
A Versatile Computation Module for Adaptable
Multimedia Processors

Yunan Xiang, Ryan Pettibone, Martin Margala
Department of Electrical and Computer Engineering, University of Rochester

Rochester, NY 14627-0231, USA
Email: {xiang,pettibon,margala@ece.rochester.edu}

Abstract—This paper describes a low cost, low power, versatile
computation module that can be used as a coarse-grain
building block in multimedia processors. The module, which
has a datapath and a controller integrated with its local data
memory, performs various arithmetic operations on different
data types, i.e., 8-bit integer, 16-bit integer, 32-bit integer and
single precision floating point numbers. Running in parallel,
the module provides high data throughput at low hardware
cost. Multiple modules will be connected in a multimedia
processor operated in mixed SIMD and MIMD modes,
providing great flexibility for data parallel, computation
intensive multimedia applications.

 I. INTRODUCTION

With the technology advances in integrated circuits (IC)
fabrication and the increasing communication channel bit
rates, multimedia processors are playing a more significant role
in main computer systems as well as in personal mobile
devices [1]. Multimedia applications usually involves large
amount of data, require high data rate, real-time processing.
Although the amount of data and computation throughput
varies over a wide range depending on the required quality
of the applications, multimedia data processing has the
following characteristics: The word lengths of the
processing data are 8 bits, 16 bits or 24 bits, which requires
frequent use of small integer operations; Arithmetic
operations are highly computation-intensive and repetitive
with data parallelism; Intensive memory access to a large
memory space requires high bandwidth memory interface
[2].

In this paper, a low power, low hardware cost
computation module is proposed to provide the desirable
features for constructing modular array based multimedia
processors. The module has a datapath, a controller and a
local 16 KB SRAM data cache. The datapath comprises four
8-bit Processing elements (PE). Therefore, the module can
operate on four 8-bit or two 16-bit integer numbers in a
Single Instruction Multiple Data (SIMD) mode or perform
one 32-bit integer arithmetic operation. It also supports
addition, subtraction and multiplication of IEEE 754
standard floating point numbers.

M4

M8

M12

M3

M7

M11

M2

M6

M10

M1

M5

M9

Control

Module

Figure 1. An adaptive multimedia processor using the module

Multimedia signal processing can take advantage of the
flexible data types and multiple arithmetic operations
available from the module. Local data memory provides the
required memory access data bandwidth. As shown in Fig.
1, an adaptive multimedia processor can be constructed
using the proposed module. Depending on the applications,
an array of modules is divided into several clusters, as
indicated by the dash-line frames. Each cluster may have
different numbers of modules operated in SIMD fashion for
one application, while other clusters performing different
applications at the same time in a multiple instruction
multiple data (MIMD) mode. For example, one cluster may
perform a two-dimensional discrete cosine transform (2-D
DCT) while another cluster is performing a discrete wavelet
transform (DWT). Instructions for the different modules are
provided from the upper level controller using encoded
address for the modules.

The paper is organized as the followings: Section II
describes the architecture of the proposed module. Section
III discusses the supported arithmetic operation modes.
Implementation and simulation results are presented in
section IV. Section V draws a conclusion.

 II. MODULE ARCHITECTURE

The architecture of the proposed module is shown in Fig.
2. The module has a datapath, a controller and a 16 KB
SRAM local data memory. When an instruction is executed
in the module, the addresses of the input data are provided to
the local memory and the 64-bit data are retrieved from the
SRAM to the input register. The controller takes the 5-bit
operation code (opcode) from the instruction and decodes it
into various control signals at different clock cycles to the
datapath so that the datapath can perform the specified
operations. The Outputs of the operations are available in the
output registers and can be either written back to the local
data memory, send to other modules through processor level
data bus network, or direct to the output of the multimedia
processor.

Module
controller

Local SRAM data cache

64-bit input register

PE4 PE3 PE2 PE1

Preliminary logic

64-bit pipeline register

Connection network

Output register

64-bit partitionable adderSign

Normalizer

Figure 2. The architecture of the module

Add 3 Add 2 Add 1Add 4

Mult 2 Mult 1

ff ffF

A[7:4] B[7:4] A[3:0]B[3:0]

1 00 1

ci

AA BB

0

B[3:0]

i i

i

i

i

i

i

i

i

0

Figure 3. The Processing Element block diagram

A. The Datapath

The datapath of the module consist of two stages
separated by the pipeline register, as shown in Fig. 2. The
first stage includes a 64-bit input register, the preliminary
logic and four processing elements. The 64-bit input register
is directly connected to the 64-bit-wide data bus of the local
SRAM. For every operation instruction, two 32-bit input

data are read into the input register at the same clock cycle.
The 32-bit input data could be four 8-bit integer operands, or
two 16-bit integer operands, or one 32-bit integer operand, or
one IEEE 754 single precision floating point number.
Depending on the data types and operations specified in the
instruction, the preliminary logic decomposes a 32-bit
number into four sets of 8-bit numbers and feeds them into
different PEs.

The 8-bit processing elements are the workhorse of the
entire datapath. It is designed to be efficiently shared by all
of the operation modes with minimum hardware to lower the
area cost and power consumption. Fig. 3 shows the block
diagram of the PE. The main computation units in it are two
4x4 multipliers and four 4-bit ripple carry adders which can
be carry linked. Each PE accepts two 8 bit operands, and
outputs a 16 bit vector. It performs the basic operation of
partial product generation, as well as addition, subtraction,
and absolute value at the 8-bit level. These operations are
the building blocks of data manipulations at larger data
levels, i.e., 16-bit and 32-bit levels. The PEs can also be
carry linked to perform 16 and 32-bit addition and
subtraction. Multiplications are handled by decomposing
larger data level multiplications into smaller data level
multiplications and adding the partial products [3]. For
example, an 8-bit multiplication can be computed as in (1):

A[7:0]*B[7:0] = (A[7:4]*B[7:4]) & (A[3:0]*B[3:0]) +
(A[7:4]*B[3:0] + A[3:0]*B[7:4]) ls4 (1)

Note that “&” denotes “concatenation” and “ls4” denotes
“left shift 4 bit”.

The second stage consists of a connect network, a 64 bit
partionable adder comprised by two 32-bit Kogge-Stone
adders, a normalyzer, and a block that determines the sign of
the result. As the preliminary logic in the first stage, the
connect network arranges partial products before they entry
into the adder, which has the role of accumulating partial
products. The output register provides feedback into the
connect network as well as the normalyzer, which normalize
the format of floating point numbers. A mux before the
output register allows a choice between the normalized and
un- normalized results, e.g., results for 32-bit integer
multiplication and for floating point operations.

B. The Controller and the SRAM

The controller decoded the 5-bit opcode into control
signals for the datapath to execute one of the eighteen
supported operations. Table 1 summarizes all of the
supported arithmetic operations and the thoughput and
latency in clock cycles for executing each of these
operations, where parallelism means that how many sets of
data inputs can be executed in SIMD fashion. As we will see
in the next section, different operations may just use one of
the two stages, or repeatedly use one stage before using the
other stage, or use both of the two stages concurrently.
Therefore standard pipeling approach does not apply here
and the clock cycles taken by different operations also vary
widely. To maximize the efficiency of using the two stages,

the controller has two state variables to keep track of the
usage of two stages, allowing two different instructions
executing in two stages simultaneously. A next_op signal is
issued by the controller when the current operation no longer
needs the first stage and the datapath is able to accept a new
operation, i.e., pipeling the operations.

The SRAM local data memory will be either a hard
macro created from a third party SRAM compiler or a soft
core created from Synopsys. We choose the capacity of 16
KB to meet the storage of a RGB colored 64x64 picture. A
larger memory size may be used to buffer more pixels but
the access time penalty of the data should be considered.

TABLE I. SUPPORTED ARITHMETIC OPERATIONS

Instruciton Parallelism
Thoughput/

Latency

add8/sub8 4 1/2

mult8 4 2/3

abs_add8/abs_sub8 4 2/3

add16/sub16 2 1/2

mult16 2 4/5

abs_add16/abs_sub1
6

2 2/3

add32/sub32 1 2/3

mult32 1 8/9

abs_ad32/abs_sub32 1 4/5

fp_add 1 6/7

fp_sub 1 6/7

fp_mult 1 9/10

 III. ARITHMETIC OPERATIONS

The arithmetic operations executed in the datapath can be
categorized into three basic types: the integer
addition/subtractions and absolute values of the integer
addition/subtractions, the integer multiplications, and the
floating point operations. We discuss the execution of these
three categories in this section.

A. Integer Addition/Subtraction and Absolute Values

8-bit integer addition and subtraction are executed by
each PE using the two left most 4-bit adders, i.e., adder1 and
adder2, which are carry-linked together. As illustrated in Fig.
3, A[7:4] and B[7:4] have to multiply 0001 through the two
multipliers and then are added up in adder2, while A[3:0]
and B[3:0] are added up in adder1. The carry-in signal for
adder 1 is set to 0. When a subtraction is performed, B[7:0]
are simply inverted and the carry in signal for adder1 is set to
one to implemented a 2’s complement negative integer
representation. Note that only the two left most registers
keep the valid output data.

When computing the absolute value of the 8-bit
addition/subtraction, an extra step (clock cycle) is needed.
After getting the results of the addition/subtraction, the

controller checks the sign bit of the results. Nothing is done
for a positive number. If the result is a negative number, the
data are inverted and add 1.

16-bit addition/subtraction and 32-bit
addition/subtraction and their absolute values are computed
in similar ways. Two PEs are carry-linked for performing
16-bit operations and four PEs are carray-linked for
performing 32-bit operations. Note that a flip-flop was
inserted between PE2 and PE3 to pipeline the carry out of
PE2 for 32-bit addition/subtraction so that the clock cycle
can be half of the propagation delay.

B. Integer Multiplications

As mentioned in section II, integer multiplications are
handled in the way that larger data level multiplications are
decomposed into small data level multiplications and then
the partial products are added together to exploit the
hardware reuse. Equation (1) illustrated how an 8-bit
multiplication is calculated. Since there are only two
multipliers in each PE, A[7:4] * B[3:0] and A[3:0] * B[7:4]
are computed and added up in adder3 and adder2 in the first
clock cycle and 8-bit result are stored in register2 and
register3. In the second cycle, A[7:4] * B[7:4] and A[3:0] *
B[3:0] are computed and the partial products are
accumulated onto the previous results and produce a 16-bit
results. Therefore, each PE needs two cycles to finish an 8-
bit multiplication.

16 and 32-bit multiplications are performed in a similar
way. Two PEs are grouped together to perform a 16-bit
multiplication, with each PE calculating an 8-bit partical
product. A 16-bit multiplication is executed as in (2).
However, the connect network and the SIMD adder in the
second stage are used to shift and align the partial products
and add them together. Note that the module can perform
two 16-bit multiplications in parallel and the 64-bit SIMD
adder is split into two 32-bit adders to accumulate the two
sets of partial product at the same time.

A[15:0]*B[15:0] = (A[15:8]*B[15:8]) & (A[7:0]*B[7:0])
+ (A[15:8]*B[7:0] + A[7:0]*B[15:8]) ls8 (2)

C. Floating Point operations

When executing single precision floating point
operations, the preliminary logic in the first stage takes the
sign bit out for later use and feeds the exponents of the two
floating point numbers into PE4. It also extends the 23-bit
significands into 24-bit numbers with the leading 1 before
send them to PE1, PE2 and PE3. Steps for floating point
operations follow the algorithms described in [4].

For floating point addition/subtraction, two exponents are
compared to align the significands. One of the significands
with different signs is converted into 2’s complement
number and the two significands may swap positions before
adding together. Finally the result is formatted back into a
32-bit floating point number by the Normalizer in the second
stage, which decides the right sign for the result, shifts the
exponent if necessary. If the results is a negative number, it

has to be converted back to sign magnitude format from 2’s
complement format in the first stage.

The floating point multiplication also uses PE4 to add the
exponents and minus the bias number 127. Multiplication of
the significands uses the 24-bit integer multiplications in PE1
to PE3 in the same way as the 16 and 32-bit integer
multiplication. The result of multiplication is simply
truncated with taking rounding mechanisms into
consideration to minimize the design complexity.

 IV. IMPLEMENTATION RESULTS

The datapath and the controller of the proposed module
were coded in VHDL hardware description language. A
simplified testbench with all of the extreme cases as well as
some random test cases was created to verify the functions of
the module. All of the eighteen operation modes are verified
using the Cadence NCsim simulator. Table II gives an
example of two set of test vectors for abs_add8 and mult16.
Note that one test vector for abs_add8 includes four test
cases, while one test vector in mult16 includes two test cases.

The VHDL codes were synthesized by Synopsys Design
Compiler using the ACI 1.8V CMOS standard cells targeted
for TSMC 0.18 _m technology. A maximum clock frequency
of 222 MHz can be achieved with an average energy
consumption of 0.065 mW/MHz and a silicon area of
132,041 _m2.

A comparison to the datapaths in three previous papers
has been illustrated in Table III.

 V. CONCLUSIONS

A versatile computation module that exploiting hardware
reuse has presented in the paper. Eighteen various integer
and floating point arithmetic operations are supported.
Implemented using standard cells in TSMC 0.18 _m
technology, the module consumes 0.065wM/MHz power
and has an area of 132,041 _m2. With the great flexibility, it
is very suitable as the building block for adaptable
multimedia processors.

TABLE II. TESTBENCH EXAMPLES

Operations
Input data (test vectors)

(Hexadecimal)
Output data

(Hexadecimal)

80818200 7F7FFF7F 01007F7Fads_add8

85CA009F 39ED8166 42497F05

00000000 0000FFFF 0000000000000000

FFFF8000 00018000 0000FFFF40000000

7FFFFFFF 7FFFFFFF 3FFF0001FFFE0001

mult16

E9DF1489 72A19569 68B8633F0BFC2931

ACKNOWLEDGMENT

The authors would like to thank Marco Lanuzza for his
help in clarifying the questions and Quentin Diduck for
helping us writing the C code to create the input data for the
testbench.

REFERENCES

[1] K. Diefendorff and P. Dubey, “How multimedia workloads will
change processor design,” IEEE Computer, 80(9), September, 1997.

[2] J. Kuroda, I.; Nishitani, T., “Multimedia processors,” Proceedings of
the IEEE Volume 86, Issue 6, pp. 1203-1221, June.

[3] M. Margla, R. Lin, “Highly efficient digital CMOS accelerator for
image and graphics processing,” 15th Annual IEEE International
ASIC/SOC Conference 2002, pp127-132, 25-28 September 2002.

[4] D goldberg, “Appendix A: Computer arithmetic,” in “Computer
architecture: a quantitative approach,” by J. Hennessy and D.
Patterson, Morgan Kauffman Publishers, 1996.

[5] M Lanuzza, P. Corsonello, M. Margala, “Cost-effective, low-power
processor-in-memory-based reconfigurable datapath for multimedia
applications,” ISLPED’05, August 8-10, 2005, San Diego,
California, USA.

[6] A. Farooqui, V.G. Oklobdzija, “A programmable data-path for
MPEG-4 and naural hybrid video coding,” 34th Annual Asilomar
Conference on Signals, Systems and Computers, Pacific Grove,
California, October 29 – November 1, 2000

[7] J.S. Moon, T.J. Kwon, J. Sondeen, J. Draper, “ An area-efficient
standard-cell floating-point unit design for a processing-in-memory
system,” Proc. of the Conference on Europen Solid-state Cirucits,
2003, ESSCIRC’03, pp.57-60, 16-18 September 2003.

TABLE III. COMPARISION OF THE PROPOSED MODULE WITH OTHER WORKS

Architecture Technology
Gate
count

Speed

(MHz)
Area (_m2)

Energy
(mW/MHz)

SIMD
integer
operations

Floating
point
operations

Thoughput/
Latency for
mult32

Thoughput/
Latency for
fp_add/sub

Proposed
module

0.18 _m
CMOS 6,224 222 132,041 0.06 YES YES 8/9 6/7

[5]
0.18 _m
CMOS

3,856 285 107,323 0.12 YES YES 8/9 5/7

[6]
0.25 _m
CMOS N.A. 200 N.A. N.A. YES YES 1/2 1/2

[7]
0.18 _m
CMOS

8,446 300 278,210 0.6 NO YES N.A. 1/5

