
Sharing the Processor:
A Survey of Approaches to
Supporting ConcurrencySupporting Concurrency

16-1

Today

Topic - How do we make the processor
do things at the right times?
– For more details see Chapter 5 of D.E.

Simon, An Embedded Software Primer,
Addison-Wesley 1999

There are various methods; the best fit
depends on… depends on…
– system requirements – response time
– software complexity – number of threads of

execution
– resources – RAM, interrupts, energy

available

16-2

RTOS Cult De-Programming

How do we schedule the tasks
on the CPU?

An infinite loop in main
Real-time operating system

�������� �	

�������

�����

������Real-time operating system
Is there anything else

available?

�����	���	�

���

��

������
���	
����

16-3

Definitions

Other
processing

Scheduler

Response
Time

Task or ISR Code

Time

Latency

Ttask

– TRelease(i) = Time at which task i is becomes ready to run
– Tresponse(i) = Delay between request for service and completion of

service for task i
– Ttask(i) = Time needed to perform computations for task i
– TISR(i) = Time needed to perform interrupt service routine i

Time

16-4

Round-Robin/Super-Loop

Extremely simple
– No interrupts
– No shared data problems

Poll each device (if
(device_A_ready()))

Service it with task code when

void main(void) {
while (TRUE) {
if (device_A_ready()) {
service_device_A();

}
if (device_B_ready()) {
service_device_B();

}Service it with task code when
needed

}
if (device_C_ready()) {
service_device_C();

}

}
}

16-5

Example Round-Robin Application
void DMM_Main(void) {
enum {OHMS_1, ... VOLTS_100} SwitchPos;
while (TRUE) {

switch (SwitchPos) {
case OHMS_1:

ConfigureADC(OHMS_1);
EnableOhmsIndicator();
x = Convert();
s = FormatOhms(x);
break;

......
case VOLTS_100:

ConfigureADC(VOLTS_100);
EnableVoltageIndicator();
x = Convert();
s = FormatVolts(x);
break;

}
DisplayResult(s);
Delay(50);

}
}

16-6

Sample Application - Network Videophone

Video
– 30 frames/s
– 360 x 240 images
– Compress/

Decompress with
MPEG-2

Audio

Service Direction Function WCET Deadline

Video Send SampleFrame 1 ms 33.3 ms

CompressFrame 27 ms 33.3 ms

SendFrame 0.1 ms 33.3 ms

Receive ReceiveFrame 0.1 ms 33.3 ms

DecompressFrame 2.7 ms 33.3 ms

DisplayFrame 1 ms 33.3 msAudio
– 8 kHz sampling
– Compress with

GSM 06.10

Processor
– 3000 MIPS

Tasks have
deadlines

DisplayFrame 1 ms 33.3 ms

Audio Send ReadMicBuffer 0.001 ms 20 ms

CompressAudio 0.160 ms 20 ms

SendAudio 0.001 ms 20 ms

Receive ReceiveAudio 0.001 ms 20 ms

DecompressAudio 0.160 ms 20 ms

LoadAudioBuffer 0.001 ms 20 ms

16-7

Scheduling NV with Round-Robin

Round robin works for either
video or audio, but not both

Need to split up video
CompressFrame()

void main() {
while(TRUE) {
if (TimeToSample) {
SampleFrame();
CompressFrame();
SendFrame();
}
if (FrameWaiting) {if (FrameWaiting) {
ReceiveFrame();
DecompressFrame();
DisplayFrame();
}

}
}

CompressFrame: 27 ms

All audio tasks: Deadline is 20 ms
from beginning of first task

RMB

CA

SA

16-8

Limitations of Round-Robin

Architecture supports multi-rate systems very poorly
– Voice Recorder: sample microphone at 20 kHz, sample switches at 15

Hz, update display at 4 Hz. How do we do this?

Polling frequency limited by time to execute main loop
– Can get more performance by testing more often (A/Z/B/Z/C/Z/...)
– This makes program more complex and increases response time for

other tasksother tasks

Potentially Long Response Time
– In worst case, need to wait for all devices to be serviced

–

Fragile Architecture
– Adding a new device will affect timing of all other devices
– Changing rates is tedious and inhumane

() �
∀

=
t

taskresponse tTjT)()(max

16-9

Event-Triggered using Interrupts

Very basic architecture, useful for simple low-power devices,
very little code or time overhead

Leverages built-in task dispatching of interrupt system
– Can trigger ISRs with input changes, timer expiration, UART data

reception, analog input level crossing comparator threshold

Function types
– Main function configures system and then goes to sleep– Main function configures system and then goes to sleep

• If interrupted, it goes right back to sleep

– Only interrupts are used for normal program operation

Example: bike computer
– Int1: wheel rotation
– Int2: mode key
– Int3: clock
– Output: Liquid Crystal Display

16-10

Bike Computer Functions

ISR 1:
Wheel rotation

ISR 2:
Mode Key

ISR 3:
Time of Day Timer

Configure timer,
inputs and
outputs

cur_time = 0;
rotations = 0;
tenth_miles = 0;

Reset
rotations++;
if (rotations>

R_PER_MILE/10) {
tenth_miles++;
rotations = 0;

}
speed =

mode++;
mode = mode %

NUM_MODES;
return from interrupt;

cur_time ++;
lcd_refresh--;
if (lcd_refresh==0) {
convert tenth_miles

and display
convert speed

and displaytenth_miles = 0;

while (1) {
sleep;

}

circumference/
(cur_time – prev_time);
compute avg_speed;
prev_time = cur_time;
return from interrupt

if (mode == 0)
convert cur_time

and display
else

convert avg_speed
and display

lcd_refresh =
LCD_REF_PERIOD

}

16-11

Limitations of Event-Triggered using Interrupts

All computing must be triggered by an event of some type
– Periodic events are triggered by a timer

Limited number of timers on MCUs, so may need to
introduce a scheduler of some sort which
– determines the next periodic event to execute,
– computes the delay until it needs to run
– initializes a timer to expire at that time– initializes a timer to expire at that time
– goes to sleep (or idle loop)

Everything (after initialization) is an ISR
– All code is in ISRs, making them long
– Response time depends on longest ISR. Could be too slow, unless

interrupts are re-enabled in ISR
– Priorities are directly tied to MCU’s interrupt priority scheme

16-12

Round-Robin with Interrupts

Also called
foreground/background

Interrupt routines
– Handle most urgent work
– Set flags to request

processing by main loop
More than one priority level

BOOL DeviceARequest, DeviceBRequest,
DeviceCRequest;
void interrupt HandleDeviceA(){

/* do A’s urgent work */
...
DeviceARequest = TRUE;

}
void main(void) {

while (TRUE) {
if (DeviceARequest) {More than one priority level

– Interrupts – multiple
interrupt priorities possible

– main code

if (DeviceARequest) {
FinishDeviceA();

}
if (DeviceBRequest) {
FinishDeviceB();

}
if (DeviceCRequest) {
FinishDeviceC();

}
}

}

16-13

Scheduling NV with Round Robin + Interrupts

BOOL ReadMicBuffer_Req = FALSE,

SampleFrame_Req = FALSE;

interrupt void HandleMicBuffer()
{

copy contents of mic buffer

ReadMicBuffer_Done = TRUE;

}

interrupt void

void main(void) {

while (TRUE) {

if (ReadMicBuffer_Done) {

CompressAudio();

SendAudio();

ReadMicBuffer_Done=FALSE;

}

if (SampleFrame_Done) {
interrupt void
HandleSampleFrame() {

Sample a frame of video

SampleFrame_Done = TRUE;

}

CompressFrame();

SendFrame();
SampleFrame_Done = FALSE;

}

etc.

}

}CompressFrame: 27 ms

Delay

8-14

Limitations of Round-Robin with Interrupts

All task code has same priority
– What if device A must be handled quickly, but FinishDeviceC (slow)

is running?

–

– Difficult to improve A’s response time
• Only by moving more code into ISR

() ��
∀∀

+=
i

ISR
t

taskresponse iTtTjT)()()(max

• Only by moving more code into ISR
Shared data can be corrupted easily if interrupts occur during

critical sections
– Flags (DeviceARequest, etc.), data buffers
– Must use special program constructs

• Disable interrupts during critical sections
• Semaphore, critical region, monitor

– New problems arise – Deadlock, starvation

16-15

Run-To-Completion Scheduler
Use a scheduler function to run task functions at the right rates

– Table stores information per task
• Period: How many ticks between each task release
• Release Time: how long until task is ready to run
• ReadyToRun: task is ready to run immediately

– “round-robin” scheduler runs forever, examining schedule table
which indicates tasks which are ready to run (have been “released”)

– A periodic timer interrupt triggers an ISR, which updates the
schedule tableschedule table

• Decrements “time until next release”
• If this time reaches 0, set that task’s Run flag and reload its time with the

period

Follows a “run-to-completion” model
– A task’s execution is not interleaved with any other task
– Only ISRs can interrupt task
– After ISR completes, the previously-running task resumes

Priority is determined by position in table. Hard to change
dynamically

16-16

RTC Scheduler App Programmer’s Interface
API enables control of tasks at more efficient level

– Add Task(task, time period, priority)
• task: address of task (function name without parentheses)
• time period: period at which task will be run (in ticks)
• priority: lower number is higher priority. Also is task number.
• automatically enables task

– Remove Task(task)
• removes task from scheduler.

– Run Task(task number)
• Signals the scheduler that task should run when possible and enables • Signals the scheduler that task should run when possible and enables

it
– Run RTC Scheduler()

• Run the scheduler!
• Never returns
• There must be at least one task scheduled to run before calling this

function.
– Enable_Task(task_number) and Disable_Task(task_number)

• Set or clear enabled flag, controlling whether task can run or not
– Reschedule_Task(task_number, new_period)

• Changes the period at which the task runs. Also resets timer to that
value.

16-17

Limitations of Run-To-Completion Scheduler

Tasks run to completion – problem with long tasks
– Maximum response time for a task is the duration of the longest

task
– Long tasks complicate programming

• No elegant way to start an operation (e.g. flash programming)
and yield processor for 10 ms

• Can improvise
– Trigger another task– Trigger another task
– Use a state machine within this task

Prioritization implies unfair processor allocation – starvation
possible

16-18

Function-Queue Scheduling

Interrupt routine
enqueues a function to
be called by main

Queue provides
scheduling flexibility
– Functions can be

enqueued with any

void interrupt HandleDeviceA(){
/* do urgent work for A */
...
Enqueue(Queue,FinishDeviceA);

}
...
void FinishDeviceA(void) {
/* do remainder of A’s work */

}enqueued with any
order desired

– Use priority of device to
determine position in
queue

}

void main(void) {
while (TRUE) {
while (NotEmpty(Queue)) {
f = Dequeue(Queue);
f();

}
}

}

16-19

Limitations of Function-Queue Scheduling
What if a long lower-priority function (FinishDeviceC) is

executing and we need to run FinishDeviceA?
– Must wait until FinishDeviceC completes

–

– Cooperative multitasking, no pre-emption

() () �
∀

+∀=
i

ISRtaskresponse iTttTjT)()(max)(max

– Cooperative multitasking, no pre-emption

What if the lowest-priority functions never get to run?
– Heavily loaded system

16-20

Real-Time OS (RTOS, Kernel, ...)
As with previous methods

– ISRs handle most urgent operations
– Other code finishes remaining work

Differences:
– The RTOS can preempt (suspend) a task to run something else.
– Signaling between ISRs and task code (service functions) handled

by RTOS.
– We don’t write a loop to choose the next task to run. RTOS

chooses based upon priority.

16-21

Why These Differences Matter
Signaling handled by RTOS

– Shared variables not needed, so programming is easier
RTOS chooses next task to run

– Programming is easier
RTOS can preempt tasks, and therefore schedule freely

– System can control task code response time (in addition to
interrupt routine response time)

– Worst-case wait for highest-priority task doesn’t depend on – Worst-case wait for highest-priority task doesn’t depend on
duration of other tasks.

– System’s response (time delay) becomes more stable
• A task’s response time depends only on higher-priority tasks

(usually – more later)

16-22

More RTOS Issues

Many RTOS’s on the market
– Already built and debugged
– Debug tools typically included
– Full documentation (and source code) available

Main disadvantage: RTOS costs resources (e.g. uC/OSII
compiled for 80186. YMMV)
– Compute Cycles: 4% of CPU– Compute Cycles: 4% of CPU
– Money: ???
– Code memory: 8.3 KBytes
– Data memory: 5.7 KBytes

16-23

Comparison of Priority Levels Available

HighHigh

Device A ISR
Device B ISR
Device ... ISR

Device A ISR
Device B ISR
Device ... ISR

RoundRound--RobinRobin
RoundRound--RobinRobin
+ Interrupts+ Interrupts

FunctionFunction--Queue, Queue,
RTC andRTC and

RTOSRTOS

LowLow

Device ... ISR
Device Z ISR
Task 1 Code

Task 4 Code
Task 3 Code
Task 2 Code

Task 6 Code
Task 5 Code

Device ... ISR
Device Z ISR
All Task Code

All Code

16-24

Software Architecture Characteristics
Priorities Available Worst Case

TResponse for
Highest Priority
Task Code

Stability of
TResponse
when Code
Changes

Simplicity

Round-robin None Σ TTask Poor Very simple

Round-robin
with
interrupts

Prioritized interrupt
routines, then task
code at same priority

Σ TTask +
Σ TInterrupt

Good for
interrupts,
poor for
task code

Must deal with
shared data
(interrupts/tasks)

task code

RTC and
Function-
queue
scheduling

Prioritized interrupt
routines, then
prioritized task code

max(TTask) + Σ
TInterrupt

Relatively
good

Must deal with
shared data and must
write/get scheduler
code

Real-time
operating
system

Prioritized interrupt
routines, then
prioritized task code

Σ TInterrupt + TOS Very good Most complex
(much is handled by
RTOS)

16-25

