
Most embedded systems need to
be self-reliant. It’s not usually possible
to wait for someone to reboot them if
the software hangs. Some embedded
designs, such as space probes, are sim-
ply not accessible to human operators.
If their software ever hangs, such sys-
tems are permanently disabled. In
other cases, the speed with which a
human operator might reset the sys-
tem would be too slow to meet the
uptime requirements of the product.

A watchdog timer is a piece of hard-
ware that can be used to automatically
detect software anomalies and reset the
processor if any occur. Generally speak-
ing, a watchdog timer is based on a
counter that counts down from some
initial value to zero. The embedded
software selects the counter’s initial
value and periodically restarts it. If the
counter ever reaches zero before the
software restarts it, the software is pre-
sumed to be malfunctioning and the
processor’s reset signal is asserted. The
processor (and the embedded software
it’s running) will be restarted as if a
human operator had cycled the power.

Figure 1 shows a typical arrangement.
As shown, the watchdog timer is a chip
external to the processor. However, it
could also be included within the same
chip as the CPU. This is done in many
microcontrollers. In either case, the out-
put from the watchdog timer is tied
directly to the processor’s reset signal.

Kicking the dog

The process of restarting the watch-
dog timer’s counter is sometimes

called “kicking the dog.” The appro-
priate visual metaphor is that of a man
being attacked by a vicious dog. If he
keeps kicking the dog, it can’t ever
bite him. But he must keep kicking the
dog at regular intervals to avoid a bite.
Similarly, the software must restart the
watchdog timer at a regular rate, or
risk being restarted.

A simple example is shown in
Listing 1. Here we have a single infi-
nite loop that controls the entire
behavior of the system. This software
architecture is common in many
embedded systems with low-end
processors and behaviors based on a
single operational frequency. The
hardware implementation of this
watchdog allows the counter value to
be set via a memory-mapped register.

Suppose that the loop must exe-
cute at least once every five millisec-
onds. (Say the motor must be fed new
control parameters at least that often.)
If the watchdog timer’s counter is ini-
tialized to a value that corresponds to
five milliseconds of elapsed time, say
10,000, and the software has no bugs,
the watchdog timer will never expire;
the software will always restart the
counter before it reaches zero.

Software anomalies

A watchdog timer can get a system
out of a lot of dangerous situations.
However, if it is to be effective, reset-
ting the watchdog timer must be
considered within the overall soft-
ware design. Designers must know
what kinds of things could go wrong

with their software, and ensure that
the watchdog timer will detect them,
if any occur.

Systems hang for any number of
reasons. A logical fallacy resulting in
the execution of an infinite loop is the
simplest. Suppose such a condition
occurred within the read_sensors()
call in Listing 1. None of the other
software (except ISRs, if interrupts are
still enabled) would get a chance to
run again.

Another possibility is that an
unusual number of interrupts arrives
during one pass of the loop. Any extra
time spent in ISRs is time not spent
executing the main loop. A dangerous
delay in feeding the motor new con-
trol instructions could result.

When multitasking kernels are
used, deadlocks can occur. For exam-
ple, a group of tasks might get stuck
waiting on each other and some exter-
nal signal that one of them needs,
leaving the whole set of tasks hung
indefinitely.

If such faults are transient, the sys-
tem may function perfectly for some
length of time after each watchdog-
induced reset. However, failed hard-
ware could lead to a system that con-
stantly resets. For this reason it may
be wise to count the number of
watchdog-induced resets, and give up
trying after some fixed number of
failures.

Karate lessons

An actual watchdog implementation
would usually have an interface to

Embedded Systems Programming OCTOBER 2001 79

B E G I N N E R ’ S C O R N E R

Watchdog Timers

✁
C

U
T

H
E
R

E
 ✁

by Niall Murphy and Michael Barr

the software that is more complex
than the one in Listing 1. When the
set of instructions required to reset
the watchdog is very simple, it’s pos-
sible that buggy software could per-
form this action by accident.
Consider a bug that causes the value
10,000 to be written to every loca-
tion in memory, over and over
again. This code would regularly
restart the watchdog counter, and
the watchdog might never bite. To
prevent this, many watchdog imple-
mentations require that a complex
sequence of two or more consecu-
tive writes be used to restart the
watchdog timer.

If the watchdog is built into your
microcontroller, it may not be
enabled automatically when the
device resets. You must be sure to
enable it during hardware initializa-
tion. To provide protection against a
bug accidentally disabling the
watchdog, the hardware design usu-
ally makes it impossible to disable
the watchdog timer once it has been
enabled.

If your software can do a complete
loop faster than the watchdog period,
the structure in Listing 1 may work
fine for you. It gets more challenging
if some part of your software takes a
long time to complete. Say you have a
loop that waits for an element to heat
to a certain temperature before
returning. Many watchdog timers
have a maximum period of around
two seconds. If you are going to delay
for more than that length of time,
you may have to kick the dog from
within the waiting loop. If there are
many such places in your software,
control of the watchdog can become
problematic.

System initialization is a part of
the code that often takes longer
than the watchdog timer’s maxi-
mum period. Perhaps a memory test
or ROM to RAM data transfer slows
this down. For this reason, some
watchdogs can wait longer for their
first kick than they do for subse-
quent kicks.

As threads of control are added to
software (in the form of ISRs and
software tasks), it becomes ineffec-
tive to have just one place in the code
where the watchdog is kicked.

Choosing a proper kick interval is
also an important issue, one that can
only be addressed in a system-specific
manner. These and other issue of greater
complexity are discussed in the refer-
ences listed at the end of this article.

Dog days

A watchdog timer is a useful tool in
helping your system recover from tran-
sient failures. Since it is so common to
find watchdogs built into modern
microcontrollers, the technique is
effectively free. If you are working on a
mission-critical system, then either
common sense or a regulatory body
will insist that you use a watchdog. It’s
always a good idea to make your sys-
tems more self-reliant. esp

Niall Murphy has been writing software for
user interfaces and medical systems for ten
years. He is the author of Front Panel:
Designing Software for Embedded
User Interfaces, and contributing editor
to ESP. Niall’s training and consulting
business is based in Galway, Ireland. He
welcomes feedback and can be reached at
nmurphy@panelsoft.com.

Michael Barr is the editor in chief of
ESP. He is also the author of
Programming Embedded Systems in C
and C++ and an adjunct faculty member
at the University of Maryland College
Park. Contact him at mbarr@cmp.com.

References:
1. Murphy, Niall. “Watchdog Timers,”

Embedded Systems Programming,

November 2000, p. 112.

2. Santic, John S. “Watchdog Timer

Techniques,” Embedded Systems

Programming, April 1995, p. 58.

B E G I N N E R ’ S C O R N E R

80 OCTOBER 2001 Embedded Systems Programming

✁
C

U
T

H
E
R

E
 ✁

FIGURE 1 A typical watchdog setup

LISTING 1 Kicking the dog

uint16 volatile * pWatchdog =

(uint16 volatile *) 0xFF0000;

main(void)

{

hwinit();

for (;;)

{

*pWatchdog = 10000;

read_sensors();

control_motor();

display_status();

}

}

Watchdog Timer

Clock

Reset

Restart

Processor

EMBEDDED SYSTEMS PROGRAMMING (ISSN 1040-3272) is published monthly, with an additional issue published in September, by CMP Media Inc., 600 Harrison Street, San Francisco, CA 94107, (415) 905-2200. Please
direct advertising and editorial inquiries to this address. SUBSCRIPTION RATE for the United States is $55 for 13 issues. Canadian/Mexican orders must be accompanied by payment in U.S. funds with additional postage of
$6 per year. All other foreign subscriptions must be prepaid in U.S. funds with additional postage of $15 per year for surface mail and $40 per year for airmail. POSTMASTER: All subscription orders, inquiries, and address
changes should be sent to EMBEDDED SYSTEMS PROGRAMMING, P.O. Box 3404, Northbrook, IL 60065-9468. For customer service, telephone toll-free (877) 676-9745. Please allow four to six weeks for change of address
to take effect. Periodicals postage is paid at San Francisco, CA and additional mailing offices. EMBEDDED SYSTEMS PROGRAMMING is a registered trademark owned by the parent company, CMP Media. All material pub-
lished in EMBEDDED SYSTEMS PROGRAMMING is copyright © 2001 by CMP Media Inc. All rights reserved. Reproduction of material appearing in EMBEDDED SYSTEMS PROGRAMMING is forbidden without permission.
EMBEDDED SYSTEMS PROGRAMMING is available on microfilm/fiche from University Microfilms International, 300 N. Zeeb Rd., Ann Arbor, MI 48106, (313) 761-4700.

	return:

