
1Embedded Systems

Computer Architecture

Embedded Systems 2

Memory Hierarchy

���������

�	
��

��

����

����	
��

������

��	�����

����

�
��	����

���������

Embedded Systems 3

View of Computer System

�����
	�����

�����	��

 ���	����

�����!

"	���	��

���#�� ���#��

Embedded Systems 4

Memory

To build a memory -- a logical k × m array of stored bits.

$$$$
$$$$
$$$$

�%���

��
	�����

�����

����������	
�&����������	
�&����������	
�&����������	
�&

�'!���������
	�����
�'�'	����	������������

�������	������&�������	������&�������	������&�������	������&

�'!������������������
	����
��(�()������	������	����

Embedded Systems 5

Memory

Example: Memory addresses if m=8

$$$$
$$$$
$$$$

�����

Embedded Systems 6

Memory

Example: Memory addresses if m=16 (byte addressable)

$$$$
$$$$
$$$$

������

Embedded Systems 7

Memory

Example: Memory addresses if m=32 (byte addressable)

$$$$
$$$$
$$$$

������

Embedded Systems 8

Memory

Example: Memory addresses if m=16 (location
addressable) This is the model that LC-3 uses.

$$$$
$$$$
$$$$

������

Embedded Systems 9

A1

WE

A0 D2 D1 D0

Q2 Q1 Q0

22 x 3 Memory

	������	������	������	������

��
������
������
������
����

���������
����������
����������
����������
� �����*+�����*+�����*+�����*+
	������	������	������	������

��������������������

��	�����	�����	�����	���

���'���������'���������'���������'������

�'��'�������'��'�������'��'�������'��'������

Embedded Systems 10

More Memory Details

This is a not the way actual memory is implemented.
– fewer transistors, much more dense, relies on electrical properties

But the logical structure is very similar.
– address decoder
– word select line
– word write enable

Two basic kinds of memory (RAM = Random Access
Memory)

Static RAM (SRAM)
– fast, maintains data without power

Dynamic RAM (DRAM)
– slower but denser, bit storage must be periodically refreshed

Embedded Systems 11

Even More Memory Details

There are other types of “non-volatile” memory devices:
• ROM
• PROM
• EPROM
• EEPROM
• Flash

Can you think of other memory devices?

Embedded Systems 12

Electronics Packaging
– There are several packaging technologies available that an

engineer can use to create electronic devices.
– Some are suitable for inexpensive toys but not miniature consumer

products, and some are suitable for miniature consumer products
but not inexpensive toys.

– These packages have metal leads that are the conductive wire that
connect electricity from the outside world to the silicon inside the
package.

– Leads between packages are connected with small copper traces
on a printed circuit board (PCB), and the package leads are
soldered to the PCB.

Embedded Systems 13

Examples of Electronics Packages

Dual In-line Package (DIP) Older technology, requires the
metal leads to go through a hole in the printed circuit
board.

Dual Flat Pack (DFP) - A fairly recent technology, metal
leads solder to the surface of the printed circuit board.

Embedded Systems 14

Examples of Electronics Packages

Quad Flat Pack (QFP) - like the Dual Flat Pack, except here
are metal leads are on four sides.

Ball Grid Array (BGA) - The connections to the component
are on the bottom of the chip, and have balls of solder on
these connections.

Embedded Systems 15

Driving Force: The Clock

The clock is a signal that keeps the control unit moving.
– At each clock “tick,” control unit moves to the next

machine cycle -- may be next instruction or
next phase of current instruction.

Clock generator circuit:
– Based on crystal oscillator
– Generates regular sequence of “0” and “1” logic levels
– Clock cycle (or machine cycle) -- rising edge to rising edge

,-.

,/.

	
��→
	
����

��
��

Embedded Systems 16

Clock Cycles

Instead of reporting execution time in seconds, we often use
cycles

Clock “ticks” indicate when to start activities (one
abstraction):

cycle time = time between ticks = seconds per cycle
clock rate (frequency) = cycles per second (1 Hz. = 1

cycle/sec)

time

seconds
program

=
cycles

program
×

seconds
cycle

Embedded Systems 17

Some Definitions

CPI = Cycles Per Instruction
CT = Cycle Time
IC = Instruction Count
CC = Clock Cycle Count

For example, a Pentium has a 233 MHz clock
2.33 x 108 clock cycles per second (MHz = 106)

CT = 1/clock rate
= 1/ 2.33 x 108 clock cycles/second
= 4.3 x 10-9 seconds/clock cycle
= 4.3 ns/clock cycle

Embedded Systems 18

More Practice

My 80486 computer runs at 66MHz. What is the cycle time?

A computer has a 2.5 ns cycle time. What is the number of
cycles per second?

Embedded Systems 19

Run time definitions

CTCPIIC timeCPU
ICCPICC
IC
CC

Count nInstructio
count cycleclock

CPI ninstructioper Cycles

××=∴
×=�

===

To improve CPU time (same as run time):
– Decrease Instruction Count (IC)

• Good compiler
– Decrease CPI (increase “IPC”, AKA inst. level parallelism)

• Fancy hardware, good compiler
– Decrease CT

• Crack designers

(Mhz) rateclock
count cycleclock

CTCCTime Cyclecount cycleclock timeCPU

=

×=×=

“Newton’s law”
of microarchitecture

Embedded Systems 20

Examples and Practice

Program A takes 3 x1010 clock cycles to execute. How
long does this take to run on a 100 MHz?

CPU time = CC x CT
= 3 x 1010 clock cycles x

10 x 10-9 clock cycles/second
= 3 x 102 = 300 seconds

How long will this program take to run on a 233 MHz
Pentium?

Embedded Systems 21

Example
Two implementations of the same instruction set, machine A

has a clock cycle time of 1 ns, and a CPI of 2.0, machine
B has a clock cycle time of 2 ns and a CPI of 1.2 for the
same program. Which machine is faster, and by how
much?

2.1
0.2
4.2

 timeCPU
 timeCPU

eperformanc CPU
eperformanc CPU

4.222.1 timeCPU

0.210.2 timeCPU

A

B

B

A

B

A

===

=××=

=××=

I
I

II

II

A is faster by a factor of 1.2

Embedded Systems

Our favorite program runs in 10 seconds on computer A, which
has a 400 Mhz. clock. We are trying to help a computer
designer build a new machine B, that will run this program in 6
seconds. The designer can use new (or perhaps more
expensive) technology to substantially increase the clock rate,
but has informed us that this increase will affect the rest of the
CPU design, causing machine B to require 1.2 times as many
clock cycles as machine A for the same program. What clock
rate should we tell the designer to target?"

Don't Panic, can easily work this out from basic principles

Example

Embedded Systems

A given program will require

– some number of instructions (machine instructions)

– some number of cycles

– some number of seconds

We have a vocabulary that relates these quantities:

– cycle time (seconds per cycle)

– clock rate (cycles per second)

– CPI (cycles per instruction)

a floating point intensive application might have a higher CPI

– MIPS (millions of instructions per second)

this would be higher for a program using simple instructions

Now that we understand cycles

Embedded Systems

Performance

Performance is determined by execution time
Do any of the other variables equal performance?

– # of cycles to execute program?
– # of instructions in program?
– # of cycles per second?
– average # of cycles per instruction?
– average # of instructions per second?

Common pitfall: thinking one of the variables is indicative of
performance when it really isn’t.

Embedded Systems

Execution Time After Improvement =
Execution Time Unaffected +
(Execution Time Affected / Amount of Improvement)

Example:

"Suppose a program runs in 100 seconds on a machine,
with multiply responsible for 80 seconds of this time. How
much do we have to improve the speed of multiplication if we
want the program to run 4 times faster?"

How about making it 5 times faster?

Principle: Make the common case fast

Amdahl's Law

Embedded Systems

Suppose we enhance a machine making all floating-point
instructions run five times faster. If the execution time of some
benchmark before the floating-point enhancement is 10
seconds, what will the speedup be if half of the 10 seconds is
spent executing floating-point instructions?

We are looking for a benchmark to show off the new floating-point
unit described above, and want the overall benchmark to show a
speedup of 3. One benchmark we are considering runs for 100
seconds with the old floating-point hardware. How much of the
execution time would floating-point instructions have to
account for in this program in order to yield our desired speedup
on this benchmark?

Example

Embedded Systems

Performance is specific to a particular program/s
– Total execution time is a consistent summary of performance

For a given architecture performance increases come from:
– increases in clock rate (without adverse CPI affects)
– improvements in processor organization that lower CPI
– compiler enhancements that lower CPI and/or instruction count

Pitfall: expecting improvement in one aspect of a machine’s

performance to affect the total performance

Remember

