Detailed H-Bridge Assembly Instructions

- 1. It is assumed that all traces have been checked for continuity and all holes have been drilled before this procedure is started
- 2. Solder resistors and ICs.
 - a. R9 is a 1K resistor
 - b. All other resistors are 10K
 - c. Pin one of each IC is closest to the IC designator
- 3. Solder jumpers and power wires
 - a. The smaller jumpers are 22 gauge wire
 - b. The larger jumpers are 16 gauge wire
 - c. The ground (-) is 16 gauge wire with black insulation
 - d. The positive rail (+) is the wire with the fuse holder
- 4. Test circuit and stop to verify assembly if any step fails
 - a. Apply 12 volts from a bench power supply
 - b. Check for 12 volts at gate for M1, M2, M4, M5, M6 and M8
 - c. Check for 0 volts at gate for M3 and M7
 - d. Apply 12 volts to Enable 1
 - i. Check for 0 volts at M1 and 12 volts at M2
 - ii. Check for 0 volts at M3 and 12 volts at M4
 - e. With 12 volts still applied to Enable 1, apply 12 volts to Direction 1
 - i. Check for 12 volts at M1 and 0 volts at M2
 - ii. Check for 12 volts at M3 and 0 volts at M4
 - f. Remove 12 volts form Enable 1 and Direction 1
 - g. Apply 12 volts to Enable 2
 - i. Check for 0 volts at M5 and 12 volts at M6
 - ii. Check for 0 volts at M7 and 12 volts at M8
 - h. With 12 volts still applied to Enable 2, apply 12 volts to Direction 2
 - i. Check for 12 volts at M5 and 0 volts at M6
 - ii. Check for 12 volts at M7 and 0 volts at M8
 - i. Remove 12 volts form Enable 2 and Direction 2
 - j. Remove 12 volts from a bench power supply
- 5. Solder FETs
 - a. Bend the leads of each FET
 - i. Bend where the lead makes a transition from thin to thick
 - ii. Bend up toward the text
 - b. The FQP47P06 FETs are soldered to the side that is attached to the positive rail (+)
 - c. The FDP55N06 FETs are soldered to the side that is attached to the negative rail (-)
- 6. Solder Diodes
 - a. Each location for the diode has the cathode (C) or anode marked (A)
 - b. Bend each diode on the end that has the cathode marked (the end with the line)
 - c. Cut the longer lead to the same length as the shorter lead

- d. With the circuit sitting flat on any surface, insert each diode on the copper side and solder from the copper side
- 7. Test circuit
 - a. Place a 1K resistor between M1- and M1+
 - b. Place a 1K resistor between M2- and M2+ $\,$
 - c. Apply 12 volts from a bench power supply
 - i. Check for 0 volts from M1- to M1+
 - ii. Check for 0 volts from M2- to M2+
 - d. Apply 12 volts to Enable 1
 - i. Check for 12 volts from M1- to M1+
 - ii. Check for 0 volts from M2- to M2+
 - e. With 12 volts still applied to Enable 1, apply 12 volts to Direction 1
 - i. Check for -12 volts from M1- to M1+
 - ii. Check for 0 volts from M2- to M2+
 - f. Remove 12 volts form Enable 1 and Direction 1
 - g. Apply 12 volts to Enable 1
 - i. Check for 0 volts from M1- to M1+
 - ii. Check for 12 volts from M2- to M2+
 - h. With 12 volts still applied to Enable 1, apply 12 volts to Direction 1
 - i. Check for 0 volts from M1- to M1+
 - ii. Check for -12 volts from M2- to M2+
 - i. Remove 12 volts form Enable 2 and Direction 2
 - j. Remove 12 volts from a bench power supply