
Mitsubishi M16C
Instruction Set Architecture

2-1Embedded Systems

Lecture 2

Today

Learn about Mitsubishi (Renesas) processor
– Lecture covers ISA, derived from Assembler

Language Programming Manual
(M16C_Assembler.pdf MALPM Ch. 1, 2)

• Registers: General Purpose, Control
• Instruction Set

Embedded Systems 2-2

• Instruction Set
• Addressing Modes
• Memory Map

Reading for Next Week

Software Manual (M16C_Software_Manual.pdf):
pp.1-32
– Use chapter 3 as a reference. You are responsible for

this material – not memorizing it, but instead being able
to figure out what an instruction does, or finding an
instruction to do something

Embedded Systems 2-3

Data Sheet
(M16C62_Hardware_Manual_rev1.20.pdf)
– pp. 1-27

Simple Memory Organization

k x m array of stored bits (k is usually 2n)
Address

– unique (n-bit) identifier of location

Contents
– m-bit value stored in location

0000
0001
0010
0011
0100
0101

00101101

Embedded Systems 2-4

Basic Operations:
LOAD

– read a value from a memory location

STORE
– write a value to a memory location

••••
••••
••••

0101
0110

1101
1110
1111

10100010

Simple Memory Organization

Viewed as a large, single-dimensional array
A memory address is an index into the array
"Byte addressing" means that the index points to a byte of

memory

0 8 bits of data

Embedded Systems

0

1

2

3

4

5

6

...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

Memory Organization

Bytes are nice, but most data items use larger "words"
– For M30626, a word is 16 bits or 2 bytes.

0

2

4

6

16 bits of data

16 bits of data

16 bits of data

16 bits of data

(registers also hold 16 bits of data)

Embedded Systems

216 bytes with byte addresses from 0, 1, 2 to 216-1
215 words with byte addresses 0, 2, 4, ... 216-2

...

Endianness

Big endian: most significant byte is
stored at the lowest byte
address

� Ex: 68000, PowerPC, Sun SPARC

12
34
56
78
AB
CD
EF

0
1
2
3
4
5
6

BOTH store:
word 12345678 is at

� Little endian : least significant
byte is stored at the lowest
address

� Ex: x86, DEC VAX, Alpha

12
34
56
78

CD
EF
01

0
1
2
3
4
5
6

Embedded Systems

CD
EF
01

5
6
7

word 12345678 is at
location 0,
word ABCDEF01 is at
location 4

AB
CD
EF5

6
7

� Most of the time we will avoid this issue in class by only
loading/storing words or loading/storing bytes

� If two processors with different conventions use a local area
network, a disk drive, etc., YOU need to pay attent ion to
endianness

Big Endian-What does it look like?

Imagine you have the following hexadecimal values:
– 0x11 22 33 44

– 0x55 66 77 88

– 0xAA BB CC DD

– 0xEE FF 00 99

– 0x01 23 45 67

And we put them in memory, starting at memory addre ss 0x10000000.
What would it look like?

Embedded Systems

What would it look like?

0x1000 0000 11 22 33 44 Shown
0x1000 0004 55 66 77 88 as
0x1000 0008 AA BB CC DD ‘‘Big
0x1000 000C EE FF 00 99 Endian’’
0x1000 0010 01 23 45 67

0x1000 0014

Little Endian -What does it look like?

Imagine you have the following hexadecimal values:
– 0x11 22 33 44

– 0x55 66 77 88

– 0xAA BB CC DD

– 0xEE FF 00 99

– 0x01 23 45 67

And we put them in memory, starting at memory addre ss 0x10000000.
What would it look like?

Embedded Systems

What would it look like?

0x1000 0000 44 33 22 11 Shown
0x1000 0004 88 77 66 55 as
0x1000 0008 DD CC BB AA ‘‘Little
0x1000 000C 99 00 FF EE Endian’’
0x1000 0010 67 45 23 01

0x1000 0014

Big Endian vs. Little Endian

0x1000 0000 11 22 33 44 Shown
0x1000 0004 55 66 77 88 as
0x1000 0008 AA BB CC DD ‘‘Big
0x1000 000C EE FF 00 99 Endian’’
0x1000 0010 01 23 45 67

Embedded Systems

0x1000 0000 44 33 22 11 Shown
0x1000 0004 88 77 66 55 as
0x1000 0008 DD CC BB AA ‘‘Little
0x1000 000C 99 00 FF EE Endian’’
0x1000 0010 67 45 23 01

Data Formats for the M30626

Byte
– 8 bits
– signed & unsigned
– .B suffix for instruction

Word
– 16 bits
– signed & unsigned

Is the M30626 big or little endian?

Embedded Systems 2-11

– signed & unsigned
– .W suffix

Address &
longword
– Limited to

specific
instructions

Review of the M30626 Architecture

Microcontroller
has:

– General Purpose
Registers

– RAM
– Flash
– EEPROM

Embedded Systems 2-12

– Digital Ports
– Analog Ports
– Timers
– Oscillator
– DMA Controller
– Reliability

and safety

General Memory Map

Embedded Systems 2-13

Memory Map for QSK62P Plus microcontroller

Embedded Systems 2-14

M16C Registers

4 16-bit data registers R0-
R3
– Can also access high

and low bytes of R0
and R1: R0H, R0L

– Can also access pairs
of registers as 32-bit

Embedded Systems 2-15

of registers as 32-bit
registers: R2R0, R3R1

2 16-bit address
registers A0 & A1
– Can also access pair

of registers as 32-bit
register: A1A0

Special Registers

SP: Stack Pointer – for accessing call stack
– USP: User code
– ISP: Interrupt code

FB: Frame Base – for accessing frame on call stack
SB: Static Base
INTB: Interrupt table pointer

Embedded Systems 2-16

INTB: Interrupt table pointer

Addressing Modes

See Ch. 2 of Software Manual for details

Immediate – provide the 8, 16 or 20 bit value
Register Direct – provide the name of the register

– MOV.B #-29, R0H

Absolute – provide the address of the operand

A

Embedded Systems 2-17

Absolute – provide the address of the operand
– MOV.W R3, 213AH
– MOV.W 81A8H, R3

81A6H0017H
81A8H22AAH
81AAH4413H

R1 3210H
R2 6001H
R3 0150H

R0 2119H

22AAH

22AAH

Address Register Indirect

Address Register Indirect – provide the name of the address
register which points to the operand
– MOV.W [A0], R3

81A6H0017H
81A8H22AAH
81AAH4413H

R1 3210H
R2

R0 2119H
0017H

A

Embedded Systems 2-18

Constraints
– Can use address registers A0 and A1

81AAH4413H
R2 6001H
R3 0150H0017H

A0 81A6H
A1 1116H

Address Register Relative

Address Register Relative – as with ARI, but also provide a
displacement (offset) from the address register
– MOV.W 4[A1], R3

1110H0017H
1112H22AAH
1114H4413H

R1 3210H
R2

R0 2119H

4413H
+4

A

Embedded Systems 2-19

Constraints
– Can use address registers A0 or A1
– Displacement can range from 0 to FFFFH

1114H4413H
R2 6001H
R3 0150H4413H

4413H

A0 81A6H
A1 1110H

Static Base Pointer Relative – as with ARR, but use the SB
as the base
– MOV.W 2[SB], R3

Static Base Pointer Relative

150EH0017H
1510H22AAH
1512H4413H

R1 3210H
R2

R0 2119H
22AAH +2

A

Embedded Systems 2-20

Constraints
– Can only use SB
– Displacement can range from 0 to FFFFH

1512H4413H
R2 6001H
R3 0150H22AAH

SB 150EH

0217H

Frame Base/Stack Pointer Relative

Frame Base/Stack Pointer Relative – as with ARR, but use
the FB or SP register as the base
– MOV.W -6[SP], R3

1514H0017H
1516H22AAH

R1 3210H
R0 2119H

0217H

-6

150EH
1510H229AH
1512H7743H

A

Embedded Systems 2-21

Constraints
– Can only use FB and SP
– Signed displacement can range from 80H to 7FH (-128 to +127)

1516H22AAH
1518H4413H

R1 3210H
R2 6001H
R3 0150H0217H

SP 1514H

Instruction Classes

Data Transfer
Arithmetic and Logic
Control Transfer
Other

Embedded Systems 2-22

Data Transfer Instructions

Not load-store architecture

Embedded Systems 2-23

Arithmetic and Logic Instructions

Embedded Systems 2-24

Control Transfer

Embedded Systems 2-25

Flag Register and Conditions

Embedded Systems 2-26

Conditional Jumps

Assembler Language
Programming
Manual, Sect.
2.6.1 and jump
instruction
definitions (p. 80)

Example:
CMP.W R1, R2
; set cond. flags

Embedded Systems 2-27

; set cond. flags
; based on R2-R1
JGTU Label2
; Jump if R1>R2

Other Instructions

Embedded Systems 2-28

