
Process Coordination (2)
and

Scheduling

Embedded Systems

Scheduling

Lecture 20

20-1

Today

Operating System support for Process Coordination
– Monitors
– When multiple thread/processes interact in a system, new species

of bugs arise
– We must design the system to prevent or avoid them
– Bugs and solutions

Operating System task scheduling

Embedded Systems

– Traditional (non-real-time) scheduling
– Real-time scheduling

20-2

Monitors
Semaphores have a few limitations: unstructured, difficult to program

correctly. Monitors eliminate these limitations and are as powerful as
semaphores

A monitor consists of a software module with one or more procedures,
an initialization sequence, and local data (can only be accessed by
procedures)

Structure
– The critical section of each concurrent task is replaced by a call to the

monitor operation
– An implicit semaphore is associated with each monitor, called the monitor

Embedded Systems

– An implicit semaphore is associated with each monitor, called the monitor
lock

Rules
– User doesn’t directly access monitor lock
– Only one task is active in the monitor at any one time
– A call to a monitor operation results in the calling task acquiring the

associated semaphore
– If the lock is already taken, the calling task blocks until the lock is acquired
– An exit from the monitor operation releases the semaphore -- the monitor

lock is released so it can be acquired by a different task

20-3

Monitors and Programming Languages
Where are they?

– Most programming languages do
not specify concurrency and
synchronization mechanisms,
must be added

– Some do: Java, Concurrent
Pascal, Modula 2, Modula 3

Details
– Identify method as a critical

���������	
���

��	����������

���������	����	����������

�	�����	
���

Embedded Systems

– Identify method as a critical
section using synchronized
keyword

– The Java compiler inserts code
to

• Get lock immediately after
entering increment()

• Release lock immediately
before returning from it

�	�����	
���

��������

�

�

20-4

A needs resources X and Y
B needs resources X and Y
Sequence leading to deadlock

– A requests and gets (locks) X
– context switch
– B locks Y
– B requests X, doesn’t get it,

leading to…

Deadlock

����
��� �!��
��� �"��
#$
�	��� �"��
�	��� �!��

�

%���

�������
� � 	�
�

Embedded Systems

leading to…
– context switch
– A can’t get Y
– B can’t get X

%���
��� �"��
��� �!��
#$
�	��� �!��
�	��� �"��

�

������
�����

20-5

Deadlock (Cont'd)
Deadlock: A situation where two or more processes are

unable to proceed because each is waiting for one of the
others to do something.

Livelock: When two or more processes continuously change
their state in response to changes in the other process(es)
without doing any useful work. This is similar to deadlock
in that no progress is made but differs in that neither

Embedded Systems

in that no progress is made but differs in that neither
process is blocked or waiting for anything.

Deadlock can occur whenever multiple parties are competing for
exclusive access to multiple resources -- what can be done?

– Deadlock prevention
– Deadlock avoidance
– Deadlock detection and recovery

20-6

Deadlock Prevention
Deny one of the four necessary conditions

– Make resources sharable
• No mutual exclusion

– Processes MUST request ALL resources at the same time.
• Either all at start or release all before requesting more
• “Hold and wait for” not allowed
• Poor resource utilization and possible starvation

– If process requests a resource which is unavailable

Embedded Systems

– If process requests a resource which is unavailable
• It must release all resources it currently holds and try again

later
• Allow preemption
• Leads loss of work

– Impose an ordering on resource types.
• Process requests resources in a pre-defined order
• No circular wait
• This can be too restrictive

20-7

More Deadlock Strategies

Avoidance
– Allow necessary conditions to occur, but use algorithms to predict

deadlock and refuse resource requests which could lead to
deadlock – Called Banker’s Algorithm

– Running this algorithm on all resource requests eats up compute
time

Detection and Recovery
– Check for circular wait periodically. If detected, terminate all

Embedded Systems

– Check for circular wait periodically. If detected, terminate all
deadlocked processes (extreme solution but very common)

– Checking for circular wait is expensive
– Terminating all deadlocked processes might not be appropriate

20-8

Scheduling

Choosing which ready thread to
run next

Common criteria
– CPU Utilization –fraction of time is

the CPU busy
– Throughput – number of tasks are

completed per unit time
– Turnaround time – time delay from Waiting

Ready

Embedded Systems

– Turnaround time – time delay from
task first being submitted to OS to
finally completing

– Waiting time – amount of time a
task spends in waiting queue

– Response time – time delay from
request submission to first
processing in response to that
request

Running

Waiting

Terminated

20-9

Common Scheduling Algorithms

First-Come, First Served (FCFS)
– All queues operate as strict FIFOs without priority
– Problems: large average delay, not preemptive

Round Robin: add time-sharing to FCFS
– At end of time tick, move currently running task to end of ready queue
– Problems: Still have a large average delay, choosing time-tick is trade-

off of context-switching overhead vs. responsiveness

Embedded Systems

off of context-switching overhead vs. responsiveness

Shortest Job First (SJF)
– Job = process
– SJF is provably optimal in minimizing average waiting time
– Problem: How do we determine how long the next job will take?

• Could predict it based on previous job?

20-10

Priority Scheduling

Run the ready task with
highest priority
Define priority

– Internal: Time limits, memory
requirements

– External: Importance to
application, fees paid,
department submitting task

Embedded Systems

department submitting task

Problem: indefinite blocking
(starvation)

– Low level processes may never get to run in heavily loaded
system

– Two outcomes
• Processes run during winter break
• Processes disappear when computer eventually crashes

20-11

From OS to RTOS
Traditional (non-real-time) Operating System

– Hard to predict response time…
– Hard to guarantee that a task will always run

before its deadline
Real-Time Operating System

– Easy to determine that a task will always run
before its deadline

– Designed for periodic tasks
What does Real-Time mean?

������ 	� �
� ����

�	������ �

Embedded Systems

What does Real-Time mean?

����
���� ���
���� ����
���� ����

20-12

Scheduling – Selecting a Ready task to run

Goals
– Meet all task deadlines
– Maximize processor utilization (U)

• U = Fraction of time CPU performs useful work
• Limit scheduling overhead (choosing what to run next)
• Limit context switching overhead

Assigning priority based only on importance doesn’t work –

Embedded Systems

Assigning priority based only on importance doesn’t work –
why not?

How do we assign priorities to task?
– Statically – priority based on period (doesn’t change)
– Dynamically – priority based on time left (changes)

20-13

Definitions for Task i
•Task execution time = Ti

•Task execution period = τi: time between arrivals
•Utilization = fraction of time which CPU is used

– For a task i

– Overall, for all n tasks in the system
i

i
i

T
U

τ
=

n T

Embedded Systems

•Completion Time = time at which task finishes
•Critical Instant = time at which task’s completion time is
maximized. All tasks arrive simultaneously.
•Schedulable = a schedule exists which allows all tasks to meet
their deadlines, even for the critical instant

�
=

=
n

i i

iT
U

1 τ

20-14

Rate Monotonic Scheduling

Assumptions
– Tasks are periodic with period τi

– Single CPU
– TContextSwitch = Tscheduler = 0
– No data dependencies between tasks
– Constant process execution time Ti

– Deadline = end of period = τi

Embedded Systems

Assign priority based on period (rate)
– Shorter period means higher priority

20-15

Processor Behavior – Graphical Analysis

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

P1

P2

P3

P1 P1 P1P2 P2P3 P3 P3

P1 P1

P2

Embedded Systems

P3

&�� '(��$�&����&)������
)�����
�

)* * + ,���

)- - . /�����

)0 0 *- 1�2

20-16

Exact Schedulability Test for Task i

Account for all processing at critical instant
Consider possible additional task arrivals
an = nth estimate of time when task i completes
Loop

– Estimate higher priority job
arrivals, compute completion
time

�
=

=
i

j
jTa

0
0

Embedded Systems

time
– Recompute based on

any new arrivals

Iterate until
– an>τi : not schedulable
– an = an-1 <=τi : schedulable

=j 0

j

i

j j

n
in T

a
Ta �

−

=
+

�
�
�

�

�
�
�

�
+=

1

0
1 τ

20-17

Exact Schedulability Test for Example

�
=

=++==
i

j
jTa

0
0 6321

72232*
6
6

1*
4
6

3
6

3
1

0
1 =++=��

�
��

�+��

�
��

�+=
�
�
�

�

�
�
�

�
+= �

−

=
j

i

j j

Ta
τ

94232*
6
7

1*
4
7

3
7

3
1

0
2 =++=��

�
��

�+��

�
��

�+=
�
�
�

�

�
�
�

�
+= �

−

=
j

i

j j

Ta
τ

Embedded Systems

640
������������=j jτ

104332*
6
9

1*
4
9

3
9

3
1

0
3 =++=��

�
��

�+��

�
��

�+=
�
�
�

�

�
�
�

�
+= �

−

=
j

i

j j

Ta
τ

104332*
6

10
1*

4
10

3
10

3
1

0
4 =++=��

�
��

�+��

�
��

�+=
�
�
�

�

�
�
�

�
+= �

−

=
j

i

j j

Ta
τ

a3 = a4 < 12, so system is schedulableIterate until an-1 = an

20-18

Utilization Bound for RMS
Utilization U for n tasks

– Fraction of time spent on tasks
Maximum utilization UMax for m tasks

– Max. value of U for which we can
guarantee RMS works

Utilization bound test
– U < UMax: always

schedulable with RMS

�
=

=
n

i i

iT
U

1 τ

()12 /1 −= m
Max mU

Embedded Systems

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

Number of Tasks

M
ax

im
um

U

til
iz

at
io

n

schedulable with RMS
– UMax < U < 1.0:

inconclusive
– U > 1.0: Not schedulable

Why is UMax so small?
(approaches ln(2))
Conservative

20-19

Example of Scheduling with RMS and UB

Task Exec. Time T Period τ Priority

P1 1 4 High

P2 2 6 Medium

P3 3 12 Low

Embedded Systems

P3 3 12 Low

833.0
12
3

6
2

4
1

3

3

2

2

1

1 =++=++=
τττ
TTT

U

780.0)12(3)12(3
11

=−=−= m
Max mU Utilization Bound

test is inconclusive

20-20

RMS Sometimes Fails Under 100% Utilization

For some workloads with utilization below 100%, RMS priority allocation can fail
Tasks P1, P2 have later deadlines than P3 yet preempt it due to their shorter periods

Thread Exec. Time T Period τ Priority

P1 1 8 High

P2 1 9 Medium

P3 9 12 Low

Embedded Systems

P3 9 12 Low

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

P1 P1P2 P2P3 P3

Missed
DeadlineP1

P2
P3

P1
P2

Counter-example provided by C. Palenchar

20-21

Earliest Deadline First

Can guarantee schedulability at up to 100% utilization
Can’t use Exact Schedulability Test for EDF

– Sum up all possible higher priority tasks, but priority depends on
how close deadlines are!

– Can we modify the test to deal with this?

How does the kernel keep track of upcoming deadlines?
– Can determine priority when inserting task into ready queue

Embedded Systems

– Can determine priority when inserting task into ready queue
• Need to search through queue to find correct location (based

on deadline)
– Can determine which task to select from ready queue

• Need to search through queue to find earliest deadline
– Both are up to O(n) search time

• Can also do binary search tree

20-22

Earliest Deadline First Example

Thread Execution Time T Period τ
P1 1 4
P2 2 6
P3 3 12

Embedded Systems

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

P1

P2

P3

P1 P1 P1P2 P2P3 P3 P3

P2

P1 P1

20-23

System Performance During Transient Overload

RMS – Each task has fixed priority. So?
– This priority determines that tasks will be scheduled consistently

• Task A will always preempt task B if needed
• Task B will be forced to miss its deadline to help task A

meet its deadline

EDF – Each task has varying priority. So?

Embedded Systems

EDF – Each task has varying priority. So?
– This priority depends upon when the task’s deadline is, and

hence when the task becomes ready to run (arrival time)
• Task B may have higher priority than A depending on arrival

times
• To determine whether task A or B will miss its deadline we

need to know their arrival times

20-24

