C Programming
Language Review
and Dissection |

Lecture 3

Embedded Systems

3-1

Todaz

High-level review of C concepts
coupled with . ..

In-depth examination of how they are implemented in
assembly language

Reading Assignment

— MCPM Chapter 1 and Chapter 2 (Section 2.1) Memory Mapping
— Review P&P Chapters 14, 15, 16

L 4
‘1 ’/',' I?Iilp(, \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded Systems
T

3-2

C: A High-LeveI Language

Gives symbolic names to values
— don’t need to know which register or memory location

Provides abstraction of underlying hardware
— operations do not depend on instruction set

— example: can write “a=b * c”, even if
CPU doesn’t have a multiply instruction

Provides expressiveness
— use meaningful symbols that convey meaning
— simple expressions for common control patterns (if-then-else)

Enhances code readabillity

Safeguards against bugs
— can enforce rules or conditions at compile-time or run-time

L 4
‘1 ’/',' {I}Iilp(, \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded %/Sterns
T

3-3

A C Code “Proiect”

* You will use an “Integrated Development Environment”
(IDE) to develop, compile, load, and debug your code.

e Your entire code package is called a project. Often you
create several files to spilt the functionality:
— Several C files
— Several include (.h) files
— Maybe some assembly language (.a30) files
— Maybe some assembly language include (.inc) files

« A lab, like “Lab7”, will be your project. You may have
three .c, three .h, one .a30, and one .inc files.

 More will be discussed in a later set of notes.

‘1 r: I’l;;?(jVgLLIAM STATES LEE COLLEGE of ENGINEERING Embedded Systems

ComEiIing acC Program

Entire mechanism is usually called
the “compiler”
Preprocessor
— macro substitution
— conditional compilation
— “source-level” transformations
o outputis still C
Compiler
— generates object file
* machine instructions
Linker
— combine object files

(including libraries) Library
into executable image Object Files

L 4
‘1 r: &Z\ZI};MATES LEE COLLEGE of ENGINEERING Embedded %/ﬁerns
“—_—

C
Source and
Header Files

A

C Preprocessor

A

Compiler

Source Code
Analysis

Target Code
Synthesis

A

\

‘ Linker

A

Executable
Image

35

ComEiIer

Source Code Analysis
— “front end”
— parses programs to identify its pieces
» variables, expressions, statements, functions, etc.
— depends on language (not on target machine)

Code Generation
— “back end”
— generates machine code from analyzed source
— may optimize machine code to make it run more efficiently
— very dependent on target machine

Symbol Table

— map between symbolic names and items
— like assembler, but more kinds of information

L 4
‘1 ’/',' I?Iilp(, \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded Systems
T

3-6

Useful TiE

Configure Project Editor to tell compiler to generate assembly
code for examination with debug information

— Option Browser -> select CFLAGS, select Mod..., select Category
et cetera -> check —dsource

Also, do not use spaces in file names or directories.

L 4
‘1 ’/',' I?Iilp(, \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded Systems 3.7

Remember the Memorx I\/IaE for Our MCU

Naote: User programs meist

not use shaded areas.

FFFOCh

Special Page
Area

Fixed Vector
Area

Dnmnh | T Ry S e e I e

SFR Area
Q0400h | i ,

Internal RAM User RAM Area
Area - 11kB = 31616 Bytes

OTFFFR} J _ 0TETER

Rese 0TFFFh
OFD00h

High E/W

4kB data

block

10000kR

Reserved
AQDDDhR

Flash ROM FF300
Area - 384kB
FFE20H
FFFFFh
L
i\l/'l' el T L e Embedded Systems

3-8

Classifxing Data

Automatic - To stack area
Variable data variable
Sta — With initial value —# To RAM and ROM areas
atic

vanable L Without initial value —3™ To RAM area

Constant, = To ROM area
Fixed data 4[character string

Program - To ROM area

Figure 2.1.1 Types of data and code generated by NC30 and their mapped areas

L 4
‘1 r: &ZVZILLIAM STATES LEE COLLEGE of ENGINEERING Embajdaj Wgerns 3_9

A 4

Section Names and Contents

Table 2.1.1 Sections types Managed by NC30

Section base name

Content

data Contains static variables with initial values.

bss Contains static variables without initial values. “Bblocsk ;tsg[ﬁd
rom Contains character strings and constants. =

program Contains programs.

vector Variable vector area (compiler does not generate)

fvector Fixed vector area (compiler does not generate)

stack Stack area (compiler does not generate)

heap Heap area (compiler does not generate)

e
2
‘1 ’/',' ITJZZ \z/j‘lLLIAM STATES LEE COLLEGE of ENGINEERING Embedded SystemS
~

3-10

ExamEIe of Sections

inti=1; |

charc="'0";

intj, k :

const charcc ="a' ;=

void main(void)

Static variables

without initial -
\@5_/

Static

variables with
initial values

data section

bss section

Automatic
ariable

stack section
(Compiler does not
generate)

program section

Programs
Character stri

ngs, -
onstants)

rom section

Initial values

data_| section

Figure 2.1.3 Mapping data into sections by type

L 4

N

r, The WILLIAM STATES LEE COLLEGE of ENGINEERING
UNCCHARLOITE

Embedded Systems

ROM

3-11

Section Sizes and Locations

Map Viewer - Shows memory map with sections and symbols
Label:

Address(size) Section
0O0000(0O0400) >
g00400(000002) D] data HE
800402 (000088) D] ustack
B0040a(0088375)
80877+ (0000081} FD] istack
gea7808(0£9880)
ﬂFaﬂﬂﬂfﬁ§§ﬂﬂ2] R] data HEI
BFaf@2{andobL) C] interrupt
BfFadb6{H812e2) L] program
BFb398(004468)
Bff800(00080CcA) FE] vector
BFf8cA(0ea’1c)
Bfffdc{ 808024} [[C] fvector
BFFFFF

Builder gives summary

DATA 08060011 {A0BBBH) Byte(s)
ROMDATA O000882(00002H) Byte(s)
CODE 08085242 {0147AH) Byte(s)

xxxxxx%% Finish...

L 4

\‘ ’, The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOITE

lpddress{size)

Section

000000(0004 00)|

0004008{ 000002)

[D]

data HE

08084082{ 000008)[D

H8848a{ 8BB3/5)

ustack

0887808{8F9880)

1
1

istack

8fadeBa{ 88008062)
BfafB82{8000b4)

|‘
ﬂﬂﬂ??F{ﬂﬂﬂﬂﬂ1}FD
|%

data HEI

R]
€]

interrupt

Bfadb6{BB12e2)

[C]

program

0fb398{ 004468)

BFFEBH{HHHHEH}FE] vector

8ff8cB{ 8867 1c)

BFffdc{0008024)[C] fuvector

Embedded Systems

[G]
[G]

[G]
[G]
[G]

[G]
[G]
[G]
[G]
[G]
[G]
[G]
[G]
[G]
[G]
[G]

g008408:
d8a488:

BFa@g2
BfaBae
Bfafdae

BFafdbb
Bfadcy
Bfadde
BFaz1e
Bfacf2
Bfafda
Bfaffa
8Fb192
8fb1b8
8fb2cH
8fb332

5B

d

:ctart
sSexit
: exit

: init switches
: init LEDs
:_main

:__ fgadd

: fBmul

: f8toinl
:§ ftol

: i4Utofs
:§ 1tof

:5 F81tor
:§ _F8rtol

3-12

Allocating SEace for Variables

Static data section

— All static variables stored here
(including global variables)

— There is a fixed (absolute) address

Run-time stack
— Used for automatic variables

— SP and FB point to storage area (frame,
activation record) at top of stack

— New storage area for each block
(goes away when block exited)

Examples
— Global: sub.w _inGlobal ,R1
— Local: mov.w -2[FB] ,RO

» Offset = distance from beginning
of storage area

2
‘1 r: [TI};C \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded Wsterns

A 4

0x0000

static data

Instructions

OXFFFF

3-13

Activation Record / Stack Frame

Read Patt & Patel 0x00000
Chapter 14 for a
thorough explanation spaceto |
of concepts Save Regs.

See Section 2.4 of MCPM 2 % Automatic
for more s Variables
implementation details 2= of func

See Section 1.2.2 of
MCPM for size of
variables

Old Frame pointer also
called dynamic link

Return Adx

Stack Grows to Smaller Addresses

More
Arguments

Caller’s
Stack Frame
OXFFFFF

L 4

‘1 r: &Z\ZILLIAM STATES LEE COLLEGE of ENGINEERING Embajdaj Waerns 3_ 14

A 4

Storage of Local and Global Variables

int inGlobal;

void chapter12() {
int inLocal;
int outLocalA;
int outLocalB;

inLocal = 5;
iInGlobal = 3;

outLocalA = inLocal++ & ~inGlobal;

outLocalB = (inLocal + inGlobal) - (inLocal -
inGlobal);

L 4
‘1 r: The WILLIAM STATES LEE COLLEGE of ENGINEERING Embedded Wsterns 3-15

UNC CHARLOTTE

Initialization

mov.w #0005H,-2[FB] ; inLocal
._line 19

mov.w #0003H,_inGlobal

._line 22

L 4

‘1 r: &Z‘ZILLIAM STATES LEE COLLEGE of ENGINEERING Embajdaj Waerns 3_ 16

A 4

Assignment

mov.w _inGlobal,R0O
not.w RO

mov.w -2[FB],-4[FB]
and.w RO,-4[FB]
add.w #0001H,-2[FB]
mov.w - 2[FB],RO
add.w _inGlobal,R0O
mov.w -2[FB],R1
sub.w _inGlobal,R1
sub.w R1,R0

mov.w RO,-6[FB]

L 4
‘1 r: &ZVZILLIAM STATES LEE COLLEGE of ENGINEERING Embajdaj %,gerns 3_ 17

Control Structures

If — else
while loop
for loop

2
‘1 r: Il;}IiIeC WILLIAM STATES LEE COLLEGE of ENGINEERING Embedded %/Stefns 3-18

If-else

If (condition)
action_If;
else T F
action_else;

v v

action_if action_else

Else allows choice between
two mutually exclusive actions without re-testing condition.

L 4
‘1 ’/',' ITJZZ \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded SystemS 3-19

Generating Code for If-Else

iIf (X){ L1:
y++;
7. cmp.w #0000H,-6[FB]
) jeq L5
else { add.w #0001H,-4[FB]
y--;
Z++; sub.w #0001H, - 8[FB]
} .
jmp L6
L5:

sub.w #0001H,-4[FB

add.w #0001H,-8[FB]

‘1 r: &ZVZILLIAM STATES LEE COLLEGE of ENGINEERING Embajdaj %,gerns 3_20

Switch

switch (expression) {
case constl:
actionl; break;
case const2:
action2; break;
default:
action3;

Alternative to long if-else chain.

If break Is not used, then

case "falls through" to the next.

evaluate
expression

actionl

action2

action3

L 4
‘1 r: I’l;;?(j\g‘[LLIAM STATES LEE COLLEGE of ENGINEERING Embedded Systems
T

3-21

Generating Code for Switch

switch (x) {
case 1: L8:
y+=3;
break; add.w #0003H,-4[FB]
case 31:

jmp L7
L9O:

} sub.w #0011H,-4[FB]

jmp L7
mov.w -6[FB],R0O
cmp.w #0001H,R0O L10:
jeq L8
cmp.w #001fH,RO sub.w #0001H,-4[FB]
jeq L9
jmp L10 L7:

L 4
‘1 r: I];};;}\ZILLIAM STATES LEE COLLEGE of ENGINEERING Embajdaj Wgerr]s 3_22

While

while (test)
loop_body;

T

Executes loop body as long as
test evaluates to TRUE (non-zero).

Note: Test is evaluated before executing loop body.

\‘ ’, The WILLIAM STATES LEE COLLEGE of ENGINEERING
AN # UNCCHARLOITE

Embedded Systems

loop _body

1

3-23

Generating Code for While

X = 0;
while (x<10) {
X=X+ 1;
} mov.w #0000H,-6[FB]
L11:
cmp.w #000aH,-6[FB]
jge L12
add.w #0001H,-6[FB]
jmp L11
L12: ...

‘1 r: &ZVZILLIAM STATES LEE COLLEGE of ENGINEERING Embajdaj %,gerns 3_24

For

for (init; end-test; re-init) l
statement —
Init
F
T
loop_bod
Executes loop body as long as P_DOCYy
test evaluates to TRUE (non-zero). }
Initialization and re-initialization | re-init

code included in loop statement.

Note: Test is evaluated before executing loop body.

L 4
‘1 r: I’l;;?(j\g‘[LLIAM STATES LEE COLLEGE of ENGINEERING Embedded Systems 3-25

Generating Code for For

for (i =0;1<10; i++)
X+=1

mMov.w #0000H,-8[FB]

L16:
cmp.w #000aH, - 8[FB]
jge L18
add.w -8[FB],-6[FB]
add.w #0001H,-8[FB]
jmp L16

L18:

‘1 ’/',' {I}Iilp(, \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded %/Sterns

3-26

ASCII Table

00 nu | 10 de | 20 sp | 30 0 40 @
01 soh 11 dc1 21 ! 31 1 41 A
02 six 12 de2 | 22 32 2 42 B
03 etx 13 de3 | 23 # 33 3 43 C
04 eot 14 dca | 24 $ 34 4 44 D
05 eng | 15 nak | 25 % | 35 5 45 E
06 ack 16 syn 26 & 36 6 46 F
07 bel 17 etb 27 ' 37 7 47 C
08 bs 18 can | 28 (38 8 48 H
09 ht 19 em | 29) 39 9 49 I
Oa nl la sub | 2a * 3a 4a J
Ob vt 1b esc 2b + 3b : 4b K
Oc np 1c fs 2C : 3c < 4c L
Od cr 1d gs 2d - 3d = 4d M
Oe SO le rs 2e 3e > de N
of si 1f us | 2f / 3f ? A4f O
N L — Embecded Systems

50
ol
52
53
o4
55
56
o7
58
929
sa
5b
SC
5d
oe
5f

N < X = < C 4 o I O T

—

e

60
61
62
63
64
65
66
67
68
69
6a
6b
6C
6d
6e
of

o o

o O

70
71
72
73
74
75
76
77
78
79
7a
7b
/C
7d
/e
7f

del

3-27

Masking

One of the most common uses of logical operations is “masking.”

Masking is where you want to examine only a few bits at a time, or
modify certain bits.

For example, if | want to know if a certain number is odd or even, | can
use an “and” operator.
0101 0101 0101 0101
AND 0000 0000 0000 0001
0000 0000 0000 0001

Or, lets say you want to look at bits 7 to 2:
0101 0101 0101 0101
AND 0000 00001111 1100
0000 0000 0101 0100

e
L 4
‘1 ’/',' ITJZZ \z/j‘lLLIAM STATES LEE COLLEGE of ENGINEERING Embedded SystemS

A 4

Example - upper/lower case ASCII

Masking also lets you convert between ASCII upper and
lower case letters:
— “A” = 0x41 (0100 0001)
— “a” = 0x61 (0110 0001)

To convert from capitals to lower case:

— Add 32 (0x20)
— OR with 0x20

To convert from lower case to capitals
— Subtract 32 (0x20)
— AND OxDF

The logical operations are the only way to ensure the
conversion will always work

L 4
‘1 ’/',' ITJZZ \ZILLIAM STATES LEE COLLEGE of ENGINEERING Embedded Systems

A 4

