Legged Robotics \& BigDog
 Marc Raibert: Boston Dynamics

Andy Schmidt

University of North Carolina at Charlotte
April 16, 2008

Boston Dynamics - BigDog

Raibert's Legged Robotics Paper

Why Legged Machines?

1. Traverse difficult train

- Wheels excel on prepared surfaces
- Legs allow travel to more remote areas

2. Active suspension of body from feet

- Body travels "smoothly" despite variations in terrain
- Legged system can choose among best footholds
- Do not need constant contact with surface

Raibert's Legged Robotics Paper

Pitfalls:

- Joint movement
- Balance
- Current and future foothold calculations

Boston Dynamics - BigDog

Legged Robotics - History

- 1870s - Simple walking machines
- 1960s - Human Control (I.E. GE Legged Truck)
- 1970s - Computer Control (Ohio State University - 1977)
- Linkages to provide appropriate stepping motions
- Limitation: No Control - Best footholds

Static Balance: Some feet on ground to guarantee support

General Electrical Legged Truck

Boston Dynamics - BigDog

Legged Robotics - Active Balance

Active Balance: Legged systems operating while considering velocities and kinetic energies of the masses

- Challenges:
- Energy stored in each mass and spring
- Geometric structure and configuration
- Velocity
- Running with respect to Active Balancing
- Tip and accelerate (short) then tip in opposite direction
- An effective base (balance) is maintained over time
- Result: Improved mobility

Legged Robotics - Running Machines

- Running Cycle:

Stance Leg supports weight of body
Flight Center of mass moves ballistically allowing unloaded leg to move freely

- Running Control:

Hopping Delivered vertical thrust with the leg during each support period to sustain oscillation and regulate amplitude
Forward Speed Calculate the next foot position (angle) which plays into the speed
Posture Stabilize pitch angle of body to keep it upright

Marc Raibert's One Legged Robot

Boston Dynamics - BigDog

Legged Robotics - From One to Four Legs

- Bi-beds run with alternating support and flight
- One leg is placed on the ground at a time
- Virtual Leg: Group of legs with simultaneous support
- One virtual leg provides support / flight at a time
- Trotting quadruped $=$ biped $=$ one-legged machine

Boston Dynamics

- Started by Marc Raibert (MIT) in 1992
- Focus on Human Simulation and Robotics

Sony Entertainment Robots
Army Institute for Creative Technologies
Marines Marine Expeditionary Rifle Squad

- Robotics:

BigDog Quadruped Robot
LittleDog Legged Learning Robot
RHex Remote Controlled Terrain Robot
RiSE Climbing (as in vertical!) Robot

Boston Dynamics - DI Guy

Boston Dynamics - BigDog
הive UNCCHARLOTTE

Boston Dynamics - BigDog

Requirements:

- Capable of running
- Jumping over objects 1 meter tall or 2 meters wide
- Traverse a variety of terrain
- Operate for two hours without refueling

Boston Dynamics - BigDog

BigDog Stats:
Size 1 meter long $\times 0.7$ meters tall
Weight 75 Kg
Power One Cylinder Gas engine and battery
Hydraulic Actuators 3 joints repositioned up to 500/sec
Speed 4 mph
Climbs 35-45
Load 155 Kg
Contract \$40 Million+ from DARPA

Boston Dynamics - BigDog

Boston Dynamics - BigDog

Boston Dynamics - BigDog

Boston Dynamics - BigDog

Sensors

- Joint positioning
- Joint force
- Ground contact
- Ground load
- Laser gyroscope
- Stereo vision system
- Internal sensors monitoring:
- Hydraulic pressure
- Oil temperature
- Engine temperature
- RPMs
- Battery charge

Boston Dynamics - BigDog

Boston Dynamics - BigDog

Future goals:

- Follow a solider
- Allow solider to specify distance to follow
- Move to solider to provide supplies
- Deviating from the soldiers path
- Move faster, longer, and be stronger!

