The UNCCHARLOTTE

Legged Robotics & BigDog

Marc Raibert: Boston Dynamics

Andy Schmidt

University of North Carolina at Charlotte April 16, 2008

Raibert's Legged Robotics Paper

Why Legged Machines?

- 1. Traverse difficult train
 - Wheels excel on prepared surfaces
 - Legs allow travel to more remote areas
- 2. Active suspension of body from feet
 - Body travels "smoothly" despite variations in terrain
 - Legged system can choose among best footholds
 - Do not need constant contact with surface

▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ○ � � �

Raibert's Legged Robotics Paper

Pitfalls:

- Joint movement
- Balance
- Current and future foothold calculations

Legged Robotics - History

- 1870s Simple walking machines
- 1960s Human Control (I.E. GE Legged Truck)
- 1970s Computer Control (Ohio State University 1977)
- Linkages to provide appropriate stepping motions
- Limitation: No Control Best footholds

Static Balance: Some feet on ground to guarantee support

General Electrical Legged Truck

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Legged Robotics - Active Balance

Active Balance: Legged systems operating while considering velocities and kinetic energies of the masses

- Challenges:
 - Energy stored in each mass and spring
 - Geometric structure and configuration
 - Velocity
- Running with respect to Active Balancing
- Tip and accelerate (short) then tip in opposite direction
- An effective base (balance) is maintained over time
- Result: Improved mobility

Legged Robotics - Running Machines

Running Cycle:

Stance Leg supports weight of body Flight Center of mass moves ballistically allowing unloaded leg to move freely

- Running Control:
 - Hopping Delivered vertical thrust with the leg during each support period to sustain oscillation and regulate amplitude
 - Forward Speed Calculate the next foot position (angle) which plays into the speed

Posture Stabilize pitch angle of body to keep it upright

Marc Raibert's One Legged Robot

・ロ・・聞・・叫・・ 「」 うらの

Legged Robotics - From One to Four Legs

- Bi-beds run with alternating support and flight
- One leg is placed on the ground at a time
- Virtual Leg: Group of legs with simultaneous support
- One virtual leg provides support / flight at a time
- Trotting quadruped = biped = one-legged machine

Boston Dynamics

- Started by Marc Raibert (MIT) in 1992
- Focus on Human Simulation and Robotics

Sony Entertainment Robots Army Institute for Creative Technologies Marines Marine Expeditionary Rifle Squad

- Robotics:
 - BigDog Quadruped Robot LittleDog Legged Learning Robot RHex Remote Controlled Terrain Robot RiSE Climbing (as in vertical!) Robot

The UNCCHARLOTTE

Boston Dynamics - DI Guy

Requirements:

- Capable of running
- Jumping over objects 1 meter tall or 2 meters wide
- Traverse a variety of terrain
- Operate for two hours without refueling

BigDog Stats:

Size 1 meter long \times 0.7 meters tall Weight 75 Kg Power One Cylinder Gas engine and battery

Hydraulic Actuators 3 joints repositioned up to 500/sec

Speed 4 mph Climbs 35–45° Load 155 Kg

Contract \$40 Million+ from DARPA

▲ 臣 ▶ ▲ 臣 ▶ 三 ■ ∽ � �

Boston Dynamics - BigDog

Sensors

- Joint positioning
- Joint force
- Ground contact
- Ground load
- Laser gyroscope
- Stereo vision system
- Internal sensors monitoring:
 - Hydraulic pressure
 - Oil temperature
 - Engine temperature
 - RPMs
 - Battery charge

Future goals:

- Follow a solider
- Allow solider to specify distance to follow
- Move to solider to provide supplies
- Deviating from the soldiers path
- Move faster, longer, and be stronger!

▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → の Q () ◆