 36258 25.8%

FFT 23441 138526 85653 38.1% 99814 27.9%

matrix multiplication 22156 105947 60654 42.7% 72881 31.2%

vector-vector multiplication 19417 133272 46838 64.8% 85473 35.8%

[Ben98] table 1

Figure 2-39
Experimental evaluation of address encoding using the method of Benini et al. [Ben98].

Figure 2-40
Frequency of the ten most frequent patterns in a set of benchmarks [Lv03].

[Lv03] fig 6
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ple model of energy consumption for a pair of lines: the function ENS(Vt,Vt-1) 0 if both
lines stay the same, 1 if one of the two lines changes, and 2 if both lines change. They
then model energy in terms of transition (ET) and interwire (EI) effects:

, (EQ 2-18)

(EQ 2-19)

. (EQ 2-20)

EN(k) gives the total energy on the kth bus transaction.
Dictionary encoding makes sense for busses because many values are repeated on

busses. Figure 2-40 shows the frequency of the ten most common patterns in a set of
benchmarks. A very small number of patterns clearly accounts for a majority of the bus
traffic in these programs. This means that a small dictionary can be used to encode many
of the values that appear on the bus.

Figure 2-41 shows the architecture of the dictionary-based encoding scheme. Both
the encoder and decoder have small dictionaries built from static RAM. Not all of the
word is used to form the dictionary entry; only the upper bits of the word are used to
match. The remaining bits of the word are sent unencoded. They divide the bus into three

ET k( ) CLVDD
2 ENS Vi k 1–( ) Vi k( ),( )( )

0 i N 1–≤ ≤
∑=

EI k( ) CLVDD
2 ENS Vi k 1–( ) Vi 1+ k( ),( ) Vi k( ),( ) Vi 1+ k( ),( )( )

0 i N 2–≤ ≤
∑=

EN k( ) ET k( ) EI k( )+=

Figure 2-41
Architecture of the dictionary-based bus encoder of Lv et al. [Lv03].

[Lv03] fig 10
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sections: the upper part of width N-wi-w0, the index part of width wi, and the bypassed
part of width wo. If the upper part of the word to be sent is in the dictionary, the transmit-
ter sends the index and the bypassed part. When the upper part is not used, those bits are
put into a high-impedance state to save energy. Side information tells when a match is
found. Some results are summarized in Figure 2-36; Lv et al. found that this dictionary-
based saved about 25% of bus energy on data values and 36% on address values at a cost
of two additional bus lines for side information and about 4400 gates.

2.7.3 Security

Security, in the context of CPUs, can mean two different things. It can mean features in
the CPU designed for use in cryptography and related security operations. It can also
mean protection features against attacks. We will consider both aspects of CPU security
in this section.

cryptography and 
CPUs

Cryptographic operations are used in key-based cryptosystems. Cryptographic oper-
ations, such as key manipulation, are part of protocols that are used to authenticate data,
users, and transactions.

Cryptographic arithmetic requires very long word operations and a variety of bit-
and field-oriented operations. A variety of instruction set extensions have been proposed
to support cryptography. Co-processors may also be used to implement these operations.

varieties of attacks Embedded processors must also guard against attacks. Attacks used against desktop
and server systems—Trojan horses, viruses, etc.—can be used against embedded sys-
tems. Because users and adversaries have physical access to the embedded processor,
new types of attacks are also possible. Side channel attacks use information leaked
from the processor to determine what the processor is doing.

smart cards Smart cards are an excellent example of a widely-used embedded system with strin-
gent security requirements. Smart cards are used to carry highly-sensitive data such as
credit and banking information or personal medical data. Tens of millions of smart cards
are in use today. Because the cards are held by individuals, they vulnerable to a variety
of physical attacks, either by third parties or by the card holder.

Figure 2-42 shows a smart card chip, which includes a 32-bit microcontroller, RAM,
ROM, flash memory, and I/O devices. This architecture is sometimes called the self-pro-
grammable one-chip microcomputer (SPOM) architecture. The electrically program-
mable memory allows the processor to change its own permanent program store.

self-
reprogramming 
architecture

 SPOM architectures allow the processor to modify either data or code, including the
code that is being executed. Such changes must be done carefully to be sure that the
memory is changed correctly and CPU execution is not compromised. Figure 2-43
shows an architecture for self-reprogramming [Ugo83]. The memory is divided into two
sections: both may be EPROM or one may be ROM, in which case the ROM section of
the memory cannot be changed. The address and data are divided among the two pro-
grams. Registers are used to hold the addresses during the memory operation as well as
to hold the data to be read or written. One address register holds the address to be read/
written while the other holds the address of a program segment that controls the memory
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operation. Control signals from the CPU determine the timing of the memory operation.
Segmenting the memory access into two parts allows arbitrary locations to be modified
without interfering with the execution of the code that governs the memory modification.
Because of the registers and control logic, even the locations that control the memory
operation can be overwritten without causing operational problems.

power attacks Side channel attacks, as mentioned above, use information emitted from the proces-
sor to determine the processor’s internal state. Electronic systems typically emit electro-
magnetic energy that can be used to infer some of the circuit’s activity. Similarly, the
dynamic behavior of the power supply current can be used to infer internal CPU state.
Kocher et al. [Koc99] showed that, using a technique they call differential power anal-
ysis, measurements of the power supply current into a smart card could be used to iden-
tify the cryptosystem key stored in the smart card.

countermeasures Countermeasures have been developed for power attacks. Yang et al [Yan05] used
dynamic voltage and frequency scaling to mask operations in processors as shown in
Figure 2-43. They showed that proper design of a DVFS schedule can make it substan-
tially harder for attackers to determine internal states from the processor power con-
sumption. Figure 2-44 compares traces without dynamic voltage and frequency scaling
(a and c) and traces with DVFS-based protection (b and d).

CPU Simulation

CPU simulators are essential to computer system design. CPU architects use simulators
to evaluate processor designs before they are built. System designers use simulators for a

Tual MPSOC slide 3 

Figure 2-42
Photomicrograph of a smart card chip (courtesy Axalto).
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Figure 2-43
Protecting against power attacks with dynamic voltage and frequency scaling.
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Traces without and with DVFS protection.
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variety of purposes: analyzing the performance and energy consumption of programs;
simulating multiprocessors before and after they are built; and system debugging.

The term “CPU simulator” is generally used broadly to mean any method of analyz-
ing the behavior of programs on processors. We can classify CPU simulation methods
along several lines:

• performance vs. energy Simulating the energy consumption of a processor requires
accurate simulation of its internal behavior. Some types of performance-oriented
simulation, in contrast, can perform a less detailed simulation and still provide rea-
sonably accurate results.

• temporal accuracy By simulating more details of the processor, we can obtain more
accurate timings. More accurate simulators take more time to execute.

• trace vs. execution Some simulators analyze a trace taken from a program that exe-
cutes on the processor. Analyze the program execution directly.

• simulation vs. direct execution Some execution-based systems directly execute on
the processor being analyzed while others use simulation programs.

This section surveys techniques for CPU simulation.

2.8.1 Trace-Based Analysis

Trace-based analysis systems do not directly operate on a program. Instead, they use a
record of the program’s execution, called a trace, to determine characteristics of the pro-
cessor.

tracing and 
analysis

As shown in Figure 2-45, trace-based analysis gathers information from a running
program. The trace is then analyzed after execution of the program being analyzed. The
post-execution analysis is limited by the data gathered in the trace during program exe-
cution.

The trace can be generated in several different ways. The program can be instru-
mented with additional code that writes trace information to memory or a file. The
instrumentation is generally added during compilation or by editing the object code. The
trace data can also be taken by a process that interrupts the program and samples its pro-
gram counter (PC). These two techniques are not mutually exclusive. 

Profiling information can be taken on a variety of types of program information and
at varying levels of granularity:

• control flow Control flow is useful in itself and a great deal of other information can
be derived from control flow. The program’s branching behavior can generally be
captured by recording branches; behavior within the branches can be inferred. Some
systems may record function calls but not branches within a function.
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• memory accesses Memory accesses tell us about cache behavior. The Instruction
cache behavior can be inferred from control flow. Data memory accesses are usually
recorded by instrumentation code that surrounds each memory access.

prof An early and well-known trace-based analysis tool is the Unix prof command and its
GNU cousin gprof. [Fen98]   gprof uses a combination of instrumentation and PC sam-
pling to generate the trace. The trace data can generate call-graph (procedure-level),
basic-block-level, and line-by-line data.

dinero A very different type of trace-based analysis tool is the well-known Dinero tool
[Edl03]. Dinero is a cache simulator. It does not analyze the timing of a program’s exe-
cution, rather it only looks at the history of references to memory. The reference memory
history is captured by instrumentation within the program. After execution, the user ana-
lyzes the program behavior in the memory hierarchy using the Dinero tools. The user
design a cache hierarchy in the form of a tree and set the parameters for the caches for
analysis. 

trace sampling Traces can be sampled rather than recorded in full [Lah88]. A useful execution may
require a great deal of data. Consider, for example, a video encoder that must process

program

code modification
tool

instrumented
program

execution

trace

analysis tool

analysis
results

Figure 2-45
The trace-based analysis process.
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several frames to exhibit a reasonable range of behavior. The trace may be sampled by
taking data for a certain number of instructions and then not recording information for
another sequence of instructions. It is often necessary to warm up the cache before taking
samples. The usual challenges of sampled data apply: an adequate length of sample must
be taken at each point and samples must be taken frequently enough to catch important
behavior.

2.8.2 Direct Execution

emulating 
architectures

Direct execution-style simulation makes use of the host CPU used for simulation in
order to help compute the state of the target machine. Direct execution is used primarily
for functional and cache simulation, not for detailed timing.

The various registers of the computer comprise its state; we need to simulate those
registers in the target machine that are not defined in the host machine but we can use the
host machine’s native state where appropriate. A compiler generates code for the simula-
tion by adding instructions to compute the target state that needs to be simulated.
Because much of the simulation runs as native code on the host machine, direct execu-
tion can be very fast.

2.8.3 Microarchitecture-Modeling Simulators

modeling detail 
and accuracy

We can provide more detailed performance and power measurements by building a
simulator that models the internal microarchitecture of the computer. Directly simulating
the logic would provide even more accurate results but would be much too slow, pre-
venting us from running the long traces that we need to judge system performance. Logic
simulation also requires us to have the logic design, which is not generally available
from the CPU supplier. But in many cases we can build a functional model of the
microarchitecture from publicly available information. 

Microarchitecture models may vary in the level of detail they capture about the
microarchitecture. Instruction schedulers model basic resource availability but may not
be cycle-accurate. Cycle timers, in contrast, model the architecture in more detail in
order to provide cycle-by-cycle information about execution. Accuracy generally comes
at the cost of somewhat slower simulation.

modeling for 
simulation

A typical model for a 3-stage pipelined machine is shown in Figure 2-46. This model
is not a register-transfer model in that it does not include the register file or busses as
first-class elements. Those elements are instead subsumed into the models of the pipeline
stages. The model captures the main units and paths that contribute to data and control
flow within the microarchitecture.

simulator design The simulation program consists of modules that correspond to the units in the
microarchitectural model. Because we want the simulator to run fast, these simulators
are typically written in a sequential language such as C, not in a simulation language like
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Verilog or VHDL. Simulation languages have mechanisms to ensure that modules are
evaluated in the proper order when the simulation state changes; when we write simula-
tors in sequential languages, we must design the control flow in the program to ensure
that all the implications of a given state change are properly evaluated.

SimpleScalar SimpleScalar [Sim05] is a well-known toolkit for simulator design. Simplescalar
provides modules that model typical components of CPUs as well as tools for data col-
lection. These tools can be put together in various ways, modified, or added to in order to
create a custom simulator. A machine description file describes the microarchitecture
and is used to generate parts of the simulation engine as well as programming tools like
disassemblers. 

power simulation Power simulators take cycle-accurate microarchitecture simulators one step further
in detail. Determining the energy/power consumption of a CPU generally requires even
more accurate modeling than performance simulation. For example, a cycle-accurate
timing simulator may not directly model the bus. But the bus is a major consumer of
energy in a microprocessor, so a power simulator needs to model the bus, as well as reg-
ister files and other major structural components. In general, a power simulator most
model all significant sources of capacitance in the processor since dynamic power con-
sumption is directly related to capacitance. However, power simulators must trade-off
accuracy for simulation performance just like other cycle-accurate simulators.

Figure 2-46
A microarchitectural model for simulation.

fetch decode execute

I$ IMMU D$ DMMU

main memory
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Wattch and 
SimplePower

The two best-known power simulators are Wattch [Bro00] and SimplePower [Ye00].
Both are built on top of SimpleScalar and add capacitance models for the major units in
the microarchitecture.

2.8.4 Automated CPU Design

System designers have long used custom processors to run applications at higher speeds.
Custom processors were popular in the 1970’s and 1980’s thanks to bit-slice CPU com-
ponents. Chips for data paths and controllers, such as the AMD 2910 series, could be
combined and microprogrammed to implement a wide range of instruction sets. Today,
custom integrated circuits and FPGAs offer complete freedom to designers who are will-
ing to put the effort into creating a CPU architecture for their application. Custom CPUs
are often known as application-specific instruction processors (ASIPs) or config-
urable processors.

why automate 
CPU design

Custom CPU design is an area that cries out for methodological and tool support.
System designers need help determining what sorts of modifications to the CPU are
fruitful. They also need help implementing those modifications. Today, system designers
have a wide range of tools available to help them design their own processors.

axes of 
customization

We can customize processors in many different ways:

• Instruction sets can be adapted to the application.

— New instructions can provide compound sets of existing operations, such as mul-
tiply-accumulate.

— Instructions can supply new operations, such as primitives for Viterbi encoding
or block motion estimation.

— Instructions that operate on non-standard operand sizes can be added to avoid
masking and reduce energy consumption.

— Instructions not important to the application can be removed.

• Pipelines can be specialized to take into account the characteristics of function units
used in new instructions, implement specialized branch prediction schemes, etc.

• Memory hierarchy can be modified by adding and removing cache levels, choosing
a cache configuration, or choosing the banking scheme in a partitioned memory sys-
tem.

• Busses and peripherals can be selected and optimized to meet bandwidth and I/O
requirements.

software tools ASIPs require customized versions of the tool chains that software developers have
come to rely upon. Compilers, assemblers, linkers, debuggers, simulators, and IDEs

2.9
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(integrated development environments) must all be modified to match the CPU charac-
teristics.

tool support Tools to support customized CPU design come in two major varieties. Configura-
tion tools take the microarchitecture as a specification—instruction set, pipeline, mem-
ory hierarchy, etc.—as a specification and create the logic design of the CPU (usually as
register-transfer Verilog or VHDL) along with the compiler and other tools for the CPU.
Architecture optimization tools help the designer select a particular instruction set and
microarchitecture based upon application characteristics.

early work The MIMOLA system [Mar84] is an early example of both architecture optimization
and configuration. MIMOLA analyzed application programs to determine opportunities
for new instructions. It then generated the structure of the CPU hardware and generated
code for the application program for which the CPU was designed.

in this section We will defer our discussion of compilers for custom CPUs until the next chapter. In
this section we will concentrate on architecture optimization and configuration.

2.9.1 Configurable Processors

CPU configuration spans a wide range of approaches. Relatively simple generator tools
can create simple adjustments to CPUs. Complex synthesis systems can implement a
large design space of microarchitectures from relatively simple specifications.

Figure 2-47 shows a typical design flow for CPU configuration. The system designer
may specify instruction set extensions as well as other system parameters like cache con-
figuration. The system may also accept designs for function units that will be plugged
into the processor. Although it is possible to synthesize the microarchitecture from
scratch, the CPU’s internal structure is often built around a processor model that defines
some basic characteristics of the generated processor. The configuration process includes
several steps, including allocation of the datapath and control, memory system design,
and I/O and bus design. Configuration results in both the CPU logic design and software
tools (compiler, assembler, etc.) for the processor. Configurable processors are generally
created in register-transfer form and used as soft IP. Standard register-transfer synthesis
tools can be used to create a set of masks or FPGA configuration for the processor.

Several processor configuration systems have been created over the years by both
academic and industrial teams. ASIP Meister [Kob03] is the follow-on system to PEAS.
It generates Harvard architecture machines based upon estimations of area, delay, and
power consumption during architecture design and micro-operation specification. The
ARC family of configurable cores (http://www.arc.com) include the 600 series with a 5-
stage pipeline and the 700 series with a 7-stage pipeline.

The next example describes a commercial processor configuration system.

Application Example 2-10
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The Tensilica Xtensa Configurable Processor

The Tensilica Xtensa(TM) configurable processor is designed to allow a wide range of
CPUs to be designed from a very simple specification. An Xtensa core can be custom-
ized in many ways:

— The instruction set can be augmented with basic ALU-style operations, wide
instructions, DSP-style instructions, or co-processors.

— The configuration of the caches can be controlled, memory protection and trans-
lation can be configured, DMA access can be added, and addresses can be
mapped into special-purpose memories.

— The CPU bus width, protocol, system registers, and scan chain can be optimized.

instruction set spec

processor model

parameters and components

CPU RTL programming tools

RTL synthesis

CPU core

Figure 2-47
The CPU configuration process.
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— Interrupts, exceptions, remote debugging features, and standard I/O devices such
as timers can be added.

This figure [Row05] illustrates the range of features in the CPU that can be custom-
ized:

Instructions are specified using the TIE language. TIE allows the designer to declare
an instruction using state declarations, instruction encodings and formats, and operation
descriptions. For example, consider this simple TIE instruction specification (after
Rowen):

Regfile LR 16 128 l
Operation add128

{ out LR sr, in LR ss, in LR st } {}
{ assign sr = st + ss; }

The Regfile declaration defines a large register file named LR with 16 entries, each
128 bits wide. The add128 instruction description starts with a declaration of the argu-
ments to the instruction; each of the arguments is declared to be in the LR register file. It
then defines the instruction’s operation, which adds two elements of the LR register file
and assigns it to a third register in LR.

New instructions may be used in programs with intrinsic calls that map onto instruc-
tions. For example, the code out[i] = add128(a[i], b[i]) makes use of the new instruc-
tion. Optimizing compilers may also map onto the new instructions.
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EEMBC compared several processors on benchmarks for consumer electronics, dig-
ital signal processing, and networking. These results [Row05] show that custom, config-
urable processors can provide much higher performance than standard processors:

In order to evaluate the utility of configuration, Tensilica created customized proces-
sors for four different benchmark programs:

• DotProd: dot product of two 2048-element vectors.

• AES: Advanced Encryption Standard.

• Viterbi: Viterbi trellis decoder.

• FFT: 256-point fast Fourier transform.

A different CPU was designed for each benchmark. The CPUs were implemented,
measured, and compared to a baseline Xtensa processor without extensions. The perfor-
mance, power, and energy consumption of the processors show [Row05] that configur-
ing customized processors can provide large energy savings:
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The design of a processor for a 256-point FFT computation illustrates how different
types of customizations contribute to processor efficiency. Here is the architecture for
the processor [Row05]:
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When we analyze the energy consumption of the subsystems in the processor, we
find [Row05] that fine-grained clock gating contributed substantially to energy effi-
ciency, followed by a reduction in processor-DSP overhead:

The next example describes a configurable processor designed for media processing
applications.

Application Example 2-11

The Toshiba MeP Core
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The MeP module [Tos05] is optimized for media processing and streaming applica-
tions. A MeP module can contain a MeP core, extension units, a data streamer, and a glo-
bal bus interface unit:

The MeP core is a 32-bit RISC processor. In addition to typical RISC features, the
core can be augmented with optional instructions.

Extension units can be used for further enhancements. The user-custom instruction
(UCI) unit adds single-cycle instructions while the DSP unit provides multi-cycle
instructions. The co-processor unit can be used to implement VLIW or other complex
extensions.

The data streamer provides DMA-controlled access to memory for algorithms that
require regular memory access patterns. The MeP architecture uses a hierarchy of busses
to feed data to the various execution units.

CPU modeling Let’s now look in more detail at models for CPU microarchitectures and how they
are used to generate CPU configurations.

LISA The LISA system [Hof01] generates ASIPs described in the LISA language. The
language mixes structural and behavioral elements to capture the processor microarchi-
tecture.

Figure 2-48 shows example descriptions in the LISA language. The memory model
is an extended version of the traditional programming model; in addition to the CPU reg-
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RESOURCE {
PROGRAM_COUNTER int PC;
REGISTER signed int R[0..7];
DATA_MEMORY signed int RAM[0..255];
PROGRAM_MEMORY unsigned int ROM[0..255];
PIPELINE ppu_pipe = {FI; ID; EX; WB};
PIPELINE_REGISTER IN ppu_pipe {

bit[6] Opcode; short operandA; short operandB;
};

}

RESOURCE {
REGISTER unsigned int R([0..7])6;
DATA_MEMORY signed int RAM([0..15]);

};

OPERATION NEG_RM {
BEHAVIOR USES (IN R[] OUT RAM[];) {

RAM[address] = (-1) * R[index];
}

}

OPERATION COMPARE_IMM {
DECLARE { LABEL index; GROUP src1, dest = {register}; }
CODING {0b10011 index =0bx[5] src1 dest }
SYNTAX  { “CMP” src1 ~”,” index ~”,” dest }
SEMANTICS { CMP (dest,src1,index) }

}

OPERATION register {
DECLARE { LABEL index; }
CODING { index = 0bx[4] }
EXPRESSION { R[index] }

}

OPERATION ADD {
DECLARE { GROUP src1, src2, dest = {register}; }
CODING { 0b10010 src1 src2 dest }
BEHAVIOR { dest = src1 + src2; saturate(&dest); }

};

memory model

resource model

instruction set model

Figure 2-48
Sample LISA modeling code [Hof01].

behavioral model
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isters, it also specifies other memories in the system. The resource model describes hard-
ware resources as well as constraints on the usage of those resources. The USES clause
inside an OPERATION specifies what resources are used by that operation. The instruc-
tion set model describes the assembly syntax, instruction coding, and the function of
instructions. The behavioral model is used to generate the simulator; it relates hardware
structures to the operations they perform. Timing information comes from several parts
of the model: the PIPELINE declaration in the resource section gives the structure of the
pipeline; the IN keyword as part of an OPERATION statement assigns operations to
pipeline stages; the ACTIVATION keyword in the OPERATION section launches other
operations performed during the instruction. In addition, an ENTITY statement allows
operations to be grouped together into functional units, such as an ALU made from sev-
eral arithmetic and logical operators.

LISA hardware 
generation

LISA generates VHDL for the processor as a hierarchy of entities. The memory, reg-
ister, and pipeline are the top-level entities. Each pipeline stage is an entity used as a
component of the pipeline, while stage components like ALUs are described as entities.
Groupings of operations into functional units are implemented as VHDL entities.

LISA generates VHDL for only some of the processor, leaving some entities to be
implemented by hand. Some of the processor components must be carefully coded to
ensure that register-transfer and physical synthesis will provide acceptable power and
timing. LISA generates HDL code for the top-level entities (pipeline/registers/memory),
the instruction decoder, and the pipeline decoder.

PEAS/ASIP 
Meister

PEAS-III [Ito00,Sas01] synthesizes a processor based upon five types of description
from the designer:

• Architectural parameters for number of pipeline stages, number of branch delay
slots, etc.

• Declaration of function units to be used to implement micro-operations.

• Instruction format definitions.

• Definitions of interrupt conditions and timing.

• Descriptions of instructions and interrupts in terms of micro-operations.

PEAS pipeline 
structure

Figure 2-49 shows the model used by PEAS-III for a single pipeline stage. The data-
path portion of a stage can include one or more function units that implement operations;
a function unit may take one or more clock cycles to complete. Each stage has its own
controller that determines how the function units are used and when data moves forward.
The datapath and controller both have registers that present their results to the next stage.

A pipeline stage controller may be in either the valid or invalid state. A stage may
become invalid because of interrupts or other disruptions to the input of the instruction
flow. A stage may also become invalid due to a multi-cycle operation, a branch, or other
disruptions during the middle of instruction operation.
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A pipeline model for the entire processor is built by concatenating several pipeline
stages. The stages may also connect to other resources on both the datapath or controller
side. Datapath stages may be connected to memory or caches. Controller stages may be
connected to an interrupt controller that coordinates activity during exceptions.

PEAS hardware 
synthesis

PEAS-III generates two VHDL models, one for simulation and another for synthesis.
The datapath is generated in three phases. First, the structures required for each instruc-
tion are generated independently: the function unit resources, the ports on the resources,
and the connections between those resources. The resource sets for the instructions are
then merged. Finally, multiplexers and pipeline registers are added to control access to
resources. After the datapath stages are synthesized, the controllers can be generated.
The controllers are synthesized in three stages: the control signals required for the datap-
ath multiplexers and registers are generated; the interlocks for multi-cycle operations are
then generated; the branch control logic is then synthesized. The interrupt controller is
synthesized based upon the specifications for the allowed interrupts.

2.9.2 Instruction Set Synthesis

Instruction set synthesis designs the instruction set to be implemented by the microarchi-
tecture. This topic has not received as much attention as one might think. Many research-
ers in the 1970’s studied instruction set design for high-level languages. That work,
however, tended to take the language as the starting point, not particular programs.
Instruction set synthesis requires, on the one hand, designers who are willing to create
instructions that occupy a fairly small set of the static program size. This approach is jus-
tified when that small static code set is executed many times to create a large static trace.
Instruction set synthesis also requires the ability to automatically generate a CPU imple-
mentation, which was not practical in the 1970’s. CPU implementation requires practical
logic synthesis at a minimum as well as the CPU microarchitecture synthesis tools that
we have studied earlier in this section.

instruction set 
design space

An experiment by Sun et al. [Sun04] demonstrates the size and complexity of the
instruction set design space. They studied a BYTESWAP() program that swaps the order

...
FU FU ctrl

datapath control

Figure 2-49
PEAS-III model of a pipeline stage.
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of bytes in a word. They generated all possible instructions for this program—they found
482 possible instructions.Figure 2-50 shows the execution time for the program with
each possible instruction; the instructions are ordered arbitrarily across the x axis. Even
in this simple program, different instructions result in very different performance results.

instruction set 
metrics

Holmer and Despain [Hol91] formulated instruction set synthesis as an optimization
problem, which requires selecting an optimization function to guide the optimization
process. They observed that, when designing instruction sets manually, computer archi-
tects often apply a 1% rule—an instruction that provides less than a 1% improvement in
performance over the benchmark set is not a good candidate for inclusion in the instruc-
tion set. They proposed this performance-oriented objective function:

, (EQ 2-21)

where C is the number of cycles used to execute the benchmark set and I is the total
number of instructions in the instruction set. The logarithm is the infinitesimal form of

 and the I term provides some benefit for adding a few high-benefit instructions
over many low-benefit instructions. They also proposed an objective function one that
incorporates code size:

, (EQ 2-22)

where S is the static number of instructions. This form imposes a 5% rule for code
size improvements.

Figure 2-50
The instruction set design space for a small program [Sun04]

[Sun04] Fig. 2
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instruction 
formation

Holmer and Despain identified candidate instructions using methods similar to the
microcode compaction algorithms used to schedule microoperations. They compiled a
benchmark program into a set of primitive microoperations. They then use a branch-and-
bound algorithm to combine microoperations into candidate instructions. Combinations
of microoperations are then grouped into instructions.

instruction set 
search algorithms

Huang and Despain [Hua95] also used an n% rule as a criterion for instruction selec-
tion. They proposed the use of simulated annealing to search the instruction set design
space. Given a set of microoperations that can be implemented in the datapath, they use
move operators to generate combinations of microoperations. A move may displace a
microoperation to a different time step, exchange two microoperations, insert a time
step, or delete a time step. A move must be evaluated not only for performance but also
whether they violate design constraints, such as resource utilization. 

template 
generation

Kastner et al [Kas02] use clustering to generate instruction templates and cover the
program. Covering is necessary to ensure that the entire program can be implemented
with instructions. Clustering finds subgraphs that occur frequently in the program graph
and replaces those subgraphs with supernodes that correspond to new instructions.

[Ata03] Fig 1

Figure 2-51
Candidate instructions in the adpcmdecode benchmark [Ata03].
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Atasu et al. [Ata03] developed algorithms to find complex instructions. Figure 2-51
shows an operator graph from a section of the adpcmdecode benchmark.   Although the

M2 graph is large, the operators within it are fairly small; the entire M2 subgraph imple-
ments a 16x3-bit multiplication, which is a good candidate for encapsulation in an
instruction. Atasu et al. also argue that combining several disjoint graphs, such as M2
and M3, into a single instruction is advantageous. Disjoint operations can be performed
in parallel and so offer significant speedups. They also argue that multi-output opera-
tions are important candidates for specialized instructions.

A large operator graph must be convex to be mapped into an instruction. The graph
identified by the dotted line in Figure 2-53 is not convex: input b depends upon output a.
In this case, the instruction would have to stall and wait for b to be produced before it
could finish.

Atasu et al. find large subgraphs in the operator graph that maximize the speedup
provided by the instruction. By covering the graph with existing instructions, we can
count the number of cycles required to execute the graph without the new instruction.

[Bis05] Fig 1

Figure 2-52
Instruction template size vs. utilization [Bis05].

+

+
-

+

Figure 2-53
A non-convex operator graph.
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We can estimate the number of clock cycles required to execute the new instruction by
fast logic synthesis that provides the critical path length, which we can then compare to
the available cycle time. They use a branch-and-bound algorithm to identify cuts in the
operator graph that define new instruction subgraphs.

Biswas et al [Bis05] use a version of the Kernighan-Lin partitioning algorithm to
find instructions. They point out that finding the maximum-size instruction does not
always result in the best result. In the example of Figure 2-52, the largest template,
shown with the dotted line, can be used only three times in the computation, but the
smaller graph shown with the solid line can be used six times.

instructions in 
combination

Sun et al. [Sun04] developed an instruction set synthesis system that used the Tensil-
ica Xtensa system to implement their choices. Their system generates TIE code that can
be used to synthesize processors. They generate instructions from programs by combin-
ing microinstructions. They synthesize the register-transfer hardware for each candidate
instruction, then synthesize logic and layout for that hardware to evaluate its perfor-
mance and area. They select a subset of all possible instructions for further evaluation
based upon their speedup and area potential. Based upon this set of candidate instruc-
tions, they select a combination of instructions used to augment the processor instruction
set. They use a branch-and-bound algorithm to identify a combination of instructions
that minimizes area while satisfying the performance goal.

large instructions Pozzi and Ienne developed algorithms to extract large operations as instructions.
Larger combinations of microoperations provide greater speedups for many signal pro-
cessing algorithms. Because large blocks may require many memory accesses, they
developed algorithms that generate multi-cycle operations from large data flow graphs
[Poz05]. They identify mappings that require more memory ports than are available in
the register file and add pipelining registers and sequencing to perform the operations
across multiple cycles.

The next example describes a recent industrial instruction set synthesis system.

Application Example 2-12

The Tensilica Xpres Compiler

The Xpres compiler [Ten04] designs instruction sets from benchmark programs. It
creates TIE code and processor configurations that provide the optimizations selected
from the benchmarks. Xpres looks for several types of optimized instructions:

• Operator fusion creates new instructions out of combinations of primitive microop-
erations.

• Vector/SIMD operations perform the same operation on subwords that are 2, 4, or 8
wide.
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• Flix operations combine independent operations into a single instruction.

• Specialized operations may limit the source or destination registers or other oper-
ands. These specializations provide a tighter encoding for the operation that can be
used to pack several operations into a single instruction.

The Xpres compiler searches the design space to identify instructions to be added to
the architecture. It also allows the user to guide the search process.

limited-precision 
arithmetic

A related problem is the design of limited-precision arithmetic units for digital signal

processing. Floating-point arithmetic provides high accuracy across a wide dynamic
range but at a considerable cost in area, power, and performance. In many cases, if the
range of possible values can be determined, finite-precision arithmetic units can be used.
Mahlke et al. [Mah01] extended the PICO system to synthesize variable-bitwidth archi-
tectures. They used rules, designer input, and loop analysis to determine the required bit-

[Mah01] fig 11

Figure 2-54
Cost of bitwidth clustering for multi-function units [Mah01].
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width of variables. They used def-use analysis to analyze the propagation of bitwidths.
They clustered operations together to find a small number of distinct bitwidths to imple-
ment the required accuracy with a small number of distinct units. They found that bit-
width clustering was particularly effective when operations could be mapped onto multi-
function units. The results of their synthesis experiments for a number of benchmarks are
shown in Figure 2-54. The right bar shows hardware cost for bitwidth analysis alone,
while the left bar shows hardware cost after bitwidth analysis and clustering. Each bar
divides hardware cost into registers, function units, and other logic.

The traditional way to determine the dynamic range of an algorithm is by simulation,
which requires careful design of the input data set as well as long run times. Fang et al.
[Fan03] used affine arithmetic to analyze the numerical characteristics of algorithms.
Affine arithmetic models the range of a variable as a linear equation. Terms in the affine
model can describe the correlation between the ranges of other variables; accurate analy-
sis of correlations allows the dynamic range of variables to be tightly bounded. 

Summary

CPUs are at the heart of embedded computing. CPUs may be selected from a catalog
for use or they may be custom-designed for the task at hand. A variety of architectural
techniques are available to optimize CPUs for performance, power consumption, and
cost; these techniques can be combined in a number of ways. Processors may be
designed by hand; a variety of analysis and optimization techniques have been devel-
oped to help designers customize processors.

What We Learned

• RISC and DSP approaches can be used in embedded CPUs. The design trade-offs for
embedded processors lead to some different conclusions than are typical for general-
purpose processors.

• A variety of parallel execution methods can be used; they must be matched to the
available parallelism.

• Encoding algorithms can be used to efficiently represent signals and instructions in
processors.

• Embedded processors are prone to many attacks that are not realistic in desktop or
server systems.

• CPU simulation is an important tool for both processor design and software optimi-
zation. Several techniques, varying in accuracy and speed, can be used to simulate
performance and energy consumption.

2.10
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Further Reading

Conte [Con92] describes both CPU simulation and its uses in computer design. The SOS
Research Web site (http://www.sosresearch.org/caale/caalesimulators.html) provides
extensive information about CPU simulators. The chapter by Rotenberg and Anantarara-
man [Rot04] provides an excellent introduction to embedded CPU architectures. Witold
Kinsner has created a good on-line introduction to smart cards at http://www.ee.umani-
toba.ca/~kinsner/whatsnew/tutorials/tu1999/smcards.html. This chapter has made refer-
ence to United States Patents; all U.S. Patents are available online at http://
www.uspto.gov.

Questions

Q2-1 Draw a pipeline diagram for a multiply instruction followed by an addition. Compare to
the pipeline diagram for a multiply-accumulate instruction that requires two clock cycles
to execute. Use pipelines of length:

a. three stages;
b. five stages;
c. eight stages.

Q2-2 Compare and contrast performing a matrix multiplication using subword parallel instruc-
tions and vector instructions. How do the code fragments for the two approaches differ?
How do these differences affect performance?

Q2-3 Build a model for a two-way set-associative cache. Show the block-level organization of
the cache. Create area, delay, and energy models for the cache based upon the formulas
for the block-level model.

Q2-4 Evaluate cache configurations for several block motion estimation algorithms. The
motion estimation search uses a 16 x 16 macroblock and a search area of 25 x 25. Each
pixel is eight bits wide. Consider full search, three-step, and four-step search. The cache
size is fixed at 4096 bytes. Evaluate direct-mapped, 2-way, and 4-way set associative
caches at three different line widths: four bytes, eight bytes, and 16 bytes. Compute the
cache miss rate for each case.

Q2-5 Draw a pipeline diagram for a processor that uses a code decompression engine. Not
counting decode, the pipeline includes four stages. Assume that the code decompression
engine requires four cycles for decoding. Show the execution of an addition followed by
a branch.

Q2-6 Evaluate the energy savings of bus-invert coding on a data bus for the address sequences
to the array a[10][10], where a starts at address 100s:

a. row-major sequential accesses;
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b. column-major sequential access to a;
c. diagonal accesses such as those used for JPEG DCT encoding (0,0 -> 1,0 -> 0,1 ->

2,0 -> 1,1 -> 0,2 -> ...).
Q2-7 Identify possible instructions in matrix multiplication.

Q2-8 Identify possible instructions in the fast Fourier transform.

Lab Exercises

L2-1 Develop a SimpleScalar model for a DSP with a Harvard architecture and multiply-accu-
mulate instruction.

L2-2 Use your SimpleScalar model to compare performance of a matrix multiplication routine
with and without the multiply-accumulate instruction.

L2-3 Use simulation tools to analyze the effects of register file size on performance.

L2-4 Develop a SimpleScalar model for a code decompression engine. Evaluate CPU perfor-
mance as the decompression time varies from one to 10 cycles.
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Chapter

8
Networks 8

• General network architectures and the ISO network layers.

• Automotive and aircraft networks.

• Consumer electronics networks.

• Sensor networks.

Introduction

In this chapter we study networks that can be used to build distributed embedded sys-
tems. In a distributed embedded system, several processing elements (either micropro-
cessors or ASICs) are connected by a network that allows them to communicate. The
application is distributed over the processing elements, and some of the work is done at
each node in the network.

There are several reasons to build network-based embedded systems. When the pro-
cessing tasks are physically distributed, it may be necessary to put some of the comput-
ing power near where the events occur. Consider, for example, an automobile: The short
time delays required for tasks such as engine control generally mean that at least parts of
the task are done physically close to the engine. Data reduction is another important rea-
son for distributed processing. It may be possible to perform some initial signal process-
ing on captured data to reduce its volume—for example, detecting a certain type of event
in a sampled data stream. Reducing the data on a separate processor may significantly
reduce the load on the processor that makes use of that data. Modularity is another moti-
vation for network-based design. For instance, when a large system is assembled out of
existing components, those components may use a network port as a clean interface that
does not interfere with the internal operation of the component in ways that using the
microprocessor bus would. A distributed system can also be easier to debug—the micro-
processors in one part of the network can be used to probe components in another part of
the network. Finally, in some cases, networks are used to build fault tolerance into sys-

8.1
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192 Chapter 8 Networks

tems. Distributed embedded system design is another example of hardware/software co-
design, since we must design the network topology as well as the software running on
the network nodes.

Of course, the microprocessor bus is a simple type of network. However, we use the
term network to mean an interconnection scheme that does not provide shared memory
communication. In the next section, we develop the basic principles of hardware and
software architectures for networks. Section 8.3 looks at automotive and aircraft data
networks. Section 8.4 considers consumer electronics networks. Section 8.5 focuses on
sensor networks. 

Networking Principles

In this section we will consider network abstractions, then move onto the structure of the
Internet stack.

8.2.1 Network Abstractions

Networks are complex systems. Ideally, they provide high-level services while hiding
many of the details of data transmission from the other components in the system. In
order to help understand (and design) networks, the International Standards Organization
(ISO) has developed a seven-layer model for networks known as Open Systems Inter-
connection (OSI) models [Sta97A]. Understanding the OSI layers will help us to under-
stand the details of real networks.

8.2
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The seven layers of the OSI model, shown in Figure 8-1, are intended to cover a
broad spectrum of networks and their uses. Some networks may not need the services of
one or more layers because the higher layers may be totally missing or an intermediate
layer may not be necessary. However, any data network should fit into the OSI model.
The OSI layers from lowest to highest level of abstraction are described below.

• Physical: The physical layer defines the basic properties of the interface between
systems, including the physical connections (plugs and wires), electrical properties,
basic functions of the electrical and physical components, and the basic procedures
for exchanging bits.

• Data link: The primary purpose of this layer is error detection and control across a
single link. However, if the network requires multiple hops over several data links,
the data link layer does not define the mechanism for data integrity between hops,
but only within a single hop.

• Network: This layer defines the basic end-to-end data transmission service. The net-
work layer is particularly important in multihop networks.

• Transport: The transport layer defines connection-oriented services that ensure
that data are delivered in the proper order and without errors across multiple links.
This layer may also try to optimize network resource utilization.

• Session: A session provides mechanisms for controlling the interaction of end-user
services across a network, such as data grouping and checkpointing.

Figure 8-1 The OSI model layers.
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• Presentation: This layer defines data exchange formats and provides transformation
utilities to application programs.

• Application: The application layer provides the application interface between the
network and end-user programs.

Although it may seem that embedded systems would be too simple to require use of
the OSI model, the model is in fact quite useful. Even relatively simple embedded net-
works provide physical, data link, and network services. An increasing number of
embedded systems provide Internet service that requires implementing the full range of
functions in the OSI model.

8.2.2 Internet

The Internet Protocol (IP) [Los97, Sta97A] is the fundamental protocol on the Inter-
net. It provides connectionless, packet-based communication. Industrial automation has
long been a good application area for Internet-based embedded systems. Information
appliances that use the Internet are rapidly becoming another use of IP in embedded
computing.

IP is not defined over a particular physical implementation—it is an internetwork-
ing standard. Internet packets are assumed to be carried by some other network, such as
an Ethernet. In general, an Internet packet will travel over several different networks
from source to destination. The IP allows data to flow seamlessly through these networks
from one end user to another. The relationship between IP and individual networks is
illustrated in Figure 8-2. IP works at the network layer. When node A wants to send data
to node B, the application’s data pass through several layers of the protocol stack to get
to the Internet Protocol. IP creates packets for routing to the destination, which are then
sent to the data link and physical layers. A node that transmits data among different
types of networks is known as a router. The router’s functionality must go up to the IP
layer, but since it is not running applications, it does not need to go to higher levels of the
OSI model. In general, a packet may go through several routers to get to its destination.
At the destination, the IP layer provides data to the transport layer and ultimately the
receiving application. As the data pass through several layers of the protocol stack, the
IP packet data are encapsulated in packet formats appropriate to each layer.
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The basic format of an IP packet is shown in Figure 8-3. The header and data pay-
load are both of variable length. The maximum total length of the header and data pay-
load is 65,535 bytes.

An Internet address is a number (32 bits in early versions of IP, 128 bits in IPv6). The
IP address is typically written in the form xxx.xx.xx.xx. The names by which users and
applications typically refer to Internet nodes, such as foo.baz.com, are translated into IP

Figure 8-2 Protocol utilization in Internet communication.
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addresses via calls to a Domain Name Server (DNS), one of the higher-level services
built on top of IP.

The fact that IP works at the network layer tells us that it does not guarantee that a
packet is delivered to its destination. Furthermore, packets that do arrive may come out
of order. This is referred to as best-effort routing. Since routes for data may change
quickly with subsequent packets being routed along very different paths with different
delays, real-time performance of IP can be hard to predict. When a small network is con-
tained totally within the embedded system, performance can be evaluated through simu-
lation or other methods because the possible inputs are limited. Since the performance of
the Internet may depend on worldwide usage patterns, its real-time performance is inher-
ently harder to predict.

The Internet also provides higher-level services built on top of IP. The Transmission
Control Protocol (TCP) is one such example. It provides a connection-oriented service
that ensures that data arrive in the appropriate order, and it uses an acknowledgment pro-
tocol to ensure that packets arrive. Because many higher-level services are built on top of
TCP, the basic protocol is often referred to as TCP/IP.

Figure 8-4 shows the relationships between IP and higher-level Internet services.
Using IP as the foundation, TCP is used to provide File Transport Protocol (FTP) for
batch file transfers, Hypertext Transport Protocol (HTTP) for World Wide Web ser-
vice, Simple Mail Transfer Protocol (SMTP) for E-mail, and Telnet for virtual termi-
nals. A separate transport protocol, User Datagram Protocol (UDP), is used as the basis
for the network management services provided by the Simple Network Management
Protocol (SNMP).

Networks for Real-Time Control

Real-time control is one of the major applications of embedded computing. Machines
like automobiles and airplanes require control systems that are physically distributed
around the vehicle. Networks have been designed specifically to meet the needs of real-
time distributed control for automobile electronics and avionics.

Figure 8-4 The Internet service stack.
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We will start with an analysis of the characteristics of automotive and aeronautical elec-
tronic control systems. We will then describe the CAN bus, an early and popular bus
designed for real-time automotive electronics. We will then describe a newer automotive
bus known as FlexRay. We will conclude with a discussion of avionics networks.

8.3.1 Real-Time Vehicle Control

safety-critical 
systems

The basic fact that drives the design of control systems for vehicles is that they are
safety-critical systems. Errors of any kind—component failure, design flaws, etc.—can
injure or kill people. Not only must these systems be carefully verified, but they must be
architected to guarantee certain properties.

microprocessors 
and automobiles

As shown in Figure 8-5, modern automobiles use a number of electronic devices
[Lee02] Today’s low-end cars often include 40 microprocessors while high-end cars can
contain 100 microprocessors. These devices are generally organized into several net-
works. The critical control systems, such as engine and brake control, may be on one net-
work while non-critical functions, such as entertainment devices, may be on a separate
network.

harnesses vs. 
networks

Until the advent of digital electronics, care generally used point-to-point wiring
organized into harnesses, which are bundles of wires. Connecting devices into a shared
network saves a great deal of weight—15 kilograms or more [Lee02]. Networks require
somewhat more complicated devices that include network access hardware and software,
but that overhead is relatively small and swanking over time thanks to Moore’s Law.

[Lee02] fig 1

Figure 8-5
Electronic devices in modern automobiles [Lee02].
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specialized 
automotive 
networks

But why not use general-purpose networks like Ethernet? We can find reasons to
build specialized automotive networks at several levels of abstraction in the network
stack. One reason is electrical—automotive networks require reliable signaling under
vary harsh environments. The ignition systems of automobile engines generate huge
amounts of electromagnetic interference that can render many networks useless. Auto-
mobiles must also operate under wide temperature ranges and survive large doses of
moisture.

Real-time control also requires guaranteed behavior from the network. Many com-
munications networks do not provide hard real-time requirements. Communication sys-
tems are also more tolerant of latency than are control systems. While data or voice
communications may be useful when the network introduces transmission delays of hun-
dreds of milliseconds or even seconds, long latencies can easily cause disastrous oscilla-
tions in real-time control systems. Automotive networks must also operate within limited
power budgets that may not apply to communications networks.

X-by-wire Control systems have traditionally relied on mechanics or hydraulics to implement
feedback and reaction. Microprocessors allow us to use hardware and software not just
to sense and actuate but to implement the control laws. In general, the controller may not
be physically close to the device being controlled: the controller may operate several dif-
ferent devices or it may be physically shielded from dangerous operating areas. Elec-
tronic control of critical functions was first performed in aircraft where the technique
was known as fly-by-wire. Control operations that are performed over the network are
called X-by-wire where X may be brake, steer, etc.

non-control uses Powerful embedded devices—television systems, navigation systems, Internet
access, etc.—are being introduced into cars. These devices do not perform real-time con-
trol but they can eat up large amounts of bandwidth and require real-time service for
streaming data. Since we can only expect the amount of data being transmitted within a
car to increase, automotive networks must be designed to be future-proof and handle
workloads that are even more challenging than what we see today.

avionics Aviation electronics systems developed in parallel to automotive electronics but are
now starting to converge. Avionics must be certified for use in aircraft by governmental
authorities (the Federal Aviation Administration in the United States), which means that
devices for aircraft are often designed specifically for aviation use. The fact that aviation
systems are certified has made it easier to use electronics for critical operations like the
operation of flight control surfaces (ailerons, rudder, elevator). Airplane cockpits are also
highly automated. Some commercial airplanes already provide Internet access to passen-
gers; we expect to see such services become in cars over the next decade.

8.3.2 The CAN Bus

The CAN bus uses bit-serial transmission. CAN can run at rates of 1 Mb/second over a
twisted pair connection of 40 meters. An optical link can also be used. The bus protocol
supports multiple masters on the bus. Many of the details of the CAN and I2C buses are
similar, but there are also significant differences.
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physical layer As shown in Figure 8-6, each node in the CAN bus has its own electrical drivers and
receivers that connect the node to the bus in wired-AND fashion. In CAN terminology, a
logical 1 on the bus is called recessive and a logical 0 is dominant. The driving circuits
on the bus cause the bus to be pulled down to 0 if any node on the bus pulls the bus down
(making 0 dominant over 1). When all nodes are transmitting 1s, the bus is said to be in
the recessive state; when a node transmits a 0, the bus is in the dominant state. Data are
sent on the network in packets known as data frames. 

CAN is a synchronous bus—all transmitters must send at the same time for bus arbi-
tration to work. Nodes synchronize themselves to the bus by listening to the bit transi-
tions on the bus. The first bit of a data frame provides the first synchronization
opportunity in a frame. The nodes must also continue to synchronize themselves against
later transitions in each frame.

data frame The format of a CAN data frame is shown in Figure 8-7. A data frame starts with a 1
and ends with a string of seven zeroes. (There are at least three bit fields between data
frames.) The first field in the packet contains the packet’s destination address and is
known as the arbitration field. The destination identifier is 11 bits long. The trailing
remote transmission request (RTR) bit is set to 0 if the data frame is used to request data
from the device specified by the identifier. When RTR = 1, the packet is used to write
data to the destination identifier. The control field provides an identifier extension and a
4-bit length for the data field with a 1 in between. The data field is from 0 to 64 bytes,
depending on the value given in the control field. A cyclic redundancy check (CRC) is
sent after the data field for error detection. The acknowledge field is used to let the iden-

Figure 8-6 Physical and electrical organization of a CAN bus.
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tifier signal whether the frame was correctly received: The sender puts a recessive bit (1)
in the ACK slot of the acknowledge field; if the receiver detected an error, it forces the
value to a dominant (0) value. If the sender sees a 0 on the bus in the ACK slot, it knows
that it must retransmit. The ACK slot is followed by a single bit delimiter followed by
the end-of-frame field.

arbitration Control of the CAN bus is arbitrated using a technique known as Carrier Sense
Multiple Access with Arbitration on Message Priority (CSMA/AMP). (As seen in
Section 8.3.3, Ethernet uses CSMA without AMP.) This method is similar to the I2C
bus’s arbitration method; like I2C, CAN encourages a data-push programming style.
Network nodes transmit synchronously, so they all start sending their identifier fields
at the same time. When a node hears a dominant bit in the identifier when it tries to
send a recessive bit, it stops transmitting. By the end of the arbitration field, only one
transmitter will be left. The identifier field acts as a priority identifier, with the all-0
identifier having the highest priority.

remote frames A remote frame is used to request data from another node. The requestor sets the
RTR bit to 0 to specify a remote frame; it also specifies zero data bits. The node specified
in the identifier field will respond with a data frame that has the requested value. Note
that there is no way to send parameters in a remote frame—for example, you cannot use
an identifier to specify a device and provide a parameter to say which data value you
want from that device. Instead, each possible data request must have its own identifier.

error handling An error frame can be generated by any node that detects an error on the bus. Upon
detecting an error, a node interrupts the current transmission with an error frame, which
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Figure 8-7 The CAN data frame format.
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consists of an error flag field followed by an error delimiter field of 8 recessive bits. The
error delimiter field allows the bus to return to the quiescent state so that data frame
transmission can resume. The bus also supports an overload frame, which is a special
error frame sent during the interframe quiescent period. An overload frame signals that a
node is overloaded and will not be able to handle the next message. The node can delay
the transmission of the next frame with up to two overload frames in a row, hopefully
giving it enough time to recover from its overload. The CRC field can be used to check a
message’s data field for correctness.

If a transmitting node does not receive an acknowledgment for a data frame, it
should retransmit the data frame until the data is acknowledged. This action corresponds
to the data link layer in the OSI model.

Figure 8-8 shows the basic architecture of a typical CAN controller. The controller
implements the physical and data link layers; since CAN is a bus, it does not need net-
work layer services to establish end-to-end connections. The protocol control block is
responsible for determining when to send messages, when a message must be resent due
to arbitration losses, and when a message should be received.

8.3.3 FlexRay

FlexRay (http://www.flexray.com) is a second-generation standard for automotive net-
works. It is designed to provide higher bandwidth as well as more abstract services than
are provided by CAN.

block diagram Figure 8-9 shows the block diagram of a generic FlexRay system. The host runs
applications. It talks to both communication controllers, which provide higher-level
functions, and the low-level bus drivers.
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Figure 8-8 Architecture of a CAN controller.
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bus guardians A node that watches the operation of a network and takes action when it sees errone-
ous behavior is known as a bus guardian (whether or not the network is actually a bus).
FlexRay uses bus guardians to check for errors on active stars.

Figure 8-9
FlexRay block diagram[Flex04]

Figure 8-10
Levels of abstraction in FlexRay.
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FlexRay timing Because FlexRay is designed for real-time control, it provides network scheduling
phases that guarantee real-time performance. This mode is known as the static phase
because the scheduling of frames is chosen statically. It also provides a mode, known as
dynamic phase, for non-time-critical and aperiodic data that will not interfere with the
static mode. The transmissions in the static phase have guaranteed bandwidth and the
dynamic phase messages cannot interfere with the static phase. This method creates a
temporal firewall between time-sensitive and non-time-sensitive transmissions.

Figure 8-11 illustrates the hierarchy of timing structures used by FlexRay. Larger
timing phases are built up from smaller timing elements. Starting from the lowest level
of the hierarchy:

• A microtick is derived from the node’s own internal clock or timer, not from the glo-
bal FlexRay clock.

• A macrotick, in contrast, is derived from a cluster-wide synchronized clock. A mac-
rotick always includes an integral number of microticks but different macroticks
may contain different numbers of microticks to correct for differences between the
nodes’ local clocks. The boundaries between some macroticks are designated as
action points, which form the boundaries for static and dynamic segments.

Figure 8-11
FlexRay timing [Flex04].
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• The arbitration grid determines the boundaries between messages within a static or
dynamic segment. An arbitration algorithm determines what nodes will be allowed
to transmit in the slots determined by the action points.

• A communication cycle includes four basic elements: A static segment, a dynamic
segment; a symbol window, and network idle time. A symbol window is a single
unarbitrated time slot for application use. The idle time allows for timing corrections
and housekeeping functions at the nodes.

FlexRay network 
stack

As shown in Figure 8-10, FlexRay is organized around five levels of abstraction. The
topology level defines the structure of connections. The interface level defines the phys-
ical connections. The protocol engine defines frame formats and communication modes
and services such as messages and synchronization. The controller host interface pro-
vides information on status, configuration, messages, and control for the host layer.   

active stars As shown in Figure 8-12, FlexRay is not organized around a bus. It instead uses a
star topology known as an active star because the router node is active. The maximum
delay between two nodes in an active star is 250 ns. As a result, the active star does not
store the complete message before forwarding it to the destination.

Figure 8-12
Active star networks.
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redundant active 
stars

A node may be connected to more than one star to provide redundant connections in
case one active star fails. In Figure 8-13, some of the nodes are connected to both stars A
and B while other nodes are connected to only one of the stars.

physical layer FlexRay transmits bits over links using differential non-return-to-zero (NRZ) coding
as shown in Figure 8-15.A low-power idle phase operates at zero volts. The idle phase
transmits a mid-range voltage and bits are modulated around that value. The links trans-
mit at 10 Mbits/sec independent of the length of the link. FlexRay does not arbitrate on
bits so link length is not limited by arbitration contention.

Figure 8-14 shows the encoding of static frames, the basic frame type. Data is sent as
bytes. TSS stands for transmission start sequence, which is low for 5 to 15 bits. FSS

Figure 8-13
Redundant active stars.

node node node node node node
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star
B

Figure 8-14
FlexRay frame encoding [Flex04].
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starts for frame start sequence, which is one high bit. BSS stands for byte start
sequence. FES stands for frame end sequence, which is a LO followed by a HI.
Dynamic frames, which we will describe more fully in a moment, add a dynamic trail-
ing sequence field.

frame fields Figure 8-16 shows the format of a FlexRay frame:

• The frame ID identifies the frame’s slot. Its value is in the range 0..2047.

• The payload length field gives the number of 16 bit words in the payload section.
All messages in the static section of a communication cycle must use the same length
payload.

• The header CRC provides error correction.

• The cycle count enumerates the protocol cycles. This information is used within the
protocol engines to guide clock synchronization.

• The data field provides from 0 to 254 bytes long. As mentioned before, all packets
in the static segment must provide the same length of data payload.

• The trailer CRC field provides additional error correction.

static segments The static segment is the basic timing structure for time-critical messages.
Figure 8-17 shows the organization of a FlexRay static segment. The static segment is
scheduled using a time-division multiple access discipline—this allows the system to
ensure that messages get a guaranteed amount of bandwidth. The TDMA discipline
divides the static segment into slots of fixed and equal length. All the slots are used in
every segment in the same order. The number of slots in the static segment is config-
urable in the range 0..1023.

Figure 8-15
FlexRay data transmission.
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The static segment is split across two channels. Synchronization frames are provided
on both channels. Messages may be sent on either one or both channels; less critical
nodes may be designed to connect to only one channel. The slots are occupied by mes-
sages with ascending frame ID numbers. The slot numbers are not used for timing but
are instead used by software to identify messages. (The message ID in the payload area
can also be used to identify messages.) 

dynamic segments The dynamic segments provide bandwidth for asynchronous, unpredictable commu-
nication. The slots in the dynamic segment are arbitrated using a deterministic mecha-
nism. Figure 8-18 shows the organization of a dynamic segment. The dynamic segment
has two channels, each of which can have its own message queue.

Figure 8-19 illustrates the timing of a dynamic segment. Messages can be sent at
minislot boundaries. If no message is sent for a minislot, it elapses as a short idle mes-
sage. If a message is sent, it occupies a longer interval than a minislot. As a result, trans-
mitters must watch for messages to know whether each minislot was occupied.

The frame ID is used to number slots. The first dynamic frame’s number is one
higher than the last static segment’s number. Messages are sent in order of frame ID,
with the lowest number first. The frame ID number acts as the message priority. Each
frame ID number can send only one message per dynamic segment. If there are too many

Figure 8-16
Format of a FlexRay frame [Flex04]
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messages in the queue to be sent in a single dynamic segment, those messages are carried
over to the next dynamic segment.

system startup A network with complex timing like FlexRay must be started properly. FlexRay
starts with a wakeup procedure that turns on the nodes. It then performs a coldstart that
initiates the TDMA process. At least two nodes in the system must be designated as
capable of performing a coldstart. The network sends a wakeup pattern on one channel to
alert the nodes to wake up. The wakeup procedure has been designed to easily detect col-
lisions between nodes that may wake up and try to transmit simultaneously.

Figure 8-17
A flexRay static segment.

Figure 8-18
Structure of a FlexRay dynamic segment [Flex04].
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timekeeping A TDMA network like FlexRay needs a global time source to synchronize messages.
The global time is synthesized by the clock synchronization process (CSP) from the
nodes’ clocks using distributed timekeeping algorithms. The global time is used to deter-
mine the boundaries of macroticks, which are the basic system timekeeping unit. Mac-
roticks are managed by the macrotick generation process (MTG), which applies the
clock and any updates provided by the CSP.

Figure 8-20 illustrates the FlexRay clock synchronization process. The CSP periodi-
cally measures clocks, then applies a correction. 

bus guardians The bus guardians’ role is to prevent nodes from transmitting outside their sched-
ules. FlexRay does not require a system to have a bus guardian but they should be
included in any safety-critical system. The bus guardian sends an enable signal to every
node in the system that it guards. It can stop the node from transmitting by removing the
enable signal. The bus guardian uses its own clock to watch the bus operation. If it sees a
message coming at the wrong time, it removes the enable signal from the node that is
sending the message.

controller host 
interface

The controller host interface (CHI) provides services to the host. Some services are
required while others are optional. These services are provided in hardware. Services
include status (macroticks, etc.), control (interrupt service, startup, etc.), message data
(buffering, etc.), and configuration (node and cluster).

Figure 8-19
FlexRay dynamic segment timing [Flex04].
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8.3.4 Aircraft Networks

avionics Aircraft design is similar in some respects to automobile design, but with more stringent
requirements. Aircraft are more sensitive to weight than are cars. Aircraft have more
complex controls because they must be flown in three dimensions. And most aspects of
aircraft design, operation and maintenance are regulated.

Aircraft electronics may be divided into roughly three categories: instrumentation,
navigation/communication, and control. Aircraft instruments, such as the altimeter or
artificial horizon, use mechanical, pneumatic, or hydraulic methods to sense aircraft
characteristics. The primary role of electronics is to sense these systems and display the
results or send them onto other systems. Navigation and communication relies on radios.
Aircraft use several different types of radios because regulations mandate that certain
activities be performed with different types of radios. Communication may be by voice
or data. Navigation makes use of several techniques; moving maps that integrate naviga-
tion data onto a map display are common even in general aviation aircraft. Digital elec-
tronics can be used to both control the radios, such as set frequencies, and to present the
output of these radios. Control systems operate the engines and flight control surfaces
(aileron, elevator, rudder).

Figure 8-20
The FlexRay clock synchronization procedure [Flex04].

 
 

First Draft: June 2005                                                                                              Wayne Wolf 
 

Copyright © Elsevier. Permission to copy must be obtained in writing from the publisher 



8.3 FlexRay 211

aircraft network 
categories

Because of these varied uses, modern commercial aircraft use several different types
of networks:

• cockpit networks These networks must perform hard real-time tasks for instrumen-
tation and control. They generally operate in TDMA mode.

• airframe networks These networks control non-critical devices. They may use non-
guaranteed modes such as Ethernet to improve average performance and limit
weight.

• passenger networks Some airplanes now offer Internet service to passengers
through wired or wireless connections. Internet traffic is routed through a satellite
link. These networks make use of existing standards and are separated from the air-
craft’s operating networks by firewalls.

aircraft network 
standards

A number of standards for aircraft data networks have been developed. Several of
these standards have been developed by Aircraft Radio, Inc., (ARINC), which was char-
tered by the U. S. Congress to coordinate radio communications for U. S. airlines. Stan-
dards include: ARINC 429; ARINC 629; CDSB; ARINC 573 for flight data recorders;
and ARINC 708 for weather radar data.

The next example looks at ARINC 429.

Application Example 8-1

ARINC 429
ARINC 492 was developed in the 1970s for emerging digital avionics communica-

tions. Because this standard was defined fairly early in the history of data communica-
tions, the standard concentrates on the physical and data link layers.

 A key design problem in aircraft avionics is lightning. Lightning does not often
strike aircraft, but it can happen and a lightning strike must not disable the airplane’s
electronics. The entire aircraft is designed to handle lightning strikes, but the network
must be designed to carefully protect against lightning.

ARINC 429 uses differential signaling. A logic 1 signal is +10V while a logic 0 is -
10V. Bits are coded as return to zero, with the null state at 0V. The low-speed variant of
ARINC 429 operates at 13 kbits/sec. A high-speed variation of the standard operates at
100 kbits/sec. 

ARINC 429 is a single-source network. A network may have several data sinks but
only one source of data. If an installation requires multiple transmitters, a separate 429
bus must be used for each transmitter.

Communication in 429 is asynchronous. Data packets must have four null time slots
between them to allow the beginning of packets to be recognized. Each data word has 32
bits. The first 8 bits of a word are used as a label. The ARINC 429 standard defines a
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number of labels for various uses, such as frequency, heading, acknowledgment, etc. The
word has a 18 bit data payload.

8.3.5 Consumer Networks
Consumer electronics devices may be connected into networks to make them easier

to use and to provide access to audio and video data across the home. This section will
look at some networks used in consumer devices, then consider the challenges of inte-
grating networks into consumer devices.

8.4.1 Bluetooth

personal area 
networks

Bluetooth is a personal area network—designed to connect devices in close prox-
imity to a person. The Bluetooth radio operates in the 2.5 GHz spectrum. Its wireless
links typically operate within 2 meters, although advanced antennas can extend that
range to 30 meters. A Bluetooth network can have one master and up to 7 active slaves;
more slaves can be parked for a total of 255. Although its low-level communication
mechanisms do require master-slave synchronization, the higher levels of Bluetooth pro-
tocols generally operate as a peer-to-peer network, without masters or slaves. 

transport group 
protocols

Figure 8-21 shows the transport group protocols, which belong to layers 1 and 2 of
the OSI model:

• The physical layer provides basic radio functions.

• The baseband layer defines master/slave relationships and frequency hopping.

8.4

Figure 8-21
Bluetooth transport protocols.
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• The link manager provides mechanisms for negotiating link properties such as
bandwidth and quality-of-service.

• The logical link control and adaptation protocol (L2CAP) hides baseband layer
operations like frequency hopping.

physical layer The Bluetooth radio transmits using frequency-hopping spread spectrum, which
allows several radios to operate in the same frequency band without interference. The
band is divided into 79 1 MHz-wide channels; the Bluetooth radio hops between these
frequencies at a rate of 1,600 hops/per second. The radio’s transmission power may also
be controlled.

baseband layer The baseband layer chooses frequency hops according to a pseudo-random sequence
that is agreed upon by the radios; it also controls the radio signal strength to ensure that
the receiver can properly decode the spread spectrum signal. The baseband layer also
provides medium access control, determining packet types and processing. It controls
the radio power. It provides a real-time clock. It also provides basic security algorithms.

link manager The link manager builds upon the baseband layer to provide several functions. It
schedules transmissions, choosing which data packets to send next. Transmission sched-
uling takes quality-of-service contracts into account. It manages overall power consump-
tion. The link manager also manages security and encrypts transmissions as specified.

L2CAP layer The L2CAP layer serves as an interface between general-purpose protocols to the
lower levels of the Bluetooth stack. It primarily provides asynchronous transmissions. It
also allows higher layers to exchange QoS information.

middleware group 
protocols

The middleware group protocols provide several widely-used protocols. It pro-
vides a serial port abstraction for general-purpose communication. It provides protocols
to interoperate with IrDA infrared networks. It provides a service discovery protocol.
And because Bluetooth is widely used for telephone headsets, it provides a telephony
control protocol.

RFCOMM The Bluetooth serial interface is known as RFCOMM. It multiplexes several logical
serial communications onto the radio channel. Its signals are compatible with the tradi-
tional RS-232 serial standard. It provides several enhancements, including remote status
and configuration, specialized status and configuration and connection establishment
and termination. RFCOMM can emulate a serial port within a single device to provide
seamless data service whether the ends of the link are on the same processor or not.

service discovery 
protocol

The service discovery protocol allows a Bluetooth client device to determine
whether a server device in the network provides a particular service. Services are defined
by service records, which consists of a set of <ID,value> attributes. All service records
include a few basic attributes such as class and protocol stack information. A service
may define its own attributes, such as capabilities. To discover a service, the client asks a
server for a type of service. The server then responds with a service record.
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8.4.2 WiFi

The WIFi (TM) family of standards (http://grouper.ieee.org/groups/802/11, http://
www.wi-fi.org) provide wireless data communication for computers and other devices.
WiFi is a family of standards known as 802.11 from the IEEE 802 committee. The origi-
nal 802.11 spec was approved in 1997. An improved version of the spec, known as
802.11b, was presented in 1999. This standard used improved encoding methods to
increase the standard’s bandwidth. Later standards include 802.11a, which provided sub-
stantially wider bandwidth, and 802.11g, which extended 802.11b. Figure 8-22 compares
the properties of these networks.

Full-duplex communication requires two radios, one for each direction. Some devices
use only one radio, which means that a device cannot transmit and receive simulta-
neously. 

8.4.3 Networked Consumer Devices

Networked consumer devices have been proposed for a variety of functions, but particu-
larly for home entertainment. These systems have not yet entirely fulfilled their poten-
tial. A brief survey helps us understand the challenges in building such systems.

Figure 8-22
802.11 specifications.
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network 
organization

Figure 8-23 shows a typical organization of an entertainment-oriented home net-
work:

•  The PC acts as a server for file storage of music, images, movies, etc. Today’s disk
drives are large enough to hold substantial amounts of music or images.

• Some devices may be permanently attached to the PC. For example, the USB port
may be used to send audio to an audio receiver for high-quality amplification.

• Mobile devices, such as portable music players, may dock with the PC through a
base. The PC is used to manage the device.

• Other devices may connect over wireless links. They may connect to the server or to
each other. For example, digital video recorders may have their own storage and may
stream video to other devices.

Several companies have proposed home server devices for audio and video. Built
from commodity hardware, these servers provide specialized interfaces for detailing
with media. They may also include capture subsystems, such as DVD drives for reading
moves from DVDs.

configuration A key challenge in the design of home entertainment networks is configurability.
Consumers do not want to spend time configuring their components for operation on
their network; in many cases, the devices will not have keyboards so configuration
would be very difficult. Many levels of the network hierarchy must be configured.

Figure 8-23
Networked home entertainment devices.
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Clearly, physical and link-level parameters must be configured. But another important
aspect of configuration is service discovery and configuration. Each device added to the
network must be able to determine what other devices it can work with, what services it
can get from other devices, and what services it needs to provide to the rest of the net-
work. Service discovery protocols help devices adapt themselves to the network.

software 
architecture

Java has been used to develop middleware for consumer networks. Java can be effi-
ciently executed on a number of different platforms. This not only simplifies software
development but also allows devices to trade Java code to provide services.

8.4.4 Sensor Networks

Sensor networks are distributed systems designed to capture and process data. They typ-
ically use radio links to transmit data between themselves and to servers. Sensor net-
works can be used to monitor buildings, equipment, and people.

ad hoc computing A key aspect of the design of sensor networks is the use of ad hoc networks. Sensor
networks can be deployed in a variety of configurations and nodes may be added or
removed at any time. As a result, both the network and the applications running on the
sensor nodes must be designed to dynamically determine their configuration and take the
necessary steps to operate under that network configuration.

For example, when data is transmitted to a server, the nodes do not know in advance
the path that data should take to arrive at the server. The nodes must provide multi-hop
routing services to transmit data from node to node in order to arrive to the network.
This problem is challenging because not all nodes are within radio range and it may take
network effort and computation to determine the topology of the network.

The next two examples describe a sensor network node and its operating system.

Application Example 8-2

The Intel Mote sensor node

8.5
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The Intel Mote (iMote) is a second-generation sensor network node:

The imote uses Bluetooth as its communication link. The Zeevo chip visible in the
photograph implements the Bluetooth link. That Bluetooth module includes an
ARM7TDMI that is used for Bluetooth baseband functions as well as other sensor net-
work functions. The mote includes an integrated radio antenna; an external antenna can
be attached for longer range communication.

The mote provides several I/O modes so that sensing devices can be attached to the
mote. I/O devices can be built onto daughter cards that stack on top of the basic mote cir-
cuit boards.

A mote may be connected to a PC using a USB slave connection. The PC can be
used to monitor and control the mote network. The PC also serves as a host for code
development.

Application Example 8-3

TinyOS and nesC
TinyOS (http://www.tinyos.net) is an operating system for sensor networks. It is

designed to support networks and devices on a small platform, using only about 200
bytes of memory.

draft photo
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TinyOS code is written in a new language known as nesC. This language supports
the TinyOS concurrency model based on tasks and hardware event handler. The nesC
compiler detects data races at compile time. A nesC program includes one set of func-
tions known as events. The program may also include functions called commands to
help implement the program, but another component uses the events to call the program.
A set of components can be assembled into a system using interface connections known
as wiring. 

TinyOS executes only one program using two threads: one containing tasks and
another containing hardware event handlers. The tasks are scheduled by TinyOS; tasks
are run to completion and do not preempt each other. Hardware event handlers are initi-
ated by hardware interrupts. They may preempt tasks or other handlers and they run to
completion.

The sensor node radio is one of the devices in the system. TinyOS provides code for
packet-based communication, including multi-hop communication.

The next application describes an application of sensor networks.

Application Example 8-4

ZebraNet
ZebraNet [Jua02] is designed to record the movements of zebras in the wild. Each

zebra wears a collar that includes a GPS positioning system, a network radio, a proces-
sor, and a solar cell for power. The processors periodically read the GPS position and
store it in on-board memory. The collar reads position every three minutes, along with
whether the zebra is in sun or shade. For three minutes every hour, the collar takes
detailed readings to determine the zebra’s speed. This generates about 6 kB of data per
zebra per day.

Experiments show that computation is much less expensive than radio transmissions:

Table 1: 

operation current @ 
3.6V

idle < 1 mA

GPS position sampling and CPU/
storage

177 mA

base discovery only 432 mA
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Thus conservation of radio energy is critical.The data from the zebras is read only
intermittently when biologists travel to the field. They do not want to leave behind a per-
manent base station, which would be hard to maintain. Instead, they bring with them a
node that reads data from the network.

Because the zebras move over a wide range, not all of the zebras will be within range
of the base station and it is impossible to predict which (if any) of the zebras will be in
range. As a result, the ZebraNet nodes must replicate data across the network. The nodes
transmit copies of their position data to each other as zebras come within range of each
other. When a zebra comes within range of a base station, the base station reads all of
that zebra’s data, including data it has gathered from other zebras.

The ZebraNet group experimented with two data transfer protocols. One protocol—
flooding—sent all data to all other available nodes. The other, history-based protocol
chose one peer to send data to based upon which peer had the best past history of deliv-
ering data to the base. Simulations showed that flooding was delivered the most data for
short-range radios but history-based delivered the most data for long-range radio. How-
ever, flooding consumed much more energy than history-based routing.

Summary

We often need or want to build an embedded system out of a network of connected pro-
cessors rather than a single CPU with I/O devices. The uses of distributed embedded sys-
tems vary greatly, ranging from the real-time networks in an automobile to Internet-
enabled information appliances. There are a great many networks that we can choose
from to build embedded systems based on constraints of cost, overall throughput, and
real-time behavior.

What We Learned

• The OSI layer model breaks down the structure of a network into seven layers.

• A large number of networks, many with very different characteristics, are used in
embedded systems.

transmit data to base 1622 mA

Table 1: 

operation current @ 
3.6V

8.6
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• Real-time networks use TDMA to guarantee delivery times.

Further Reading

Kopetz [Kop97] provides a thorough introduction to the design of distributed embedded
systems. Stallings [Sta97A] provides a good introduction to data networking. Helfrick
[Hel04] discusses avionics, including aircraft networks. For those interested in the prin-
ciples of instrument flight, Dogan [Dog99] provides an excellent introduction.

Questions

Q8-1 Describe a FlexRay bus at the following OSI-compliant levels of detail:
a. physical.
b. data link.
c. network.
d. transport.

Q8-2 How do the requirements of aircraft and automobile networks differ? How are they sim-
ilar?

Q8-3 How could you use a broadcast network like WiFi for hard real-time control? What
assumptions would you have to make? What control mechanisms would need to be
added to the network?

Q8-4 Plot computation vs. communication energy in a wireless network.

a. Determine the computation and communication required for a node to receive two
16-bit integers and multiply them together.

a. Plot total system energy as a function of computation vs. communication energy.
Q8-5 Lab Exercises

L8-1 Build an experimental setup that lets you monitor messages on an embedded network.

L8-2 Measure energy for a single instruction vs. transmission of a single packet for a sensor
network node.
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