
Disciplined Software
Development

9-1Embedded Systems

Development

Lecture Notes 9

Overview

Software Goals
Why design software before coding it?
How should software be designed?
How should software be coded (written)?

Embedded Systems 9-2

Useful book (explains guidelines
and much, much more)
– The Practice of Programming ,

Brian W. Kernighan & Rob Pike,
Addison Wesley 1999

Software Goals

Simplicity – program is short and simple

Clarity – program is easy for humans and machines to
understand

Generality – program can be used for a broad range of
situations

Embedded Systems 9-3

situations

Software Design

How do you think companies create software?
Just dive in and start writing code, or
Plan the architecture and structure of the software?

Software is like any engineering project - you need to identify WHAT
you want to do and HOW you want to get there.
WHAT = requirements
HOW = development process

Embedded Systems 9-4

HOW = development process

How do you know you developed the software successfully?
Compare the finished product to the requirements (compliance)

Why Bother?

“He who fails to plan, plans to fail”

Most companies have an established process for developing
hardware and software.

Software development processes can differ between
companies, or even between projects in the same
company.

Embedded Systems 9-5

company.
Software development can occur at the same time that

hardware is designed (co-development), especially with
embedded products. A delay in either affects the timing of
the other.

What is an Algorithm?
A formula? A solution? A sequence of steps? A recipe?
A former Vice-President? (Al-Gore-ithm?)

An algorithm is created in the design phase

How is an algorithm represented?
Typically represented as pseudo code
Historically represented as flowcharts

Embedded Systems 9-6

Historically represented as flowcharts

Do yourself a favor – write
algorithms before code –
always!

Pseudo Code

Pseudo code is written in English to describe the functionality
of a particular software module (subroutine)

Include name of module/subroutine, author, date, description
of functionality of module, and actual steps

Often you can take the pseudo code and use them lines in
your program as comments!

Avoid a very fine level of detail (although this may sometimes

Embedded Systems 9-7

Avoid a very fine level of detail (although this may sometimes
be difficult to do)

Avoid writing code – use English, not assembly language (or
higher-level language) instructions

Software Design Process

Study the problem FIRST (THINK!!).
Write the important parts of your problem down.
Break the problem into manageable pieces. Solve each of

the pieces individually.
Write an algorithm of the solution of your problem, or for each

piece you identified.
Create test cases for your

Embedded Systems 9-8

Create test cases for your
program (more later).

Write the code. Include
comments as you code.

Test your program

SONAR

Data Logger General Requirements
Depth

NMEA 0183
4800 baud

RS232

Lat/Lon
Position
NMEA 0183
4800 baud

RS232

DataFlash
Memory Off-line

GPS

SPI

RS232
+ USB

Download
RS232

Embedded Systems 9-9

Three operating modes
– Standby
– Record

• Get depth information from Sonar via UART0
• Get position information from GPS via UART2
• Store most recent depth from each position in

DataFlash
– Download: Download depth and position information

from DataFlash

Memory Off-line
Data

Processing

Debugger

System Tasks and Data Flow

UART0
Rx ISR

UART2
Rx ISR

Process
Depth

Process
Position
and Save

CurDepth

CurPos

SONAR

GPS
User

Interface

MemUsed

U0RxQ

U2RxQ

Embedded Systems 9-10

UART2
Tx ISR

and Save

DataFlash
Memory Global Variable

ISR Task

MemUsed

Download
Data

U2TxQ

Flowchart Symbols (Control Flow)

Decision? Do a Task
Yes

No

Embedded Systems 9-11

Input/
Output

START

END

Flowchart for Process Depth

Executes each time a complete NMEA
0183 sentence arrives through
Sonar UART (#0)
– Rely on that Receive ISR to detect

end of sentence

Start

Decode NMEA
Sentence

Invalid?
Y

U0RxQ

Data In

Embedded Systems 9-12

End

N

Update CurDepth

Data Out

Flowchart for Process Position and Save
Start

Decode NMEA
Sentence

Invalid?
Y

N

Update CurPos

U2RxQ

Data In

Data Out

Executes each time a complete
NMEA 0183 sentence arrives
through GPS UART (#2)
– Rely on that Receive ISR to detect

end of sentence

Embedded Systems 9-13

End

Skip?
Y

N

Write to
DataFlash

Update MemUsed

Data Out

Data Out

Flowchart for Download Data

Start

Done with
download?

Y
N

Executes each time U2TxQ becomes
empty (determined by U2 Tx ISR)

Tx Queue full?
Y

N

Embedded Systems 9-14

End

Enqueue

Read
DataFlash

U2TxQ

Data Out

Y
N

Coding Style Guidelines

1. Names
1. Use descriptive names for global variables, short names

for locals
2. Use active names for functions (use verbs):

Initialize_UART
3. Be clear what a boolean return value means!

Check_Battery vs. Battery_Is_Fully_Charged

Embedded Systems 9-15

Check_Battery vs. Battery_Is_Fully_Charged

2. Consistency and idioms
1. Use consistent indentation and brace styles
2. Use idioms (standard method of using a control

structure): e.g. for loop
3. Use else-if chains for multi-way branches

Coding Style Guidelines

3. Expressions and statements
1. Indent to show structure
2. Make expressions easy to understand, avoid negative

tests
3. Parenthesize to avoid ambiguity
4. Break up complex expressions

Embedded Systems 9-16

4. Break up complex expressions
5. Be clear: child = (!LC&&!RC)?0:(!LC?RC:LC);
6. Be careful with side effects: array[i++] = i++;

Coding Style Guidelines

4. Macros
1. Parenthesize the macro body and arguments

#define square(x) ((x) * (x))

5. Magic numbers
1. Give names to magic numbers with either #define or enum

#define MAX_TEMP (551)
enum{ MAX_TEMP = 551, /* maximum allowed temperature */

Embedded Systems 9-17

enum{ MAX_TEMP = 551, /* maximum allowed temperature */
MIN_TEMP = 38, /* minimum allowed temperature */ };

2. Use character constants rather than integers: if ch==65 ???? if
ch ==‘A’

3. Use language to calculate the size of an object: sizeof(mystruct)

Coding Style Guidelines

6. Comments
1. Clarify, don’t confuse
2. Don’t belabor the obvious
3. Don’t comment bad code – rewrite it instead
4. Don’t contradict the code

Embedded Systems 9-18

Coding Style Guidelines

7. Use a standard comment block at the entry of
each function
1. Function Name
2. Author Name
3. Date of each modification
4. Description of what function does

Embedded Systems 9-19

5. Description of arguments
6. Pre-conditions
7. Description of return value
8. Post-conditions

Coding Style Guidelines

8. Defensive programming
1. Upon entering a function, verify that the arguments are

valid
2. Verify intermediate results are valid
3. Is the computed value which is about to be returned

valid?
4. Check the value returned by any function which can

Embedded Systems 9-20

4. Check the value returned by any function which can
return an invalid value

9. Every function should be no more than 60 lines
long, including comments. (Why?)

Statistics on Software Projects

Standish Group International, reported in 1995:
Only 16% of software projects were expected to finish on

time and within budget
Projects completed by the largest American Organizations

had only 42% of their originally proposed functions
31% of software projects were cancelled before completion

costing the US economy $81 billion

9-21

costing the US economy $81 billion
NASA software research data indicates that 40% of the cost

on large projects is spent on rework

Advantages of SPI Efforts

Organizations that have invested in software process
improvement for 3+ years report average yearly gains of:
– 37% productivity
– 18% more defects found in pretest
– 19% reduction in time to market
– 45% reduction in field error reports
– The average return on investment is 4:1

9-22

So what is the CMM??

CMM, the Capability Maturity Model, is an engineering
practice model for an evolutionary process improvement
cycle. There are five levels:

Initial – unpredictable and poorly controlled (chaos)
Repeatable – can repeat previously mastered tasks
Defined – Process characterized and fairly well understood
Managed – process measured and controlled

9-23

Managed – process measured and controlled
Optimizing – focus on process improvement (Space Shuttle!)

Boeing’s Success

���� ����

����

����

���� ����

���� ����

���� ����

���� ����

����

����

���� ����

���� ����

���� ����

���� ����

���� ����

����

����

���� ����

����
���� ����

���� ����
���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����
���� ����

���� ����

���� ����

���� ����

���� ����
���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

Goal: Goal:

Low VarianceLow VarianceCMM
Level 3

9-24

Late

Deliverable

Dates

���� ����

����

����

����

����

����

����

���� ����

���� ����

���� ����

���� ����

���� ����

����

����

���� ����

���� ����

���� ����

���� ����

���� �������� �������� ����

���� ����

���� ����

���� ����

����

����

����

����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ���� ���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����
���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ���� ���� ����

���� �������� ���� ����

���� ���� ����

����

����

����

����

����

����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

���� ����

CMM

Levels

1 & 2

Target Date

How do we mature through CMM?

We initiate the need for improvement
We diagnose our current environment
We establish our plans and action teams
We develop the solutions using our teams in concert with our

plans
We leverage what we have created in the next improvement

initiation

Embedded Systems 9-25

initiation

Each stage has additional tasks that need to be done, i.e.
peer review, software configuration management.

Software Development Environment

Companies that develop code need to ensure they employ
“Software Configuration Management” (SCM).

Basically all work products that will be delivered as part of a
project are controlled by SCM through baselines that are
established at the beginning of the project.

A company has a “library system” (repository) where
developers check out code they will change. They check it

Embedded Systems 9-26

developers check out code they will change. They check it
back in when done.

Everyone has a copy of the entire code base so they can
locally compile the code, adding the few changes of the
code they have checked out.

